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Abstract: A k-labeling from the vertex set of a simple graph G = (V, E) to a set of integers {1, 2, . . . , k}
is defined to be a modular edge irregular if, for every couple of distinct edges, their modular edge
weights are distinct. The modular edge weight is the remainder of the division of the sum of end
vertex labels by modulo |E(G)|. The modular edge irregularity strength of a graph is known as the
maximal vertex label k, minimized over all modular edge irregular k-labelings of the graph. In this
paper we describe labeling schemes with symmetrical distribution of even and odd edge weights
and investigate the existence of (modular) edge irregular labelings of joins of paths and cycles with
isolated vertices. We estimate the bounds of the (modular) edge irregularity strength for the join
graphs Pn + Km and Cn + Km and determine the corresponding exact value of the (modular) edge
irregularity strength for some fan graphs and wheel graphs in order to prove the sharpness of the
presented bounds.
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1. Introduction

Consider a simple graph G = (V, E) with the vertex set V(G) and the edge set E(G).
Ahmad et al. in [1] introduced the concept of the edge irregular labeling of graphs as a
modification of the well-known concept of irregular assignments defined by Chartrand
et al. in [2].

A vertex labeling ϕ : V(G) → {1, 2, . . . , k} of a graph G is called an edge irregular
k-labeling if for any couple of distinct edges uv, u′v′ ∈ E(G) their edge weights are distinct,
that is, wtϕ(uv) = ϕ(u) + ϕ(v) 6= ϕ(u′) + ϕ(v′) = wtϕ(u′v′). The edge irregularity strength,
es(G), of G is known as the maximal vertex label k, minimized over all edge irregular
k-labelings.

The lower bound of the edge irregularity strength proved in [1] is given by the
following formula:

es(G) ≥ max
{⌈
|E(G)|+1

2

⌉
, ∆(G)

}
, (1)

where ∆(G) is the maximum degree of G. The precise value of the edge irregularity strength
for paths, stars, double stars and Cartesian product of two paths is determined in [1] and
for Toeplitz graphs in [3]. The exact value of the edge irregularity strength for triangular
grid graphs is proven in [4] and for some classes of plane graphs is presented in [5].
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Koam et al. in [6] introduced a modular version of the edge irregular labeling which is
a modification of the modular irregular labeling defined by Bača et al. in [7], and it was
investigated in [8–12].

For a graph G = (V, E) of size q, a vertex labeling ϕ : V(G) → {1, 2, . . . , k} is called
a modular edge irregular k-labeling if the edge weight function ρ : E(G) → Zq defined by
ρ(uv) = wtϕ(uv) = ϕ(u) + ϕ(v) is bijective, and is referred to as the modular edge weight
of the edge uv, where Zq is the group of integers modulo q. In [6], a new graph invariant
was introduced, namely the modular edge irregularity strength, mes(G), as the minimum k
for which G has a modular edge irregular k-labeling. If no such labeling of G exists, then
mes(G) = ∞.

2. Relationship between es(G) and mes(G)

Certainly, every modular edge irregular labeling of a graph is also its edge irregular
labeling. This gives a lower bound of the modular edge irregularity strength, i.e., for any
simple graph G

es(G) ≤ mes(G). (2)

The converse of (2) does not hold. However, it is interesting to find families of graphs
for which the equality holds. The validity of the following claim is obvious.

Theorem 1 ([6]). Let G be a simple graph with es(G) = k. If edge weights under a corresponding
edge irregular k-labeling constitute a set of consecutive integers, then

es(G) = mes(G) = k.

In [6] the authors estimated the bounds on the modular edge irregularity strength for
caterpillars, cycles, friendship graphs and n-suns. They determined the precise values of
this parameter for the friendship graph of order 2n + 1, except for n ≡ 0 (mod 4).

The results in this paper are mostly based on the following theorem.

Theorem 2. Let f be an edge irregular k-labeling of a graph G. Let W be a subset of the vertices
of G such that the labels of all vertices in W are pairwise distinct, where w1 ∈W has the smallest
label. Let wt f ,max(G) be the maximal edge weight of an edge in G under the labeling f . Let GW be
the graph obtained from G by joining all vertices in W with an isolated vertex. Then,

es(GW) ≤ max{k, wt f ,max(G) + 1− f (w1)}.

Moreover, if all the induced weights of edges in G under the labeling f are consecutive numbers and
the labels of the vertices in W are consecutive numbers, then

mes(GW) ≤ max{k, wt f ,max(G) + 1− f (w1)}.

Proof. Let f be an edge irregular k-labeling of a graph G. Let W = {w1, w2, . . . , wt} be a
subset of the vertices of G such that

f (wi) < f (wi+1) for 1 ≤ i ≤ t− 1. (3)

Let wt f ,max(G) be the maximal edge weight of an edge in G under the labeling f . Let GW be
the graph with the vertex set V(GW) = V(G) ∪ {x} and the edge set
E(GW) = E(G) ∪ {xwi : 1 ≤ i ≤ t}.

We define a vertex labeling g of GW such that

g(v) =

{
f (v), if v ∈ V(G),
wt f ,max(G) + 1− f (w1), if v = x.
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Thus, the maximal vertex label is the maximum of the numbers k and
wt f ,max(G) + 1− f (w1). For the weights of edges in GW under the labeling g, we have the
following. If uv ∈ E(G), then

wtg(uv) = g(u) + g(v) = f (u) + f (v) = wt f (uv).

For the edges xwi, 1 ≤ i ≤ t we obtain

wtg(xwi) =g(x) + g(wi) =
(

wt f ,max(G) + 1− f (w1)
)
+ f (wi). (4)

Thus, wtg(xw1) = wt f ,max(G) + 1, and according to (3) we obtain that for every
1 ≤ i ≤ t− 1

wtg(xwi) < wtg(xwi+1).

Thus, as f is an edge irregular labeling we have that all edge weights are distinct. This implies

es(GW) ≤ max{k, wt f ,max(G) + 1− f (w1)}.

Now suppose that the set of induced edge weights under the labeling f consists of consecu-
tive numbers, i.e.,

{wt f (e) : e ∈ E(G)} = {wt f ,max(G) + 1− j : j = 1, 2, . . . , |E(G)|}, (5)

and let W = {w1, w2, . . . , wt} such that for i = 1, 2, . . . , t

f (wi) = f (w1) + i− 1.

Then, (4) becomes

wtg(xwi) =
(

wt f ,max(G) + 1− f (w1)
)
+ ( f (w1) + i− 1) = wt f ,max(G) + i.

Combining this with (5) implies that the weights of edges in GW under the labeling g are
consecutive numbers. Thus,

mes(GW) ≤ max{k, wt f ,max(G) + 1− f (w1)}.

This concludes the proof.

The previous theorem allows us to construct (modular) edge irregular labelings of
some graphs obtained by joining isolated vertices to a given graph. Let G ∪ H denote the
union of two disjoint graphs G and H. The join G + H of graphs G and H is the graph
G ∪ H together with all the edges joining vertices of G and vertices of H. By the symbol G
we denote the complement of the graph G.

In this paper we describe labeling schemes with symmetrical distribution of even
and odd edge weights, and we investigate the existence of edge irregular and modular
edge irregular labelings of joins of paths and cycles with isolated vertices. We estimate
the bounds of the edge irregularity strength and modular edge irregularity strength for
the join graphs Pn + Km and Cn + Km and determine the corresponding exact value of the
(modular) edge irregularity strength for some fan graphs and wheel graphs in order to
prove the sharpness of the presented bounds.

3. Fan Graphs

A fan graph Fn, n ≥ 2, is a graph obtained by joining all vertices of a path Pn on n
vertices to a further vertex, called the centre. Thus, Fn is isomorphic to the join Pn + K1. The
fan graph Fn contains n + 1 vertices (e.g., v1, v2, . . . , vn, u) and 2n− 1 edges (e.g., vivi+1,
1 ≤ i ≤ n− 1, and viu, 1 ≤ i ≤ n).
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The next lemma gives a lower bound of the edge irregularity strength for the fan
graphs.

Lemma 1. Let Fn, n ≥ 2, be a fan graph of order n + 1. Then

es(Fn) ≥ n + 1.

Proof. Since |E(Fn)| = 2n− 1 and the maximum degree ∆(Fn) = n, then from (1) it follows
that es(Fn) ≥ n. However, it is not difficult to see that any edge irregular labeling ϕ of the
fan graph Fn has to be injective. Evidently, for any two vertices in V(Fn) their common
neighborhood is not an empty set. This means that if ϕ(x) = ϕ(y) for a couple of distinct
vertices x, y ∈ V(Fn), then ϕ(x) + ϕ(z) = ϕ(y) + ϕ(z), where z is a common neighbor of x
and y. This contradicts the fact that ϕ is irregular. Hence, es(Fn) ≥ n + 1.

Theorem 3 shows that the lower bound of the edge irregularity strength of fan graphs
Fn given in Lemma 1 is tight for some values of the parameter n. To prove the equality we
use the following auxiliary lemma.

Lemma 2. Let f be a (modular) edge irregular k-labeling of a graph G. Then, the vertex labeling g
defined such that

g(u) = k + 1− f (u) for every u ∈ V(G)

is also a (modular) edge irregular k-labeling of a graph G.

Proof. Let f be a (modular) edge irregular k-labeling of a graph G and let the labeling g be
defined such that

g(u) = k + 1− f (u) for every u ∈ V(G).

Evidently, the maximal vertex label under the labeling g is k, and is obtained on vertices
labeled by 1 under the labeling f . If uv is an edge in G, then

wtg(uv) = g(u) + g(v) = (k + 1− f (u)) + (k + 1− f (v)) = 2k + 2− ( f (u) + f (v))
= 2k + 2− wt f (uv).

As the edge weights under the labeling f are distinct, we obtain that the edge weights
under the labeling g are also distinct.

Moreover, if f is modular edge irregular, i.e., the corresponding modular edge weights
are 0, 1, . . . , |E(G)| − 1, it is a well established mathematical convention that the modular
edge weights under the labeling g are also 0, 1, . . . , |E(G)| − 1. This concludes the proof.

Theorem 3. The fan graph Fn of order n + 1, n ≥ 2, admits an edge irregular (n + 1)-labeling
with consecutive edge weights if and only if n ∈ {2, 3, 4, 5, 6}.

Proof. Let ϕ : V(Fn)→ {1, 2, . . . , n + 1} be an edge irregular vertex (n + 1)-labeling with
consecutive edge weights t, t + 1, . . . , t + 2n − 2. Clearly, t ≥ 3 as the sum of the two
smallest vertex labels 1 and 2. Since the largest edge weight can be at most 2n + 1 as sum
of the two largest vertex labels n and n + 1, then t + 2n − 2 ≤ 2n + 1 and thus t ≤ 3.
This means that under the labeling ϕ the corresponding edge weights successively attain
consecutive values 3, 4, . . . , 2n + 1.

We will consider three cases depending on the value of the centre vertex u.
Case (i). If ϕ(u) = 1, i.e., {ϕ(vi) : 1 ≤ i ≤ n} = {2, 3, . . . , n + 1}, then the weights of edges
viu, 1 ≤ i ≤ n, receive consecutive values from the set A1 = {3, 4, . . . , n+ 2} and the weights
of edges vivi+1, 1 ≤ i ≤ n− 1, attain values from the set A2 = {n + 3, n + 4, . . . , 2n + 1}.
The sum of the numbers in the set A2 equals to the sum of the corresponding end vertex
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labels of edges, vivi+1, 1 ≤ i ≤ n− 1. The labels of vertices v1 and vn are only counted once,
while the labels of the vertices v2, v3, . . . , vn−1 are counted twice. We obtain the following:

2
n

∑
i=1

ϕ(vi)− ϕ(v1)− ϕ(vn) =
n−1

∑
i=1

wtϕ(vivi+1),

thus

2(2 + 3 + · · ·+ (n + 1))− ϕ(v1)− ϕ(vn) = (n + 3) + (n + 4) + · · ·+ (2n + 1)

and

ϕ(v1) + ϕ(vn) =
−n2+5n+4

2 . (6)

Since ϕ(v1) + ϕ(vn) is at least 5 and at most 2n + 1, then (6) gives

5 ≤ −n2+5n+4
2 ≤ 2n + 1. (7)

The separation of the compound inequality (7) gives the system of two quadratic inequalities

(n− 3)(n− 2) ≤ 0 and (n− 2)(n + 1) ≥ 0,

which has only two integer solutions, n = 2 and n = 3. The corresponding edge irregular
(n + 1)-labelings of Fn for n = 2 and n = 3 are illustrated in Figure 1.

2 3

1

5

3 4

3 4 2

1

7 6

4 35

Figure 1. An edge irregular 3-labeling of F2 and an edge irregular 4-labeling of F3.

Case (ii). If ϕ(u) = n + 1, i.e., {ϕ(vi) : 1 ≤ i ≤ n} = {1, 2, . . . , n}, then by Lemma 2 this
case is analogous to Case (i).
Case (iii). Assume ϕ(u) = s, 1 < s < n + 1. Now, the set of labels of vertices v1, v2, . . . , vn
consists of two subsets C = {1, 2, . . . , s − 1} and D = {s + 1, s + 2, . . . , n + 1}. Then,
corresponding weights of edges viu form the set W = {wt(viu) : 1 ≤ i ≤ n} = {s + 1, s +
2, . . . , 2s− 2, 2s− 1, 2s + 1, 2s + 2, . . . , s + n, s + n + 1}.

We can see that only the vertex labels from the subset C can create the set of the
smallest edge weights WC = {3, 4, . . . , s}, and only the vertex labels from the subset D can
create the set of the largest edge weights WD = {s + n + 2, s + n + 3, . . . , 2n + 1}. It is an
easy observation that the missing edge weight 2s in the set W cannot be obtained as the
sum of two vertex labels, neither both from the set C nor both from the set D. Certainly,
the edge weight 2s must be the sum of two vertex labels (e.g., c and d). Without loss of
generality, suppose that c and ϕ(v1) belong to the set C, and that d with ϕ(vn) belong to
the set D.

Since the sum of all edge weights in the set WC is equal to the sum of all vertex labels
in the subset C (both labels c and ϕ(v1) are counted once, while the values of the other
vertices are counted twice), then

3 + 4 + · · ·+ s = 2(1 + 2 + · · ·+ (s− 1))− c− ϕ(v1)

and

c + ϕ(v1) =
s2−3s+6

2 .
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As the value c + ϕ(v1) is at most 2s− 3 we obtain the inequality s2−3s+6
2 ≤ 2s− 3, which

has only two integer solutions, s = 3 or s = 4.
Analogously, the sum of all edge weights in the set WD is equal to the sum of all vertex

labels in the subset D, where the vertex labels d and ϕ(vn) are counted once each and the
values of constituent vertices are counted twice each. Thus,

(s + n + 2) + (s + n + 3) + · · ·+ (2n + 1) = 2[(s + 1) + (s + 2) + · · ·+ (n + 1)]− d− ϕ(vn)

and

d + ϕ(vn) =
−n2+2ns+3n+s−s2+4

2 . (8)

Because the numbers d and ϕ(vn) are from the set D, their sum cannot be smaller than 2s+ 3
and cannot be greater than 2n + 1. Thus, (8) leads to the following compound inequality:

2s + 3 ≤ −n2+2ns+3n+s−s2+4
2 ≤ 2n + 1. (9)

Putting s = 3 to (9) leads to

18 ≤ −n2 + 9n− 2 ≤ 4n + 2,

which is equivalent to the following system of two quadratic inequalities:

(n− 5)(n− 4) ≤ 0 and (n− 4)(n− 1) ≥ 0.

By direct calculation we obtain two integer solutions, n = 4 and n = 5.
On the other hand, if s = 4 then (9) gives

22 ≤ −n2 + 11n− 8 ≤ 4n + 2

separated to
(n− 6)(n− 5) ≤ 0 and (n− 5)(n− 2) ≥ 0

and their common integer solutions n = 5 and n = 6.
The corresponding edge irregular (n + 1)-labelings of Fn for (n, s) = (4, 3), (n, s) =

(5, 3), (n, s) = (5, 4) and (n, s) = (6, 4) are illustrated in Figure 2.

1 2 4 5

3

3 6 9

4 85 7

1 2 4 6 5

3

3 6 10 11

4 85 7 9

2 1 3 5 6

4

3 4 8 11

6 105 7 9

2 1 3 5 7 6

4

3 4 8 12 13

6 105 7 9 11

Figure 2. The edge irregular (n + 1)-labelings of Fn for (n, s) = (4, 3), (n, s) = (5, 3), (n, s) = (5, 4)
and (n, s) = (6, 4).

Let us note that from Lemma 1 and Theorem 3 it follows that es(Fn) > n + 1 for n ≥ 7.
With respect to Theorem 1 and Theorem 3 we obtain the following corollary.

Corollary 1. Let Fn be a fan graph of order n + 1. If n ∈ {2, 3, 4, 5, 6} then mes(Fn) = n + 1.
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The next theorem gives a lower bound and an upper bound for the modular edge
irregularity strength of fan graphs Fn.

Theorem 4. Let Fn, n ≥ 2, be a fan graph of order n + 1. Then,

n + 1 ≤ mes(Fn) ≤ n +
⌊ n

2
⌋
.

Proof. To obtain the lower bound for the modular edge irregularity strength of fan graphs
we need only combine (2) and Lemma 1. From Corollary 1 it follows that mes(Fn) = n + 1
for n ∈ {2, 3, 4, 5, 6}. Thus, the presented lower bound of the modular edge irregularity
strength of Fn is tight.

To obtain the upper bound of the parameter mes(Fn) for n ≥ 7, we consider the vertex
labeling ψ of the path Pn = v1v2 . . . vn, defined as follows:

ψ(vi) =

{⌊ n
2
⌋
+ i+1

2 , if i is odd, 1 ≤ i ≤ n,
i
2 , if i is even, 2 ≤ i ≤ n.

Thus, all vertex labels are consecutive numbers 1, 2, . . . , n and the set of weights of edges
vivi+1, 1 ≤ i ≤ n− 1, consists of consecutive numbers, more precisely,

wtψ(vivi+1) = ψ(vi) + ψ(vi+1) =
⌊ n

2
⌋
+ 1 + i.

This means that the maximal edge weight under the labeling ψ is
⌊ 3n

2
⌋
. According to

Theorem 2 the labeling ψ can be extended to a modular edge irregular
⌊ 3n

2
⌋
-labeling of the

graph (Pn)V(Pn) which is isomorphic to the fan graph Fn.

Note that we can apply Theorem 2 on Fn recursively, and we can obtain an upper
bound for the modular edge irregularity strength of the join of a path Pn with m isolated
vertices for m ≥ 1 in the form

mes(Pn + Km) ≤ nm +
⌊ n

2
⌋
.

However, we can prove even better the upper bound.

Theorem 5. Let Pn be a path of order n, n ≥ 2, and let m ≥ 2 be an integer. Then,⌈
n(m+1)

2

⌉
≤ mes(Pn + Km) ≤ nm.

Proof. Let V(Pn + Km) = {vi : 1 ≤ i ≤ n} ∪ {uj : 1 ≤ j ≤ m} and E(Pn + Km) = {vivi+1 :
1 ≤ i ≤ n− 1} ∪ {viuj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

For n, m ≥ 2 the lower bound follows from (1) and (2). For the upper bound, consider
the labeling ϕ defined such that

ϕ(vi) =

{
n(m− 1) + i+1

2 , if i is odd, 1 ≤ i ≤ n,
n(m− 1)−

⌊ n
2
⌋
+ i

2 , if i is even, 2 ≤ i ≤ n,

ϕ(uj) =

{
1 + (j− 1)n, if 1 ≤ j ≤ m− 1,
nm, if j = m.

Evidently, the labeling ϕ is an nm-labeling and

{ϕ(vi) : 1 ≤ i ≤ n} = {n(m− 1)−
⌊ n

2
⌋
+ 1, n(m− 1)−

⌊ n
2
⌋
+ 2, . . . , n(m− 1) +

⌈ n
2
⌉
}. (10)

Now we evaluate the corresponding edge weights. For 1 ≤ i ≤ n− 1 we have

wtϕ(vivi+1) = ϕ(vi) + ϕ(vi+1) = 2n(m− 1)−
⌊ n

2
⌋
+ 1 + i,
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thus the weights of the edges vivi+1 for 1 ≤ i ≤ n− 1 are

2n(m− 1)−
⌊ n

2
⌋
+ 2, 2n(m− 1)−

⌊ n
2
⌋
+ 3, . . . , n(2m− 1)−

⌊ n
2
⌋
.

According to (10), for 1 ≤ j ≤ m− 1 we obtain

{wtϕ(viuj) = ϕ(vi) + ϕ(uj) : 1 ≤ i ≤ n}

= {n(m + j− 2)−
⌊ n

2
⌋
+ 2, n(m + j− 2)−

⌊ n
2
⌋
+ 3, . . . , n(m + j− 2) +

⌈ n
2
⌉
+ 1}.

This means that the weights of edges viuj for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1 are the consecutive
numbers

n(m− 1)−
⌊ n

2
⌋
+ 2, n(m− 1)−

⌊ n
2
⌋
+ 3, . . . , 2n(m− 1)−

⌊ n
2
⌋
+ 1.

Finally, again using (10) we have

{wtϕ(vium) = ϕ(vi) + ϕ(um) : 1 ≤ i ≤ n}
= {n(2m− 1)−

⌊ n
2
⌋
+ 1, n(2m− 1)−

⌊ n
2
⌋
+ 2, . . . , n(2m− 1) +

⌈ n
2
⌉
}.

Thus, the set of all edge weights consists of consecutive integers

n(m− 1)−
⌊ n

2
⌋
+ 2, n(m− 1)−

⌊ n
2
⌋
+ 3, . . . , n(2m− 1) +

⌈ n
2
⌉
.

This implies that ϕ is a modular edge irregular nm-labeling of Pn + Km for n, m ≥ 2. This
concludes the proof.

Combining (1), (2), Lemma 1 and Theorems 4, 5, we obtain the following corollary.

Corollary 2. For n ≥ 2

n + 1 ≤ es(Pn + K1) ≤ n +
⌊ n

2
⌋

and for n, m ≥ 2 ⌈
n(m+1)

2

⌉
≤ es(Pn + Km) ≤ nm.

Note that some partial results for es(Pn + Km) for 3 ≤ n ≤ 6 and m ≥ 3 are proved
in [13].

4. Wheels

A wheel Wn, n ≥ 3, is a graph of order n + 1 and size 2n obtained by joining vertices
v1 and vn in a fan graph Fn. Alternatively, the wheel Wn is obtained as a join of a cycle Cn
on n vertices with K1. Let us start by determining a lower bound of the edge irregularity
strength for wheels.

Lemma 3. Let Wn, n ≥ 3, be a wheel of order n + 1. Then,

es(Wn) ≥ n + 2.

Proof. According to (1) we obtain that es(Wn) ≥ n + 1. Suppose that ϕ is an edge irregular
(n + 1)-labeling of Wn. Evidently, ϕ must be a bijection. Thus, the edge weights are not
smaller than 3 and are not greater than 2n + 1. However, the number of integers from 3 to
2n + 1 is 2n− 1, but this is a contradiction as |E(Wn)| = 2n.

Figure 3 illustrates appropriate modular edge irregular (n + 2)-labelings for wheels
Wn when n = 3, 4, 6, 7. This proves tightness of the lower bound from Lemma 3.
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Figure 3. Modular edge irregular (n + 2)-labelings of Wn for n = 3, 4, 6, 7.

The next theorem shows that the modular edge irregularity strength of wheels Wn for
n ≥ 5 odd is at most 3n+1

2 .

Theorem 6. Let Wn be a wheel of order n + 1. If n is odd, n ≥ 5, then

n + 2 ≤ mes(Wn) ≤ 3n+1
2 .

Proof. Let V(Wn) = {vi : 1 ≤ i ≤ n} ∪ {u} and E(Wn) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪
{v1vn} ∪ {viu : 1 ≤ i ≤ n}. We obtain the lower bound combining (2) and Lemma 3. For
odd n, n ≥ 5, we construct a vertex 3n+1

2 -labeling ψ of the cycle Cn = v1v2 . . . vnv1 in the
following way:

ψ(vi) =

{
i+1

2 , if i = 1, 3, . . . , n,
n+1+i

2 , if i = 2, 4, . . . , n− 1.

The weights of the edges of the cycle Cn attain values from n+3
2 to 3n+1

2 . More precisely,

wtψ(vivi+1) =
n+3

2 + i, if 1 ≤ i ≤ n− 1,

wtψ(vnv1) =
n+3

2 .

As the vertices are labeled by the consecutive numbers 1, 2, . . . , n, using Theorem 2 we
obtain that the graph (Cn)V(Cn) admits a modular edge irregular 3n+1

2 -labeling. As the
graph (Cn)V(Cn) is isomorphic to the wheel Wn, the proof is complete.

It is easy to prove that mes(W5) 6= 7. Thus, according to Theorem 6 we obtain
mes(W5) = 8, which proves that the upper bound given in Theorem 6 is tight.

The next theorems present results for the join of a cycle with m isolates, m ≥ 2.

Theorem 7. Let Cn be a cycle of order n, n ≥ 3 odd, and let m ≥ 2 be an integer. Then,⌈
n(m+1)+1

2

⌉
≤ mes(Cn + Km) ≤ nm + 1.
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Proof. Let V(Cn + Km) = {vi : 1 ≤ i ≤ n} ∪ {uj : 1 ≤ j ≤ m} and E(Cn + Km) = {vivi+1 :
1 ≤ i ≤ n− 1} ∪ {v1vn} ∪ {viuj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

As n ≥ 3 and m ≥ 2, we obtain the lower bound combining (1) and (2). For odd n we
consider the following labeling ψ:

ψ(vi) =

{
nm− 3n−1

2 + i+1
2 , if i = 1, 3, . . . , n,

nm− n + 1 + i
2 , if i = 2, 4, . . . , n− 1,

ψ(uj) =

{
1 + (j− 1)n, if 1 ≤ j ≤ m− 1,
nm + 1, if j = m.

The labeling ψ is an (nm + 1)-labeling and

{ψ(vi) : 1 ≤ i ≤ n} = {nm− 3n−1
2 + 1, nm− 3n−1

2 + 2, . . . , nm− 3n−1
2 + n}. (11)

The weights of the edges vivi+1 for 1 ≤ i ≤ n− 1 and vnv1 attain the values from 2nm−
5n−5

2 to 2nm− 3n−3
2 , as

wtψ(vivi+1) = 2nm− 5n−5
2 + i, if 1 ≤ i ≤ n− 1,

wtψ(vnv1) = 2nm− 5n−5
2 .

According to (11), for 1 ≤ j ≤ m− 1 we obtain

{wtψ(viuj) = ψ(vi) + ψ(uj) : 1 ≤ i ≤ n}

= {nm− 3n−1
2 + (j− 1)n + 2, nm− 3n−1

2 + (j− 1)n + 3, . . . , nm− 3n−1
2 + jn + 1}.

Thus, the weights of edges viuj for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1 are the consecutive numbers

nm− 3n−5
2 , nm− 3n−7

2 , . . . , 2nm− 5n−3
2 .

Moreover, as

{wtψ(vium) = ψ(vi) + ψ(um) : 1 ≤ i ≤ n}
= {2nm− 3n−1

2 + 2, 2nm− 3n−1
2 + 3, . . . , 2nm− n−3

2 },

we obtain that the set of all edge weights consists of the numbers

nm− 3n−5
2 , nm− 3n−7

2 , . . . , 2nm− n−3
2 .

Thus, ψ is a modular edge irregular (nm + 1)-labeling of Cn + Km for odd n with n ≥ 3 and
m ≥ 2. This means that mes(Cn + Km) ≤ nm + 1 in this case.

For even n we can determine only an upper bound for the edge irregularity strength.

Theorem 8. Let Wn be a wheel of order n + 1. If n is even, n ≥ 8 , then

n + 2 ≤ es(Wn) ≤ 2n− 1.

Proof. We follow the notation used in Theorem 6. Hartsfield and Ringel [14] proved
that the even cycle Cn is antimagic, i.e., it is possible to label its edges with the numbers
1, 2, . . . , n such that the sums of labels of incident edges (called the vertex weights) are
pairwise distinct. Moreover, they constructed the corresponding antimagic labeling of Cn,
say f , such that the maximal vertex weight is 2n− 1.
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For even n, n ≥ 8, consider a vertex labeling ψ of Cn defined such that

ψ(vi) =

{
f (vivi+1), if 1 ≤ i ≤ n− 1,
f (vnv1), if i = n.

Because f is an antimagic labeling, the weights of edges of Cn under the labeling ψ are
pairwise distinct and not greater than 2n− 1. Moreover, as under the labeling ψ the vertices
v1, v2, . . . , vn are labeled with the consecutive numbers 1, 2, . . . , n, applying Theorem 2 we
obtain the desired result.

Repeated use of Theorem 2 gives the following result.

Theorem 9. Let Cn be a cycle of order n, n ≥ 8 even, and let m be an integer. Then,⌈
n(m+1)+1

2

⌉
≤ es(Cn + Km) ≤ n(m + 1)− 1.

5. Conclusions

In this paper we investigated the existence of modular edge irregular labelings of
fan and wheel related graphs in order to determine the corresponding exact value of the
modular edge irregularity strength. In both cases we estimated the lower and upper bounds
of the modular edge irregularity strength and proved the sharpness of the lower bound for
a few values of n.

For further investigation of the existence of modular edge irregular labelings of fan
related graphs, we propose the following open problem.

Problem 1. For the fan graph Fn of order n + 1 and n ≥ 7, determine the exact value of the
modular edge irregularity strength.

Problem 2. For n, m ≥ 2 determine the exact value of the modular edge irregularity strength of
the fan related graph Pn + Km.

We conclude the paper with the following open problems for wheels and wheel
related graphs.

Problem 3. For the wheel Wn of order n + 1 and n ≥ 8 determine the exact value of the modular
edge irregularity strength.

Problem 4. For n ≥ 3, m ≥ 2, determine the exact value of the modular edge irregularity strength
of the wheel related graph Cn + Km.
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