
Citation: Lin, Z.; Yao, Z. Firewall

Anomaly Detection Based on Double

Decision Tree. Symmetry 2022, 14,

2668. https://doi.org/10.3390/

sym14122668

Academic Editors: Liangmin Wang,

Keyang Cheng and Haiqin Wu

Received: 12 October 2022

Accepted: 8 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Firewall Anomaly Detection Based on Double Decision Tree
Zhiming Lin and Zhiqiang Yao *

College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350100, China
* Correspondence: yzq@fjnu.edu.cn; Tel.: +86-139-5030-5120

Abstract: To solve the problems regarding how to detect anomalous rules with an asymmetric
structure, which leads to the firewall not being able to control the packets in and out according to
the administrator’s idea, and how to carry out an incremental detection efficiently when the new
rules are added, anomaly detection algorithms based on an asymmetric double decision tree were
considered. We considered the packet filter, the most common and used type of First Matching
Rule, for the practical decision space of each rule and the whole policy. We adopted, based on the
asymmetric double decision tree detection model, the policy equivalent decision tree and the policy
decision tree of anomalies. Therefore, we can separate the policy’s effective decision space and
the anomalous decision space. Using the separated decision trees can realize the optimization of
the original policy and the faster incremental detection when adding new rules and generating a
detailed report. The simulation results demonstrate that the proposed algorithms are superior to the
other decision tree algorithms in detection speed and can achieve incremental detection. The results
demonstrate that our approach can save about 33% of the time for complete detection compared with
the other approaches, and the time of incremental anomaly detection compared to complete detection
is about 90% of the time saved in a complex policy.

Keywords: firewall; double decision tree; anomaly detection

1. Introduction

As one of the core elements of network and security of information systems, the
firewall has been widely used to prevent suspicious traffic and unauthorized access to an
enterprise [1]. The firewall is located at the boundary between the local and public networks.
All incoming and outgoing data packets are checked according to the security rules to
avoid the entry of malicious traffic packets and ensure regular business [2]. However,
when the firewall is not configured correctly, it will cause serious security problems [3].
A misconfiguration of the Microsoft Azure cloud service leaked confidential information
(including source code) of more than a dozen companies that submitted proposals for
cooperation with Microsoft. Due to the firewall configuration error, the personal data of
more than 100 million customers were exposed, including sensitive information.

It can be seen that properly designing a firewall policy is not easy [4] because the
anomalies occur when the decision space of the rules is overlapped and the rules in
the firewall policy are logically entangled [5] due to the anomalies and the result of the
sequence sensitivity. Firewall rules have a certain symmetry in structure, but they are
asymmetric when administrators write rules. If we manually configure a firewall, the
security professional responsible for the configuration must know all possible valid and
invalid inputs and outputs to be processed by the applications. In practice situations, it
is difficult to change the anomalies manually. Because the number of anomalous rules in
the firewall may be vast, the firewall policy may contain thousands of rules, which are
usually logically intertwined. Modifying the rules will change the security expectations of
the firewall [6,7].

To solve the problem of anomalies, previous work on firewall anomaly detection
has been conducted through various techniques, such as those based on a single decision

Symmetry 2022, 14, 2668. https://doi.org/10.3390/sym14122668 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122668
https://doi.org/10.3390/sym14122668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14122668
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122668?type=check_update&version=1

Symmetry 2022, 14, 2668 2 of 17

diagram, based on satisfiability modulo theories, based on machine learning, and based
on visualization models. The approach of the decision diagram to detect anomalies is not
comprehensive or specific. Some of them only detect anomalies between pairwise rules or
only detect anomalies at the rule level. Machine learning is also used to detect anomalies.
However, the accuracy rate of the results by machine learning is not 100% [8–24]. The
previous work has focused on detecting static firewall anomalies and rule-level anomalies.
In contrast, the research on quickly detecting new incremental firewall rules and simplifica-
tion policies is significantly insufficient, focusing on when new firewall rules are added,
how to quickly detect anomalies incrementally, and how to simplify policy making so
administrators can more efficiently manage the policy.

To solve the above problems, we present the formal definition of an anomaly and
design some algorithms to detect the anomalies of a policy in a single firewall. We use the
asymmetric decision tree to build a firewall policy without anomalous rules, and it can
detect anomalies when adding new rules.

The key contributions of this paper are as follows:
(1) The asymmetric double decision tree is used to detect anomalies more efficiently

and accurately. We construct a new firewall policy decision tree, which is an equivalent
simplification of the original policy.

(2) We adopted the mode that separates the simplification of the policy and the
detection of anomalies for the feature of the dynamic addition and deletion of the firewall
policy. When detecting an incremental anomaly, we only need to compare the asymmetric
simplified equivalent decision tree to find anomalies, which significantly improves the
efficiency of incremental detection.

(3) We converted the mixed black-and-white list mode of the original policy into
an equivalent single black (white) list mode, which will reduce the number of rules and
generate a detailed and accurate report of anomalies.

The remainder of the paper is organized as follows. First, we review the related work
introduced in Section 2. Second, we present the basic knowledge of a firewall and model
the firewall policy in Section 3. We design the algorithms for building two decision trees
and optimizing the policy by our decision tree in Section 4. We evaluate our approach in
Section 5. We conclude this paper in Section 6.

2. Related Work

Many research efforts have been devoted to detecting anomalies in a firewall as much
as possible. Multiple studies have addressed several approaches, including using a single
decision diagram, formal methods, machine learning, and a visualization model.

(1) Anomaly detection based on decision tree.
Al-shaer et al. [8] introduced a framework to detect anomalies in single and distributed

firewalls. They proposed a new tool called PolicyVis to detect anomalies. However, the
tool only can detect anomalies between pairwise rules. Hu et al. [9] proposed a new
anomaly management framework (FAME) that promoted the system to detect and solve
anomalies in the firewall policy, considering and analyzing the relationship between all
rules in the firewall configuration. To solve anomalies, they assigned an action constraint
for each conflict segment between rules, which defines the required actions (allow or
deny). To generate these action constraints, they used a vulnerability-based network risk
assessment to generate “risk levels”. They automated the process, but only analyzed the
static rules of a given firewall once. A strategy to optimize and clean up the rule set has
been summarized by Saâdaoui et al. [10]. They detected and fixed misconfigurations by
removing superfluous rules from a simple firewall. Chao et al. [11] employed an enhanced
adaptive rule anomaly relation tree and a two-dimensional traffic filtering matrix. In
doing so, they considered an anomaly removal mechanism that attains a two-phase rule
refinement procedure. These methods only analyzed existing static firewall rules and did
not fully consider the characteristics of the firewall, which will dynamically add new rules.

Symmetry 2022, 14, 2668 3 of 17

(2) Anomaly detection based on firewall log.
Lu et al. [12] analyzed the order of rules in the firewall and designed a rule order

adjustment algorithm that did not destroy the original semantics of the rule table. Addition-
ally, they started from the matching probability of the rules; simple rules were separated
from the default rules according to the firewall logs, the relationships between these rules
and the original rules were analyzed, and the rules were merged into new rules to evaluate
the impact of these rules on the performance of the firewall. A tabulated vector approach
was proposed by Gutierrez et al. [13] to create meaningful state vectors from time-oriented
blocks. Multivariate and graphical analysis was then used to analyze state vectors in a
human–machine collaborative interface.

(3) Anomaly detection based on formal methods.
A solution was investigated to represent every two rules in IPv6 firewall policy in

a formal verification format by Yin et al. [14]. They used SMT solver Z3 to verify their
inclusion relations and determined their anomalies according to the inclusion relations
and actions of rules. In [15], formal language FPL was introduced that enables a high-level
human-understandable specification of the desired state of network security. The study
demonstrated the instantiation of a compliance process using a verification framework that
analyzed the configuration of complex networks and devices.

(4) Anomaly detection based on visualization model.
Kim et al. [16] applied an analysis tool to visualize segment-based firewall rules to

facilitate verification of current control conditions. It can see the unnecessary areas in the
ruleset. It can check inactive areas in partially matched and inclusively matched rules. A
visualization tool designed by Lee et al. [17] showed the status and types of policies applied
throughout firewalls to resolve the maintenance of firewall policies.

(5) Anomaly detection based on machine learning.
One study emphasized machine learning models for high-performance computing

methods to detect anomalies in the firewall rule repository [18]. It was seen in all algorithms
that they achieved the highest learning performance when they reached the training data
value, composed of 1,500,000 data tuples; their performance level, however, began to fall
after this point. Breier et al. [19] focused on a method to detect anomalies in log files, based
on data mining techniques to create dynamic rules. They generate rules dynamically from
specific patterns in sample files and can learn new types of attacks. Vartouni et al. [20]
developed a method based on the deep neural network as a feature learning method and the
isolation forest as a classifier. They applied different activation functions and learning for
deep neural networks. Funk et al. [21] presented a firewall based on anomaly detection that
aims to detect anomalous HTTP requests using the One-Class SVM classifier. They used
expert knowledge about the HTTP request structure to build feature extraction methods
that improved detection rates. In this study [22], the authors proposed methods based on
deep neural network and parallel feature fusion that featured engineering as an integral
part of them and played the most crucial role in their performance.

(6) The other methods.
Togay et al. [23] aimed to analyze firewall rules; they designed an anomaly detection

framework for detecting intra-firewall policy anomalistic rules. Valenza et al. [24] proposed
a model that was suitable to identify the relationships among the fields of the firewall rules
and among the rules used to point out the anomalies.

In their methods, some methods used the state diagram to analyze the relationship
between rules. The state diagram allowed for identifying the anomalies between pairwise
rules in a single firewall policy. However, we consider all the anomalies between rules,
not only the anomalies between pairwise rules. Some methods synthesized new rules by
analyzing logs. Still, the semantics of the synthesized new rules cannot be entirely equal to
the semantics that the original security administrator wanted to express, which will bring
great difficulties for subsequent incremental modification operations. In addition, some
approaches said that the rules are visualized through spatial coordinates. However, when
the number of anomalous rules is vast, the visual expression will be inefficient, and the

Symmetry 2022, 14, 2668 4 of 17

anomalies between rules cannot be visually seen. For the machine learning method, it is a
problem whether the detected anomalies are 100% correct. Most people do not trust the
results of machine learning. The anomaly detection of firewall rules should be accurate.
Whether the machine learning results are reliable or not, it is required for the security
administrator to make a careful judgment on the results of machine learning detection,
which significantly increases the time.

Previous work on rule analysis focused on analyzing static rules of a given firewall. It
is common for a rule to have anomalies with multiple rules. Anomalous rules also need
to be accurately represented. It means not only a single indication of which rules have
anomalies, but also an indication of which traffic packets will cause the rules to become
anomalies. This indication will help to correct rules without generating new anomalies.
The approach proposed in this paper can detect the anomalies of any rule. Considering the
dynamic modification of the firewall policy, it can achieve rapid and efficient incremental
detection of anomalies. All detected irregularities can accurately show which traffic packets
will cause the anomalies and point out the action of the firewall when the traffic packets
arrive.

3. Formal Definition
3.1. Preliminaries

Firewalls control packet filtering across secure network boundaries according to a
specific security policy. A firewall security policy is an ordered list of filtering rules that
define the action to be performed on packets that match specific conditions. A firewall rule
generally consists of filter fields such as protocol type, source IP address, destination IP
address, source port, destination port, and an action (generally accept or deny). The filter
fields have a certain symmetry, but the actual decision space of each rule is asymmetric
when the firewall is running. The filter field of the rule represents the possible values of the
corresponding fields matching the rule in the actual network traffic. Each filter field can
be a single value or an interval value. The filtering action is either to accept packets that
allow them to enter and leave the secure network, or to deny packets that are discarded.
If the fields in a packet match all the filter fields of a rule, the package will be allowed
or discarded by the rule. Otherwise, the remaining rules will be checked until a rule is
matched or a default rule is performed.

Al-Shaer introduced the concept of anomaly, defined as when “there are two or more
filtering rules that may match the same packet, or there is a rule that can never match
any packet”. They considered the pairwise rules’ anomalies and identified four kinds of
anomalies, which depend on the priority of the rule and the operation enforced. According
to Al-Shaer, the definitions are as follows:

(1) Hidden: Refers to the situation where all traffic packets that a rule wants to reject
(accept) are accepted (rejected) by the previous rule.

(2) Generalization: Refers to the case where the previous rule has excluded the subset
of traffic packets matching this rule.

(3) Correlation: Refers to the case where the rule intersects with other rules, and
different decisions are defined.

(4) Redundancy: Refers to the case for one rule’s condition if another rule’s situation
is the same and both have the same action.

Existing anomaly classification and detection methods regard anomaly as the incon-
sistency between two rules. This paper states that the firewall policy should always be
considered as a whole when identifying the policy anomaly. There should be no overlap
space between rules and they should be independent of each other, which is important to
solve anomalies effectively.

Therefore, this paper considers that these four definitions of anomalies can simplify
and make a more general definition of an anomaly.

Symmetry 2022, 14, 2668 5 of 17

Definition 1. Anomaly: When the decision space of firewall rules overlaps, a traffic packet can
match multiple rules.

3.2. Formalization of Rule

Modeling firewall asymmetric rules is necessary for analyzing firewall policy, design-
ing anomaly detection, and policy editing. This section formally describes our model and
explains the firewall policy using an asymmetric decision tree.

Action: The action of the firewall’s rules represents whether the firewall will accept or
discard the packet. We define A to express the action set. P is the action of permit and D is
the action of discard.

A = {P, D} (1)

Conditional filter field: Let fi denote the conditional filter field, which represents the
set of all values that the rule may adopt under this field. For example, if fi is the filter field
value of the source IP, which is 192.168.1.*, the rule matches the IP address range from
192.168.1.0 to 192.168.1.255.

fi = (srcIP/srcPort/sdtIP/dstPort/action) (2)

Filter field: Let Fi be the filter field that indicates the set of all values of the field. For
example, when Fi is srcIP or dstIP, the value of the filter field Fi is the IP from 0.0.0.0 to
255.255.255.255.

Fi = (value), value = 2IP/Port/action (3)

Decision space: Let s be the decision space of the rule, which is composed of the
number of d conditional filter fields (such as the source IP target and port number). The
decision space represents a set that contains all possible values that each filter field of the
rule may adopt.

s = f1 × f2 × · · · × fd (4)

Rule: We model rules in the form of “decision space → action”. Rules consist of
conditions and actions.

r = (s, a), a ∈ A (5)

3.3. Formalization of Decision Tree

This paper uses an asymmetric decision tree to represent firewall policy. The decision
tree model provides a simple representation of the firewall rules and can quickly discover
the relationships and anomalies of the rules. Each node in the decision tree represents
a conditional filter field, and each branch on the node represents a possible value of the
related field. Each path of the tree from the root to the end of the leaf represents the valid
part of the rule in the policy. The decision tree has the following properties.

(1) There will be a node without an incoming edge, called the root. A node without an
edge is called a terminal node. Let 2T be the set of terminal nodes and 2N be the nonterminal
nodes.

(2) Each node v has a set of filter fields, which is denoted as F(v) for any F(v) having
the following properties:

∀i < k, j < k, I(ei) ∩ I(ej) = ∅ (6)

F(v) =

{
{I(e1), I(e2), · · · , I(ek)}, v ∈ 2N

r.name, v ∈ 2T (7)

(3) Each edge e(u→ v) is a set of non-empty sets, which is a subset field of the
parent node u, and I(e) is used to represent the range of filtered field values for that edge
(I(e) ⊆ F(u)).

Symmetry 2022, 14, 2668 6 of 17

(4) The directed path from the root node to the terminal node is called the decision
path. We stipulate that any two nodes on the decision path will not have the same field.

f = f1 × f2 × · · · × fd × facton → r.name (8)

4. Asymmetric Double Decision Tree-Based Detection

Figure 1 illustrates the structure of our approach. This architecture is ascertained in
the local server using construction and optimization layers. The execution flow is explained
below, and the details are described in the following subsections.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 19

Admin

Construction Module
Equivalent Decision Tree

Construction

Policy Conversion Module

Equivalent Decision Tree

Generation Module

Anomaly of Rule

Store Module

Optimization Module

Convert Module Report ModuleStore Module

Policy

Anomaly Decision Tree Construction

Anomaly Decision Tree
Generation Module

Figure 1. The structure of our approach.

4.1. Equivalent Decision Tree Construction
In this phase, we convert the original firewall policy into an equivalent decision tree.

Each path of the equivalent tree is independent. The generated decision tree is equal to
the decision of the original policy. By default, any node v has k outgoing edges

1 2, , , ke e e . Suppose that the added rule is denoted as:

1 2 .r d actonf f f f f r name= × × × × → (9)

The steps are as follows. When the tree is empty, insert the first rule. When the tree
is not empty, if the new set of edges is not empty after removing edges (

1 1 2(() () ())kf I e I e I e− ≠ ∅  ), insert a new edge directly. The value of the new edge
is the new edge, removing the current edge set (1 1 2(() () ())kf I e I e I e−   ) and in-
serting the subsequent path (2 3 .d actonf f f f r name× × × × →) of the new edge directly
into the new edge. In that way, we ensure that the effective part of a rule can be retained.
Then, judge the relationship between each edge’s fi which will be added and each out-
going side ei of the node Fi in the tree:

(1) If the current edge is a subset of the edges (() ()i i iI e f I e=) which will be added,
then continue to match the next node.

(2) If the current edge is not a subset of the edges that will be added and the intersec-
tion is not empty ((()) (() ())i i i i if I e f I e I e≠ ∅ ∧ ≠ ), first compare the intersection part
(()i if I e) and continue judging the relationship between fi+1 and Fi+1, and then compare

the disjoint part (()i i if f I e− ) with each other edge (,()je j i≠). Algorithm 1 shows the
pseudocode of the Equivalent Decision Tree Construction.

For example, a simple rule set is given in Table 1.

Table 1. Examples of rules.

Source Destination
Protocol Address Port Address Port Action

Figure 1. The structure of our approach.

Without loss of generality, in this work, we consider the packet filter, the most com-
mon and used type of First Matching Rule (FMR), which selects the action from the first
applicable rule in an ordered list of a firewall. We propose an anomaly detection method
based on asymmetric double decision trees. The main steps are as follows: (1) Firstly, the
original policy is transformed into an equivalent firewall decision tree by an equivalent
transformation algorithm, and the overlapping part of the rules is stored while constructing
the equivalent decision tree. (2) Generate a decision tree of anomalies by the overlapped
part stored in Step 1. (3) The equivalent decision tree is transformed into a single black
(white) list mode according to the comparison of the number of nodes’ action which is
allowed or discarded in the equivalent decision tree. (4) The corresponding anomaly de-
tection report is generated according to the rule’s decision tree of anomalies. According
to the report, the administrator can determine which traffic packets match multiple rules.
The report will indicate which rule will determine whether the traffic packets are allowed
or discarded. When the administrator adds a rule, he can know whether the new rule is
abnormal compared to the original policy set by matching it with the equivalent decision
tree.

4.1. Equivalent Decision Tree Construction

In this phase, we convert the original firewall policy into an equivalent decision tree.
Each path of the equivalent tree is independent. The generated decision tree is equal to the

Symmetry 2022, 14, 2668 7 of 17

decision of the original policy. By default, any node v has k outgoing edges e1, e2, · · · , ek.
Suppose that the added rule is denoted as:

fr = f1 × f2 × · · · × fd × facton → r.name (9)

The steps are as follows. When the tree is empty, insert the first rule. When
the tree is not empty, if the new set of edges is not empty after removing edges
(f1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)) 6= ∅), insert a new edge directly. The value of the new
edge is the new edge, removing the current edge set (f1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)))
and inserting the subsequent path (f2 × f3 × · · · × fd × facton → r.name) of the new edge
directly into the new edge. In that way, we ensure that the effective part of a rule can be
retained. Then, judge the relationship between each edge’s fi which will be added and each
outgoing side ei of the node Fi in the tree:

(1) If the current edge is a subset of the edges (I(ei) ∩ fi = I(ei)) which will be added,
then continue to match the next node.

(2) If the current edge is not a subset of the edges that will be added and the intersection
is not empty ((fi ∩ I(ei) 6= ∅) ∧ (fi ∩ I(ei) 6= I(ei))), first compare the intersection part
(fi ∩ I(ei)) and continue judging the relationship between fi+1 and Fi+1, and then compare
the disjoint part (fi − fi ∩ I(ei)) with each other edge (ej, (j 6= i)). Algorithm 1 shows the
pseudocode of the Equivalent Decision Tree Construction.

For example, a simple rule set is given in Table 1.

Table 1. Examples of rules.

Source Destination
Protocol Address Port Address Port Action

1: tcp 140.192.37.20 any * 80 deny
2: tcp 140.192.37.* any * 80 accept
3: tcp * any 161.120.33.40 80 accept

We use “A/B” to express removing the part of set B from set A in the following figures.
When we apply Algorithm 1 to create the equivalent decision tree, the tree is first empty.
We insert the first rule in Figure 2a. Then, we insert the second rule into the tree in Figure 2b.
We recursively check the node and its edges to find whether the intersection of the new
rule and the node’s edge was null. If not, we obtain a disjoint of the new edge such as
(140.192.37.*/140.192.37.20) and insert the effective part into the tree. We recursively check
the overlap part to find the anomalies. Because the left nodes’ values of rule 2 are the same
with each node’s edges, the tree did not insert a new edge. We retain the effective part of
rule 2 because the overlap of the packet will match rule 1 and never match rule 2. We insert
rule 3 in the same way. Finally, we obtain the equivalent decision tree in Figure 3. The tree
retains the effectiveness of each rule, and the overlaps that are the anomalies of a paired
rule are saved to create the decision tree of anomalies.

4.2. Anomaly Decision Tree Construction

In this phase, we extract all the parts that overlapped in the first step to generate a tree
of anomalies to detect the anomalies.

The steps are as follows: Insert the rule directly when the tree is empty. When
the tree is not empty, if the new edge is not empty after removing the current edge set
(f1− (I(e1)∪ I(e2)∪ · · · ∪ I(ek)) 6= ∅), insert a new edge directly. The value of the new edge
is derived by removing the current edge set (f1− (I(e1)∪ I(e2)∪ · · · ∪ I(ek))) and inserting
the subsequent path (f2 × f3 × · · · × fd × facton → r.name) of the new edge directly into
the new edge. Then, judge the relationship between each edge’s fi which will be added and
each outgoing side ei of the node Fi in the decision tree:

(1) If the current edge is a subset of the edges which will be added (I(ei) ∩ fi = I(ei)),
then continue to match the next node.

Symmetry 2022, 14, 2668 8 of 17

(2) If the edge to be added does not intersect the current edge (fi ∩ I(ei) = ∅),then
continue to match the next edge ej (j 6= i).

(3) If the current edge is not a subset of the edge that will be added and the intersection
is not empty (fi ∩ I(ei) 6= ∅) ∧ (fi ∩ I(ei) 6= I(ei)), first, insert a new edge ek+1 in the node.
The value of the new edge is the intersection of the edge which will be added and the
current edge (I(ek+1) = fi ∩ I(ei)). The subgraph of the new edge is the subtree of the
current edge ei. Replace the value of the current edge with the value of the edge which
will be added (I(ei)← (I(ei)− fi)), then continue to match the subtree of the new edge
with the next node fi+1 and finally generate a tree of anomalies. Algorithm 2 shows the
pseudocode of the Anomaly Decision Tree Construction.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 19

1: tcp 140.192.37.20 any * 80 deny
2: tcp 140.192.37.* any * 80 accept
3: tcp * any 161.120.33.40 80 accept

We use “A/B” to express removing the part of set B from set A in the following fig-
ures. When we apply Algorithm 1 to create the equivalent decision tree, the tree is first
empty. We insert the first rule in Figure 2a. Then, we insert the second rule into the tree
in Figure 2b. We recursively check the node and its edges to find whether the intersection
of the new rule and the node’s edge was null. If not, we obtain a disjoint of the new edge
such as (140.192.37.*/140.192.37.20) and insert the effective part into the tree. We recur-
sively check the overlap part to find the anomalies. Because the left nodes’ values of rule
2 are the same with each node’s edges, the tree did not insert a new edge. We retain the
effective part of rule 2 because the overlap of the packet will match rule 1 and never match
rule 2. We insert rule 3 in the same way. Finally, we obtain the equivalent decision tree in
Figure 3. The tree retains the effectiveness of each rule, and the overlaps that are the anom-
alies of a paired rule are saved to create the decision tree of anomalies.

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule1 deny

Tcp

(a)

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule1 deny

Tcp

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule2 accept

(140.192.37.*)/
(140.192.37.20)

(b)
Figure 2. The process of creating an equivalent decision tree. (a) The first rule inserts into a tree; (b)
the second rule takes out the effective part and inserts it into the tree.

Figure 2. The process of creating an equivalent decision tree. (a) The first rule inserts into a tree;
(b) the second rule takes out the effective part and inserts it into the tree.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 19

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule1 deny

Tcp

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule2 accept

(140.192.37.*)/
(140.192.37.20)

Source-port

Any

Destination-ad

161.120.33.40

Destination-port

Rule3 accept

Any/(140.192.37.*)

80

Figure 3. The equivalent decision tree of the example policy.

Algorithm 1: EquivalentDecisionTreeConstruction(RuleSet)

Input: firewall rule set <r1, r2, ⋯, rn>
Output: equivalent decision tree f’
Step:
1: f’ = f1 × ⋯ × fd × faction →r1 v ← f’.root ;
2: new map (v, e);
3: for i = 2 to n do
4: space = ∅;
5: Append(v, ri, space, map);
6: spaces.add(space); /*anomalies of paired rules*/
7: anomalyDecisionTreeConstruction (spaces);
8: end for
9: return f’
10: End
11: Append (v, fm × ⋯ × fd × faction→r, map(v, e);/*insert into tree*/
12: if (fm-(I(e1)⋃I(e2)⋃⋯I(ek)) ≠ ∅) then /*new edge is overlap with node’s edge */
13: I(e) = fm-(I(e1)⋃I(e2)⋃⋯I(ek)); /* take out the effective part of new one */
14: insert (v, e, fm+1 × ⋯ × fd × faction→r);
15: map.add(v, e);
16: end if
17: if m ≤ d then
18: for j=1 to k do
19: if (I(ej)∩fm ≠ ∅ ∧ m ≠ d) then /* none-leaf node*/
20: space = space× (I(ej)∩fm); /*anomalous path*/
21: Append (ej.point, fm+1 × ⋯ × fd × faction→r, space);
22: else if (I(ej)∩fm ≠ ∅ ∧ m = d)then
23: space = space× (I(ej)∩fm);
24: end for
25: end if

Figure 3. The equivalent decision tree of the example policy.

Symmetry 2022, 14, 2668 9 of 17

Algorithm 1: Equivalent Decision Tree Construction (RuleSet)

Input: firewall rule set <r1, r2, · · · , rn>
Output: equivalent decision tree f’
Step:
1: f’ = f 1 × · · · × fd × faction →r1 v← f’.root;
2: new map (v, e);
3: for i = 2 to n do
4: space = ∅;
5: Append(v, ri, space, map);
6: spaces.add(space); /*anomalies of paired rules*/
7: anomalyDecisionTreeConstruction (spaces);
8: end for
9: return f’
10: End
11: Append (v, fm × · · · × fd × faction→r, map(v, e);/*insert into tree*/
12: if (fm-(I(e1)

⋃
I(e2)

⋃· · · I(ek)) 6= ∅) then /*new edge is overlap with node’s edge */
13: I(e) = fm-(I(e1)

⋃
I(e2)

⋃· · · I(ek)); /* take out the effective part of new one */
14: insert (v, e, fm+1 × · · · × fd × faction→r);
15: map.add(v, e);
16: end if
17: if m ≤ d then
18: for j=1 to k do
19: if (I(ej)∩fm 6= ∅ ∧ m 6= d) then /* none-leaf node*/
20: space = space× (I(ej)∩fm); /*anomalous path*/
21: Append (ej.point, fm+1 × · · · × fd × faction→r, space);
22: else if (I(ej)∩fm 6= ∅ ∧ m = d)then
23: space = space× (I(ej)∩fm);
24: end for
25: end if

For the previous example, when rule 2 is inserted into the equivalent decision tree, we
obtain the anomaly of rule 1 and rule 2, and then the tree is empty. We insert the anomaly
path into the tree in Figure 4a. When rule 3 is inserted into the equivalent decision tree, we
recursively check the nodes to find the disjointed part. When rule 3 meets the source-ad,
we obtain the effective part (Any/(140.192.37.*)). We recursively check the subsequent
nodes by intersecting elements (140.192.37.*).

When matching the first decision path, we obtain the anomalous path (protocol.tcp× source-
ad.140.192.37.20 × source-port.any × destination-ad.161.120.33.40 × destination-port.80
× rule.1/3), and comparing the second path, we obtain the other anomalous path (protocol.tcp
× sourceIP.[(140.192.37.*)/(140.192.37.20)] × sourcePort.any × destinationIP.161.120.33.40
× destinationPort.80 × rule.2/3). In the next step, we add the anomalous paths into the
decision tree of anomalies. Finally, we obtain the complete anomaly decision tree in
Figure 4b. Each decision path represents an anomaly.

4.3. Equivalent Decision Tree Optimization

In this phase, we optimize and compress the equivalent decision tree generated in the
first step. The steps are as follows: (1) Judge whether the new node or new edge stored in
Step 1 has other edges, which means that this edge can be deleted. (2) After removing all
the edges that cannot be deleted in the decision tree, judge the number of allowed paths
and rejected paths, and then delete the rules whose action is the same with numerous paths.
Finally, generate the default allowed or rejected rules at the end of the policy. Algorithm 3
shows the pseudocode of the Equivalent Decision Tree Optimization. When we generate the
equivalent tree, every decision path representing the disjoint decision space with the other
rule is mutually independent. The intersecting parts of a rule are ineffective because the
intersecting decision space will be caught by a high-priority rule ahead of it. Algorithm 1
is ordered to retain the effective decision space of a rule by comparing and retaining the

Symmetry 2022, 14, 2668 10 of 17

current rule’s decision space that is disjointed with the forward decision space. We divide
the policy into two independent spaces: accept space and deny space. Therefore, we can
delete any space and add a default rule to catch all packets. The action of the default rule is
equivalent to the deleted decision space to keep the tree equivalent to the original policy.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 19

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule1、Rule2

Tcp

(a)

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

161.120.33.40

Destination-port

80

Rule1、Rule2
Rule3

Tcp

Any/(161.120
.33.40)

Destination-port

80

Rule1、Rule2

Any/(140.192
.37.20)

Source-port

Any

Destination-ad

161.120.33.40

Destination-port

80

Rule2、Rule3

(b)
Figure 4. The decision tree of the example policy. (a) The first rule inserts into the tree; (b) the final
decision tree of anomalies.

Algorithm 2: AnomalyDecisionTreeConstruction (Space)
Input: anomaly space<f1, f2, ⋯, fn>
Output: anomaly decision tree f’
Steps:
1: f’= f1 × ⋯ × fd × faction→r1; v ← f’.root ;
2: for i = 2 to n do
3: append(v, ri);
4: end for
5: return f’
6: End
7: Append (v, fm × ⋯ × fd × faction→r);
8: if (fm-(I(e1)⋃I(e2)⋃⋯I(ek)) ≠ ∅) then/*new edge is overlap with node’s edge */
9: I(e)= fm-(I(e1)⋃I(e2)⋃⋯I(ek));
10: insert (v, e, fm+1 × ⋯ × fd × faction→r);
11: end if
12: if m ≤ d then
13: for j = 1 to k do
14: if (I(ej)∩fm ≠ ∅ ∧ m ≠ d) then
15: I(new_e) = I(ej)∩fm; /*overlap became a new edge*/
16: insert (ej.father, new_e, ej.fm+1 × ⋯ × ej.fd × ej.faction→r);
17: Append (new_e.point, fm+1 × ⋯ × fd × faction→r);
18: I(ej) = I(ej) – fm;
19: else if (I(ej)∩fm ≠ ∅ ∧ m = d) then/*leaf node*/
20: insert (ej.father, new_e, ej.fm+1 × ⋯ × ej.fd × ej.faction→r);
21: I(ej) = I(ej) – fm;
22: end for
23: end if

Figure 4. The decision tree of the example policy. (a) The first rule inserts into the tree; (b) the final
decision tree of anomalies.

Algorithm 2: Anomaly Decision Tree Construction (Space)

Input: anomaly space <f 1, f 2, · · · , fn>
Output: anomaly decision tree f’
Steps:
1: f’= f 1 × · · · × fd × faction→r1; v← f’.root;
2: for i = 2 to n do
3: append(v, ri);
4: end for
5: return f’
6: End
7: Append (v, fm × · · · × fd × faction→r);
8: if (fm-(I(e1)

⋃
I(e2)

⋃· · · I(ek)) 6= ∅) then/*new edge is overlap with node’s edge */
9: I(e)= fm-(I(e1)

⋃
I(e2)

⋃· · · I(ek));
10: insert (v, e, fm+1 × · · · × fd × faction→r);
11: end if
12: if m ≤ d then
13: for j = 1 to k do
14: if (I(ej)∩fm 6= ∅ ∧ m 6= d) then
15: I(new_e) = I(ej)∩fm; /*overlap became a new edge*/
16: insert (ej.father, new_e, ej.fm+1 × · · · × ej.fd × ej.faction→r);
17: Append (new_e.point, fm+1 × · · · × fd × faction→r);
18: I(ej) = I(ej) − fm;
19: else if (I(ej)∩fm 6= ∅ ∧ m = d) then/*leaf node*/
20: insert (ej.father, new_e, ej.fm+1 × · · · × ej.fd × ej.faction→r);
21: I(ej) = I(ej) − fm;
22: end for
23: end if

Symmetry 2022, 14, 2668 11 of 17

For the previous example, the equivalent decision tree is not simplified, and the policy
is mixed by blacklist and whitelist. We change the terrible policy into a single black/white
list in the next. First, we count the number of the “action” to decide which model to choose.
If the number of “deny” actions is less than “accept”, we decide to change the policy into a
blacklist that will delete the branch of the accept path and add a rule that allows any packet
to pass the firewall in the last and vice versa. Finally, we obtain the simplified equivalent
decision tree in Figure 5.

Algorithm 3: Tree Optimization (Root, Branch)

Input: the root of equivalent decision tree v and branch of equivalent decision tree map(v, e)
Output: Optimized Decision Tree f’
Steps:
1: cut (v, map(v, e));
2: End
3: Cut(v, map(v, e));
4: acceptMap = map.getAccept(); /*get “accept” paths*/
5: denyMap = map.getDeny();
6: for (v’: map.keySet) do
7: if (hasBranch(v’)) then;/* judge whether there is no sub-branch*/
8: map.remove(v’);
9: end if
10: end for
11: int accept = getAcceptPathCount(acceptMap);/*count “accept” paths*/
12: int deny = getDenyPathCount(denyMap);
13: if (accept > deny) then
14: v.removeEdge(acceptMap);/* simplification */
15: f’.add(fdeny); /*keep equivalent*/
16: else then
17: v.removeEdge(denyMap);
18: f’.add(faccept);

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 19

4.3. Equivalent Decision Tree Optimization
In this phase, we optimize and compress the equivalent decision tree generated in

the first step. The steps are as follows: (1) Judge whether the new node or new edge stored
in Step 1 has other edges, which means that this edge can be deleted. (2) After removing
all the edges that cannot be deleted in the decision tree, judge the number of allowed paths
and rejected paths, and then delete the rules whose action is the same with numerous
paths. Finally, generate the default allowed or rejected rules at the end of the policy. Al-
gorithm 3 shows the pseudocode of the Equivalent Decision Tree Optimization. When we
generate the equivalent tree, every decision path representing the disjoint decision space
with the other rule is mutually independent. The intersecting parts of a rule are ineffective
because the intersecting decision space will be caught by a high-priority rule ahead of it.
Algorithm 1 is ordered to retain the effective decision space of a rule by comparing and
retaining the current rule’s decision space that is disjointed with the forward decision
space. We divide the policy into two independent spaces: accept space and deny space.
Therefore, we can delete any space and add a default rule to catch all packets. The action
of the default rule is equivalent to the deleted decision space to keep the tree equivalent
to the original policy.

For the previous example, the equivalent decision tree is not simplified, and the pol-
icy is mixed by blacklist and whitelist. We change the terrible policy into a single
black/white list in the next. First, we count the number of the “action” to decide which
model to choose. If the number of “deny” actions is less than “accept”, we decide to
change the policy into a blacklist that will delete the branch of the accept path and add a
rule that allows any packet to pass the firewall in the last and vice versa. Finally, we obtain
the simplified equivalent decision tree in Figure 5.

Protocol

Source-ad

140.192.37.20

Source-port

Any

Destination-ad

Any

Destination-port

80

Rule1 deny

Tcp

Figure 5. The final simplified equivalent decision tree of the example.

Algorithm 3: TreeOptimization(Root, Branch)

Input: the root of equivalent decision tree v and branch of equivalent decision
tree map(v, e)
Output: Optimized Decision Tree f’
Steps:
1: cut (v, map(v, e));
2: End

Figure 5. The final simplified equivalent decision tree of the example.

4.4. Incremental Detection

When we obtain the optimized equivalent decision tree, if some new rules are added to
the policy, we can quickly derive the anomaly between the new rules and the original rules
by using Algorithm 1 for the detection of anomalies. The simplified equivalent decision tree

Symmetry 2022, 14, 2668 12 of 17

is the premise of incremental detection of anomalies. We conduct much work to simplify
and maintain the equivalence to detect anomalies incrementally. Because the simplified
equivalent decision tree represents the original policy, we detect the anomalies based on
the tree instead of creating the tree from all rules. In that way, we can achieve efficient
incremental detection of anomalies.

For the previous example, if we add a new rule, we just compare the simplified tree in
Figure 5 instead of creating a new one again.

5. Evaluation and Experimental Results

This paper implements the firewall policy anomalies detection tool in Java. Our policy
anomaly analysis mechanism consists of five core components: the policy conversion
module, the equivalent decision tree generation module, the decision tree of anomaly
generation module, the equivalent tree optimization module, and the equivalent tree
storage module. The policy mapping module takes the policy text form as the input and
converts the rules of the policy form text form into decision paths, then converts the decision
paths into an equivalent tree through the equivalent tree generation module. During the
conversion, an anomaly of rules is found, and the anomalous decision space is stored. After
that, the anomaly decision tree of all rules is generated through the anomaly decision tree
generation module. The equivalent decision tree is converted into a single black (white) list
mode in the optimization module. Finally, the equivalent decision tree is stored, which will
be used for subsequent incremental detection of anomalies.

We use the synthetic firewall policy to evaluate our detection tool. The experiment in
this paper is to run the tool on an Intel dual-core CPU with a reference speed of 2.4 GHz
and a memory of 8 GB. We randomly generate 50, 100, 200, 300, 400, 500, and 800 firewall
rules for evaluation. Rules in different systems may have various forms, but their essential
meanings are the same. Random rules are more complex than realistic policies. If the
rules have potential connections, this will improve detection time because the most time-
consuming part is comparing the branches of each node. The more relevant the rules are,
the more straightforward the tree is in our approach. Because we retain the decision space
that is not covered by the previous decision space of a rule, the possibility of overlap by
random rules is less than realistic rules, which means that the detection times of random
rules are longer than realistic ones.

We evaluate the storage space of the policy decision tree in Figure 6. To quickly detect
the incremental anomalies and generate a new policy, the equivalent decision tree will be
stored after detection for subsequent incremental rapid detection. It can be seen from the
figure that with the increase in rules, the storage space of the equivalent policy decision
tree also gradually increases slowly. When the rules gradually increase, the probability of
duplication with the current firewall rules gradually increases, and the scheme in this article
will directly discard the duplicate parts of the following rules with the existing rules. At
the same time, we change the black-and-white list mixed mode to a single black/white list
mode, which significantly reduces the number of rules. The space increases exponentially
at first, but when the rule scale reaches a certain amount, the space increases slowly. If we
fit the data in the latter part, the function curve is close to ln(n). Theoretically, the storage
space of our approach’s equivalent policy decision tree increases slowly because we only
reserve the practical part of every rule. When the rules become very large, the latter policy
rules are ineffectual because the front rules’ decision space covers the latter. The storage of
the equivalent policy decision tree serves to realize the incremental detection. The figure
intends to indicate that the expenses of incremental detection are relatively small.

We also evaluate the generation efficiency of the decision tree of anomalies and
compare it with the other methods [8,17] in Figure 7. We show the process time of different
approaches in Table 2. PolicyVis [8] was based on a single decision tree to detect the
anomaly. The branches under a node were not mutually independent in the single tree,
so they cannot simplify the tree to incrementally detect anomalies and only detect the
anomalies of paired rule. If the rules become larger and larger, the branches of each

Symmetry 2022, 14, 2668 13 of 17

node exponentially increase, bringing about the time of detection exponentially growing.
HSViz [17] adopted a visualizing policy to show the anomalies intuitively, but the view
was too complex to show the entire decision space of rules. Significantly, when the number
of rules became tremendous, the view became extremely complex, which was unintuitive
to show anomalies. Moreover, it cannot dynamically detect anomalies when new rules are
added to the policy. In our approach, only the effective part of the rule is reserved when
generating the equivalent decision tree. As the rules grow gradually, the elements that
overlap with the current firewall rules are not inserted repeatedly, which greatly reduces
overhead. The rule detected only needs to match a decision path in the equivalent decision
tree to know if the rule has an exception. If an anomaly occurs, we only need to match the
path to the exception decision tree to find the exception. In this way, we can point out the
anomalies of all rules. Compared to other methods that require the rule to be detected to be
compared with each generated segment, the scheme in this article dramatically reduces
the comparison lookup time. The number of anomalous rules positively correlates with
the number of original rules, so we can see that the generation time of the decision tree of
anomalies increases exponentially with the increase in rules.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 19

We evaluate the storage space of the policy decision tree in Figure 6. To quickly detect
the incremental anomalies and generate a new policy, the equivalent decision tree will be
stored after detection for subsequent incremental rapid detection. It can be seen from the
figure that with the increase in rules, the storage space of the equivalent policy decision
tree also gradually increases slowly. When the rules gradually increase, the probability of
duplication with the current firewall rules gradually increases, and the scheme in this ar-
ticle will directly discard the duplicate parts of the following rules with the existing rules.
At the same time, we change the black-and-white list mixed mode to a single black/white
list mode, which significantly reduces the number of rules. The space increases exponen-
tially at first, but when the rule scale reaches a certain amount, the space increases slowly.
If we fit the data in the latter part, the function curve is close to ln(n). Theoretically, the
storage space of our approach’s equivalent policy decision tree increases slowly because
we only reserve the practical part of every rule. When the rules become very large, the
latter policy rules are ineffectual because the front rules’ decision space covers the latter.
The storage of the equivalent policy decision tree serves to realize the incremental detec-
tion. The figure intends to indicate that the expenses of incremental detection are rela-
tively small.

Figure 6. Relationship between the number of rules and the storage space of the equivalent decision
tree.

We also evaluate the generation efficiency of the decision tree of anomalies and com-
pare it with the other methods [8,17] in Figure 7. We show the process time of different
approaches in Table 2. PolicyVis [8] was based on a single decision tree to detect the anom-
aly. The branches under a node were not mutually independent in the single tree, so they
cannot simplify the tree to incrementally detect anomalies and only detect the anomalies
of paired rule. If the rules become larger and larger, the branches of each node exponen-
tially increase, bringing about the time of detection exponentially growing. HSViz [17]
adopted a visualizing policy to show the anomalies intuitively, but the view was too com-
plex to show the entire decision space of rules. Significantly, when the number of rules
became tremendous, the view became extremely complex, which was unintuitive to show
anomalies. Moreover, it cannot dynamically detect anomalies when new rules are added
to the policy. In our approach, only the effective part of the rule is reserved when gener-
ating the equivalent decision tree. As the rules grow gradually, the elements that overlap
with the current firewall rules are not inserted repeatedly, which greatly reduces over-
head. The rule detected only needs to match a decision path in the equivalent decision
tree to know if the rule has an exception. If an anomaly occurs, we only need to match the
path to the exception decision tree to find the exception. In this way, we can point out the

Figure 6. Relationship between the number of rules and the storage space of the equivalent deci-
sion tree.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 19

anomalies of all rules. Compared to other methods that require the rule to be detected to
be compared with each generated segment, the scheme in this article dramatically reduces
the comparison lookup time. The number of anomalous rules positively correlates with
the number of original rules, so we can see that the generation time of the decision tree of
anomalies increases exponentially with the increase in rules.

Figure 7. Comparison of the anomaly detection time in different methods.

Table 2. Process time of different approaches.

Number of Rules Approach Name Process Time (s)

100
HSViz 2470

PolicyVis 364
ours 238

200
HSViz 3760

PolicyVis 1954
ours 2062

300
HSViz 6147

PolicyVis 4587
ours 3935

400
HSViz 9842

PolicyVis 7340
ours 6254

500
HSViz 18,578

PolicyVis 13,413
ours 8797

In Figure 8, we evaluate the equivalent tree optimization module. The original rules
are reduced from 50, 100, 200, and 300 to 10, 27, 31, and 55, respectively. The number of
optimized rules drops by about 80% compared to the original rules. The paper’s optimi-
zation module converts the original policy’s black-and-white list mode to the single black
(white) list mode according to the number of leaf nodes’ actions in the equivalent decision
tree. It can be seen from the figure that the number of original rules is increasing, but the
number of rules increases slowly. Moreover, compared to the original rules, the number
of converted rules is significantly reduced, greatly increasing the administrator’s ability
to manage policy.

Figure 7. Comparison of the anomaly detection time in different methods.

Symmetry 2022, 14, 2668 14 of 17

Table 2. Process time of different approaches.

Number of Rules Approach Name Process Time (s)

100
HSViz 2470

PolicyVis 364
ours 238

200
HSViz 3760

PolicyVis 1954
ours 2062

300
HSViz 6147

PolicyVis 4587
ours 3935

400
HSViz 9842

PolicyVis 7340
ours 6254

500
HSViz 18,578

PolicyVis 13,413
ours 8797

In Figure 8, we evaluate the equivalent tree optimization module. The original rules
are reduced from 50, 100, 200, and 300 to 10, 27, 31, and 55, respectively. The number
of optimized rules drops by about 80% compared to the original rules. The paper’s
optimization module converts the original policy’s black-and-white list mode to the single
black (white) list mode according to the number of leaf nodes’ actions in the equivalent
decision tree. It can be seen from the figure that the number of original rules is increasing,
but the number of rules increases slowly. Moreover, compared to the original rules, the
number of converted rules is significantly reduced, greatly increasing the administrator’s
ability to manage policy.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 19

Figure 8. Comparison of rules before and after optimization.

We also evaluate the decision tree generation time and the anomaly detection time
after adding new rules that are inserted into a complex policy of 500 rules, as shown in
Figure 9. When we perform incremental anomaly detection, we first judge the action of
every new rule during incremental detection. The detection of anomalies and the insertion
of rules will be performed only when the effect of the new rules is the same as the rules in
the equivalent decision tree. As we can see from the figure, the number of new rules in-
creases, but the time to generate a new policy decision tree to discover anomalies is rela-
tively short. The time to detect incremental anomalies is significantly faster than that to
detect complete anomalies.

Figure 9. Detection time of adding the different number of rules.

Figure 8. Comparison of rules before and after optimization.

We also evaluate the decision tree generation time and the anomaly detection time
after adding new rules that are inserted into a complex policy of 500 rules, as shown in
Figure 9. When we perform incremental anomaly detection, we first judge the action of
every new rule during incremental detection. The detection of anomalies and the insertion
of rules will be performed only when the effect of the new rules is the same as the rules
in the equivalent decision tree. As we can see from the figure, the number of new rules

Symmetry 2022, 14, 2668 15 of 17

increases, but the time to generate a new policy decision tree to discover anomalies is
relatively short. The time to detect incremental anomalies is significantly faster than that to
detect complete anomalies.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 19

Figure 8. Comparison of rules before and after optimization.

We also evaluate the decision tree generation time and the anomaly detection time
after adding new rules that are inserted into a complex policy of 500 rules, as shown in
Figure 9. When we perform incremental anomaly detection, we first judge the action of
every new rule during incremental detection. The detection of anomalies and the insertion
of rules will be performed only when the effect of the new rules is the same as the rules in
the equivalent decision tree. As we can see from the figure, the number of new rules in-
creases, but the time to generate a new policy decision tree to discover anomalies is rela-
tively short. The time to detect incremental anomalies is significantly faster than that to
detect complete anomalies.

Figure 9. Detection time of adding the different number of rules. Figure 9. Detection time of adding the different number of rules.

We also verify the equivalence of the decision tree, randomly generate 10, 20, 50, and
100 packets, and then record whether the packets are dropped or passed after being filtered
by the original policy. After that, compared with the filtering results of the equivalent
decision tree, if the comparison results are all consistent, the decision tree is equal to the
original policy. To further illustrate that the simplified equivalent tree is equivalent to the
original policy, we construct the rule set from the original rules. Specifically, we compile
every rule of the original policy, and according to the original rule, we create rules that
can cover all the decision space of the original rule. In this way, we ensure that the test
rule set could stand for the original decision space. Our experimental results show that
the packet passing results are identical to the original policy. We also test the accuracy of
anomaly detection, matching the exception rules in the generated exception report with the
rules in the original policy. The experimental results showed that all reported anomalies
policies were accurate. Theoretically, when we create the equivalent tree in Algorithm 1, we
only retain the effective part, which is not covered by the front decision space of each rule.
Therefore, the tree created by Algorithm 1 is equivalent to the original policy, as shown in
the experiment.

When using the implementation of our approach, it takes about 8.8 s to analyze the
complex policy of 500 rules in a single firewall and takes 3 s to generate a new equivalent
policy, which is equal to the original policy and only takes about 150 milliseconds when
we added 30 rules to detect the anomalies incrementally. Experiments show that our
approach’s process time is faster when the number of rules is enormous. The time of
incremental detection of anomalies compared to complete detection is about 90% of the
time saved in a complex policy of 500 rules. Our algorithms only retain the effective part
of the rule, but the other approaches kept the fundamental rule to detect the anomalies.
In other techniques, they must deal with the decision space of every rule, whether the
forwarding rules cover the rule. Only this way can they detect anomalies. However, we
separate anomalies from policy creation and simplification, so we do not need to handle
each rule. We improve the approach used by a single decision tree that simply separated
the rules that did not consider the effective part of each rule. Our approach separates

Symmetry 2022, 14, 2668 16 of 17

policy simplification and anomaly detection, significantly improving detection speed and
preparing for incremental detection.

6. Conclusions and Future Work

Like any other technology, firewalls require appropriate management to provide
appropriate security services. However, network vulnerabilities caused by the complexity
of firewall rules and anomalies between rules will make the network unsafe. The firewall
anomalies detection tool introduced in this paper provides a technique to optimize and
detect anomalies in a firewall policy. Attempting to explain the asymmetry of firewall rules,
we constructed an asymmetric double decision tree model to detect the anomalies of a
firewall. The administrator can use the firewall policy anomalies detection tool to detect
and simplify the firewall policy and perform incremental anomaly detection for subsequent
policy updates. In this paper, we define the policy anomalies in a single firewall. Then, we
propose algorithms to detect rule anomalies in a single firewall. We convert the original
input policy into a single (black/white list) mode that is more concise and has the same
effect as the original policy. We implement the tool in Java.

Regarding availability, the firewall policy anomalies detection tool can find all anoma-
lies written by expert network administrators. In terms of performance, the time of policy
anomaly analysis is related to the number of rules in the firewall policy. However, our
experiments show that the average processing time for the detection of anomalies in the
firewall is reasonable for a realistic environment.

Future work includes practically implementing the intra-firewall management tool in
a real-time environment. The ability to handle inconsistencies in distributed firewalls is
also left as a part of future work.

Author Contributions: Writing—original draft preparation, Z.L.; supervision, Z.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
61872090), Fujian Provincial Science and Technology Guidance Project (grant 2019H0010), and the
Open Fund of Fujian Provincial University Engineering Research Center (grant FJ-ICH201901).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Daly, J.; Bruschi, V.; Linguaglossa, L.; Pontarelli, S.; Rossi, D.; Tollet, J.; Torng, E.; Yourtchenko, A. Tuplemerge: Fast software

packet processing for online packet classification. IEEE/ACM Trans. Netw. 2019, 27, 1417–1431. [CrossRef]
2. Liu, A.X.; Khakpour, A.R.; Hulst, J.W.; Ge, Z.; Pei, D.; Wang, J. Firewall fingerprinting and denial of firewalling attacks. IEEE

Trans. Inf. Forensics Secur. 2017, 12, 1699–1712. [CrossRef]
3. Jartelius, M. The 2020 Data Breach Investigations Report—A CSO’s perspective. Netw. Secur. 2020, 2020, 9–12. [CrossRef]
4. Clincy, V.; Shahriar, H. Web Application Firewall: Network Security Models and Configuration. In Proceedings of the 2018

IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 1,
pp. 835–836.

5. Kaur Chahal, J.; Bhandari, A.; Behal, S. Distributed denial of service attacks: A threat or challenge. New Rev. Inf. Netw. 2019,
24, 31–103. [CrossRef]

6. Xu, X. Cultural communication in double-layer coupling social network based on association rules in big data. Pers. Ubiquitous
Comput. 2020, 24, 57–74. [CrossRef]

7. Hande, Y.; Muddana, A. A Survey on Intrusion Detection System for Software Defined Networks (SDN). In Research Anthology on
Artificial Intelligence Applications in Security; IGI Global: Hersey, PA, USA, 2021; pp. 467–489.

8. Al-Shaer, E.; Hamed, H.; Boutaba, R.; Hasan, M. Conflict classification and analysis of distributed firewall policies. IEEE J. Sel.
Areas Commun. 2005, 23, 2069–2084. [CrossRef]

9. Hu, H.; Ahn, G.J.; Kulkarni, K. Detecting and resolving firewall policy anomalies. IEEE Trans. Dependable Secur. Comput. 2012,
9, 318–331. [CrossRef]

http://doi.org/10.1109/TNET.2019.2920718
http://doi.org/10.1109/TIFS.2017.2668602
http://doi.org/10.1016/S1353-4858(20)30079-9
http://doi.org/10.1080/13614576.2019.1611468
http://doi.org/10.1007/s00779-019-01308-y
http://doi.org/10.1109/JSAC.2005.854119
http://doi.org/10.1109/TDSC.2012.20

Symmetry 2022, 14, 2668 17 of 17

10. Saâdaoui, A.; Ben Youssef Ben Souayeh, N.; Bouhoula, A. FARE: FDD-based firewall anomalies resolution tool. J. Comput. Sci.
2017, 23, 181–191. [CrossRef]

11. Chao, C.S.; Yang, S.J.H. A Novel Mechanism for Anomaly Removal of Firewall Filtering Rules. J. Internet Technol. 2020, 21, 949–957.
12. Lu, N.; Yang, Y. Application of evolutionary algorithm in performance optimization of embedded network firewall. Microprocess.

Microsyst. 2020, 76, 103087. [CrossRef]
13. Gutierrez, R.J.; Bauer, K.W.; Boehmke, B.C.; Saie, C.M.; Bihl, T.J. Cyber anomaly detection: Using tabulated vectors and embedded

analytics for efficient data mining. J. Algorithms Comput. Technol. 2018, 12, 293–310. [CrossRef]
14. Yin, Y.; Tateiwa, Y.; Wang, Y.; Zhang, G.; Takahashi, N.; Zhang, C. An Analysis Method for IPv6 Firewall Policy. In Proceedings of

the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie,
China, 10–12 August 2019; pp. 1757–1762.

15. Lorenz, C.; Clemens, V.; Schrotter, M.; Schnor, B. Continuous Verification of Network Security Compliance. IEEE Trans. Netw.
Serv. Manag. 2021, 19, 1729–1745. [CrossRef]

16. Kim, H.; Ko, S.; Kim, D.S.; Kim, H.K. Firewall Ruleset Visualization Analysis Tool Based on Segmentation. In Proceedings of the
2017 IEEE Symposium on Visualization for Cyber Security (VizSec), Phoenix, AZ, USA, 2 October 2017; pp. 1–8.

17. Lee, H.; Lee, S.; Kim, K.; Kim, H.K. HSViz: Hierarchy Simplified Visualizations for Firewall Policy Analysis. IEEE Access 2021, 9,
71737–71753. [CrossRef]

18. Ucar, E.; Ozhan, E. The analysis of firewall policy through machine learning and data mining. Wirel. Pers. Commun. 2017, 96,
2891–2909. [CrossRef]

19. Breier, J.; Branišová, J. A dynamic rule creation based anomaly detection method for identifying security breaches in log records.
Wirel. Pers. Commun. 2017, 94, 497–511. [CrossRef]

20. Vartouni, A.M.; Kashi, S.S.; Teshnehlab, M. An anomaly detection method to detect web attacks using Stacked Auto-Encoder. In
Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems, CFIS, Kerman, Iran, 28 February–2 March
2018; pp. 131–134.

21. Funk, R.; Epp, N.; Cappo, C. Anomaly-based Web Application Firewall using HTTP-specific features and One-Class SVM. Rev.
Eletrônica Argent.-Bras. Tecnol. Inf. Comun. 2018. [CrossRef]

22. Moradi Vartouni, A.; Teshnehlab, M.; Sedighian Kashi, S. Leveraging deep neural networks for anomaly-based web application
firewall. IET Inf. Secur. 2019, 13, 352–361. [CrossRef]

23. Togay, C.; Kasif, A.; Catal, C.; Tekinerdogan, B. A Firewall Policy Anomaly Detection Framework for Reliable Network Security.
IEEE Trans. Reliab. 2022, 71, 339–347. [CrossRef]

24. Valenza, F.; Cheminod, M. An Optimized Firewall Anomaly Resolution. J. Internet Serv. Inf. Secur. 2020, 10, 22–37.

http://doi.org/10.1016/j.jocs.2017.09.003
http://doi.org/10.1016/j.micpro.2020.103087
http://doi.org/10.1177/1748301818791503
http://doi.org/10.1109/TNSM.2021.3130290
http://doi.org/10.1109/ACCESS.2021.3077146
http://doi.org/10.1007/s11277-017-4330-0
http://doi.org/10.1007/s11277-015-3128-1
http://doi.org/10.5281/zenodo.1336812
http://doi.org/10.1049/iet-ifs.2018.5404
http://doi.org/10.1109/TR.2021.3089511

	Introduction
	Related Work
	Formal Definition
	Preliminaries
	Formalization of Rule
	Formalization of Decision Tree

	Asymmetric Double Decision Tree-Based Detection
	Equivalent Decision Tree Construction
	Anomaly Decision Tree Construction
	Equivalent Decision Tree Optimization
	Incremental Detection

	Evaluation and Experimental Results
	Conclusions and Future Work
	References

