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Abstract: The purpose of this study is to propose a framework for accurate and efficient vehicle
distance estimation from a monocular camera. The proposed framework consists of a transformer-
based object detector, a transformer-based depth estimator, and a distance predictor. The object
detector detects various objects that are mostly symmetrical from an image captured by the monocular
camera and provides the type of each object and the coordinate information of a bounding box around
each object. The depth estimator generates a depth map for the image. Then, the bounding boxes
are overlapped with the depth map to extract the depth features of each object, such as the mean
depth, minimum depth, and maximum depth of each object. The present study then trained three
models—eXtreme Gradient Boosting, Random Forest, and Long Short-Term Memory—to predict the
actual distance between the object and the camera based on the type of the object, the bounding box
of the object (including its coordinates and size), and the extracted depth features. The present study
proposes including the trimmed mean depth of an object to predict the actual distance by excluding
the background pixels around an object but within the bounding box of the object. The evaluation
results show that the proposed framework outperformed existing studies.

Keywords: vehicle distance estimation; object detection; depth estimation; advanced driver
assistance systems

1. Introduction

Measuring the distances of a driver’s vehicle to its surroundings is essential in
advanced driver assistance systems (ADAS) for road safety. Existing distance measurement
methods can be classified into three groups: active sensor-based, passive vision-based,
and fusion-based methods. Active sensor-based approaches use sensors such as radar
and light detection and ranging (LiDAR) for distance measurement. Radars are able
to detect objects up to 150 m away [1], but they are limited by low resolutions [2].
LiDAR provides higher resolutions [3] but is costly [4–7]. The main advantages of active
sensors are that they are efficient in distance measurement [2] and applicable in different
visibility conditions [5].

Passive vision-based approaches use vision sensors such as cameras for distance
estimation. Existing vision-based methods can be classified into two groups: stereo
camera-based methods and monocular camera-based methods. Stereo camera-based
methods consider multiple-view geometry and provide depth for each pixel by match-
ing stereo image pairs [2,5]. However, stereo camera-based methods are limited by the
complexity of stereo calibration, errors in matching stereo image pairs, and efficiency
in actual road scenarios [2,5,6,8]. Monocular camera-based methods use a single camera
for distance estimation and therefore are inexpensive [5,6], and they have become a trend
in distance estimation.

The monocular camera-based approaches can be further classified into geometric
approaches and deep learning-based approaches. Geometric approaches use geometric
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properties in a two-dimensional (2D) image and camera parameters for distance estima-
tion. Kim and Cho [9] used the relative position information between the camera and
front vehicle, camera setting parameters, and the width of the front vehicle to estimate
the inter-vehicle distance. Liu et al. [10] applied inverse perspective mapping transfor-
mation to convert an image to a bird’s eye view and restore the road plane information
to estimate the inter-vehicle distance. Such methods are limited by their heavy depen-
dence on image brightness and the accuracy in measuring the camera parameters and the
target size.

Recently, deep learning-based approaches have become popular in distance estima-
tion from a monocular camera. Such methods commonly train various neural networks
for distance estimation [6,11–20]. Guizilini et al. [13] proposed using three-dimensional (3D)
packing and unpacking blocks in their self-supervised network to preserve spatial
information for depth estimation. Zhang et al. [15] proposed a network with regions
with convolutional neural network (R-CNN)-based structures for distance estimation and
explored several regression methods to improve distance estimation results. Fu et al. [17]
proposed a deep ordinal regression network and adopted a multi-scale network structure
for depth estimation. Xu et al. [18] proposed fusing the side outputs of multi-scale CNNs
with continuous conditional random fields (CRFs) for depth estimation through supervised
learning. Liang et al. [6] proposed a self-supervised, scale-aware network to estimate dis-
tance. However, their method requires calibrating the camera and integrating the calibrated
parameters into their network.

Before distance estimation, object detection needs to be performed to identify
different objects that are mostly symmetrical from an image. Object detection meth-
ods can be classified into conventional [21–23] and deep learning-based methods [24–35].
Conventional object detection methods usually manually extract features from the selected
region of interest and then classify the extracted features. However, the conventional
methods are computationally costly and insufficient in accuracy [6]. Deep learning-based
methods train various CNN-based or transformer-based models in a supervised learning
or self-supervised learning manner for object detection. The results of deep learning-based
methods are promising.

This study was intended to propose and evaluate a framework for better accuracy
and efficiency in vehicle distance estimation. The proposed framework consists of an
object detector and a depth estimator based on a transformer. After depth estimation,
different models were applied to predict vehicle distance from depth information to find
the best-performing model.

2. Materials and Methods

As shown in Figure 1, the proposed framework in this study consists of an object
detector, a depth estimator, and a distance predictor. The object detector detects an object
in an image and provides the type of the object and a bounding box around the object
with the coordinate information of the bounding box. The depth estimator generates a
depth map for the image. Then, the bounding box is overlapped with the depth map to
extract the depth features of the object, such as the mean depth, minimum depth, and
maximum depth. The distance predictor predicts the actual distance between the object
and the camera that captures the image based on the type of the object, the bounding box,
including its coordinates and size, and the extracted depth features.
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Figure 1. The proposed framework for vehicle distance estimation.

2.1. Object Detector

The present study used a pretrained transformer-based deep learning model named
DEtection TRansformer (DETR) [32] for object detection due to its high effectiveness. As
shown in Figure 2, the model consists of a CNN backbone, ResNet-101 [36], for extracting the
features of an input image, an encoder-decoder transformer, and a feedforward network (FFN)
for the final detection. The extracted features of the input image are flattened and supple-
mented with positional encoding before passing them to the transformer encoder. Then, a
small, fixed number of learned positional embeddings, called object queries, is passed to
the transformer decoder. Lastly, each output embedding of the decoder is fed to the FFN to
predict either an object class with a bounding box or a class without any object. Figure 3
illustrates an example of the objects detected using DETR.
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Figure 2. The object detector named DEtection TRansformer [32] for object detection used in this
study (FFN: feedforward network).
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Figure 3. An example of the detected objects with classes and bounding boxes using the object
detector in this study.

2.2. Depth Estimator

A pretrained transformer-based deep learning model named the global-local path net-
work [37] was used for depth map estimation due to its high accuracy and robustness. As
shown in Figure 4, the global-local path network consists of a transformer encoder that learns
global dependencies to extract features in different scales and a decoder that generates the
target depth map from the extracted features by establishing local paths through a skip con-
nection and a selective feature fusion module. Figure 5b shows an example of the estimated
depth map using the global-local path network. Then, as shown in Figure 5c, the detected
bounding boxes are overlapped with the estimated depth map to extract the depth features of
each object, such as the mean, median, maximum, and minimum depths of the pixels in the
bounding box of the object. If there is any overlapping area between two bounding boxes,
then the overlapping area is excluded before extracting the depth features.
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Figure 4. The depth estimator named the global-local path network [37] for depth map estimation in
this study (SSF: selective feature fusion; Conv: convolution; ReLU: rectified linear unit).
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Figure 5. Depth map estimation using the depth estimator in this study: (a) the original image,
(b) the estimated depth map, and (c) the overlaid depth map with the identified bounding boxes
using the object detector in this study.

2.3. Distance Predictor

Three machine learning models—eXtreme Gradient Boosting (XGBoost) [38], Random
Forest (RF) [39], and Long Short-Term Memory (LSTM) [40]—were trained for predicting
the absolute distance of an object to the camera based on the information of its bounding
box and depth features, and then their performances were compared.

2.3.1. XGBoost

XGBoost is a scalable implementation of the Gradient Boosting framework for super-
vised learning. Through parallel creation of trees and regularization to avoid overfitting,
XGBoost achieves high efficiency and accuracy. XGBoost can be used for regression and
classification. With many hyperparameters, XGBoost is highly flexible and therefore can be
customized to solve a specific problem.

2.3.2. RF

RF combines many random tree predictors by using ensemble learning to provide
solutions to complex problems. RF is also a supervised learning method and can be used
for classification or regression. Based on the predictions of the decision trees, RF provides
an output by taking the most votes for classification tasks or by taking the average for
regression tasks. RF can avoid overfitting and reduce variance through bagging during
training, and it requires fewer hyperparameters and little parameter tuning.
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2.3.3. LSTM

LSTM is a variation of the recurrent neural network (RNN) that avoids the vanishing
gradient problem in RNNs for learning long-term dependencies. As shown in Figure 6,
LSTM has a hidden state represented by ht−1 and ht for the previous and current times-
tamps, respectively. In addition, LSTM has a cell state represented by Ct−1 and Ct for the
previous and current timestamps, respectively. The cell state is known as the long-term
memory. The hidden state is known as the short-term memory. The LSTM cell consists
of a forget gate, an input gate, and an output gate. The forget gate determines whether
one should keep or forget the information from the previous timestamp in the cell state.
The input gate tries to learn new information from the input by deciding whether the
input flows to the cell state. The output gate determines whether the cell state is passed to
the output and the hidden state for the next timestamp. As shown in Figure 7, the struc-
ture of the proposed LSTM model consists of three LSTM layers, three FFN layers, and a
linear layer.
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3. Experiments
3.1. Data Preprocessing

The present study used the Karlsruhe Institute of Technology and Toyota
Institute (KITTI) [41] dataset. The KITTI dataset consists of the class of each object, the
coordinates of the bounding box of the object, the angle of the camera for capturing the
object, and the distance from the object to the camera. To train the three models for distance
prediction in our study, the KITTI dataset was preprocessed.

First, the coordinates of the bounding box of each object in the KITTI dataset were
replaced with those identified with the object detector in our framework. The reason for this
is that the proposed framework uses the identified bounding box for distance prediction.
This study compared the performance of the models trained using the original bounding
box and the identified bounding box. Then, the intersection over union (IoU) function
was used to identify the overlapping percentage between two bounding boxes. If the
overlapping percentage between two bounding boxes was over 70%, then the bounding
box of the object farther from the camera was removed. If the overlapping percentage was
less than 70%, then the overlapping area was excluded before extracting the depth features
for each of the two objects. Lastly, the KITTI dataset was visually inspected, and any object
with a mislabeled object distance was excluded, as shown in Figure 8. After preprocessing,
an updated dataset with a total of 27,021 objects was obtained. Then, the updated dataset
was randomly split into training, validation, and testing datasets at a ratio of 8:1:1, resulting
in 21,616 objects for training, 2702 objects for validation, and 2703 objects for testing.
Six classes of objects were used in our study: car, truck, person, bicycle, train, and other.
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Figure 8. An example of a mislabeled object distance (highlighted in the dotted ellipse) from the
Karlsruhe Institute of Technology and Toyota Institute (KITTI) [41] dataset.

3.2. Model Training

The present study implemented and trained the three distance prediction models using
PyTorch 1.9.1 on a laptop-based NVIDIA GeForce RTX 3070 GPU. The hyperparameters
and their values for training the XGBoost, RF, and LSTM models are shown in Table 1.
For training the LSTM model, this study used L1 loss and set the initial learning rate
at 0.005. The ReduceLRonPlateau scheduler was used to decrease the learning rate by
0.5 with patience of 10 epochs. The EarlyStopping callback was used to stop training if the
validation loss did not improve after 70 epochs.

Table 2 shows the input variables and the output variable used for training the three
models. To represent the object class variable, label encoding was used for the XGBoost
model, and one-hot encoding was used for the RF model and LSTM model. Except for
the class variable, normalization was used to scale the other input variables. This study
proposed including the 20% trimmed mean depth of an object to predict the actual distance
by excluding the background pixels around an object but within the bounding box of the
object. To calculate the 20% trimmed mean depth of an object, this study flattened the
depth matrix of the pixels in the bounding box of the object as a depth vector. Then, the
depth vector was sorted. After that, the top 10% and bottom 10% of pixels in the sorted
depth vector were excluded. Lastly, the mean depth of the remaining pixels was calculated
as the 20% trimmed mean depth of the object. The output variable was the ground truth
distance from the object to the capturing camera.
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Table 1. Hyperparameters and their values for training the eXtreme Gradient Boosting (XGBoost),
Random Forest (RF), and Long Short-Term Memory (LSTM) models for distance prediction.

Model Hyperparameter Value

XGBoost

colsample_bytree 0.9
gamma 0.3

learning_rate 0.01
max_depth 9

min_child_weight 3
n_estimators 1000

reg_alpha 1
reg_lambda 0.9
subsample 0.7
objective squared_error

RF

n_estimators 500
learning_rate 0.01
max_depth 20

max_features 2
min_samples_split 2
min_samples_leaf 1

criterion squared_error

LSTM

Input_dim 15
Hidden_dim(LSTM) 612
Layer_dim(LSTM) 3

Hidden_dim(Linear) 612, 306, 154, 76
Output_dim(Linear) 1

Bidirectional False
Optimizer Adam

Activation function ReLU
Max epoch 1000
Batch size 24

Table 2. Input and output variables and their descriptions for training the proposed distance
prediction models.

Category Variable Description

Input variables

x_min Minimum x coordinate of a bounding box
y_min Minimum y coordinate of a bounding box
x_max Maximum x coordinate of a bounding box
y_max Maximum y coordinate of a bounding box
width Width of a bounding box
height Height of a bounding box

depth_mean Mean depth of an object
depth mean_trim 20% trimmed mean depth of an object

depth_max Maximum depth of an object
depth_median Median depth of an object

class Type of an object

Output variable d Ground truth distance of an object

3.3. Evaluation

This study used the mean absolute error (MAE) to evaluate the performance of the
distance prediction models with the testing dataset. The MAE for the predicted object
distance is defined by Equation (1):

MAE =
1
N

N

∑
i=1

∣∣∣di − d̂i

∣∣∣ (1)

where N is the total number of objects, di is the actual object distance, and d̂i is the predicted
object distance.

This study used another five measures to compare the performance of the proposed frame-
work with various other methods. The five measures were the absolute relative error (AbsRel),
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squared relative difference (SquaRel), root mean squared error (RMSE), RMSE log, and
threshold accuracy (Threshold), which are defined as follows:

AbsRel =
1
N

N

∑
i=1

∣∣∣di − d̂i

∣∣∣
di

(2)

SquaRel =
1
N

N

∑
i=1

∣∣∣∣∣∣di − d̂i

∣∣∣∣∣∣2
di

(3)

RMSE =

√√√√ 1
N

N

∑
i=1
||di − d̂i||2 (4)

RMSE log =

√√√√ 1
N

N

∑
i=1
|| log di − log d̂i||2 (5)

Threshold = % of di s.t.max

(
d̂i
di

,
di

d̂i

)
= δ < threshold (6)

where the threshold usually takes on three values: δ < 1.25, δ < 1.252, and δ < 1.253.
This study performed on-road evaluation of the proposed distance prediction frame-

work. The evaluation experiment was conducted on a wide road without many cars by
varying the object (car) distances from 10 m to 80 m in intervals of 10 m, as shown in
Figure 9. A steel tape with a length of 100 m was used to mark the ground truth distances.
A cheap webcam was used to record video of the car in front. The webcam was connected to
a laptop with an NVIDIA GeForce RTX 3070 GPU installed to run the proposed framework.
To simplify the experiment and make sure the measurement accuracy of the ground truth
distances, the camera was mounted on a fixed platform. The height of the platform was
set to be the same as the platform above the center console of a 10th-generation Honda
Accord sedan. The webcam was mounted approximately level with the ground plane.
No calibration of the camera was needed in the experiment. After the camera started
recording, the front car was driven to the ground truth distances. Meanwhile, the proposed
framework took three images form three contiguous video frames captured at each ground
truth distance level and predicted the distance of the front car to the camera in real time.
The average of the distance values predicted from the three contiguous video frames was
calculated and used as the predicted object distance. Then, the accuracy of the predicted
object distances was obtained through comparison with the ground truth distances.
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4. Results and Discussion

Table 3 shows the evaluation results of the three distance prediction models. Among
the three models, LSTM outperformed the other models in terms of the MAE. For different
object classes, this study found that the XGBoost model showed the best performance in
distance prediction for the car and bicycle classes. For the remaining classes, the LSTM
model showed the best performance. Therefore, in the proposed distance prediction
framework, if a car or a bicycle was detected, the XGBoost model was used for distance
prediction. Otherwise, the LSTM model was used. Table 4 shows the evaluation results of
the three models at different distance intervals. As the object distance increased, this study
found that the error in distance prediction increased for all the three models.

Table 3. Evaluation results of the eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Long
Short-Term Memory (LSTM) models for distance prediction in terms of mean absolute error (MAE)
for different object classes using the testing dataset.

Model
MAE (m)

Car Person Bicycle Train Truck Others Overall

XGBoost 0.2159 0.7366 1.3290 1.8476 2.4005 1.9559 1.2194
LSTM 1.2131 0.6178 1.6292 1.2472 1.9459 1.1650 1.1658

RF 1.3258 0.7664 1.6695 2.1551 2.6382 2.5058 1.3134

Table 4. Evaluation results of the eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Long
Short-Term Memory (LSTM) models for distance prediction in terms of mean absolute error (MAE)
at different distance intervals using the testing dataset.

Model
MAE (m)

0–9 m 10–19 m 20–29 m 30–39 m 40–49 m 50–59 m 60–69 m 70–80 m

XGBoost 0.3786 0.6032 0.9749 1.5372 1.9183 2.7571 3.6277 4.1768
LSTM 0.4154 0.5248 0.8868 1.5052 1.9079 2.5899 3.7846 3.3255

RF 0.4079 0.6287 1.0588 1.6363 2.0780 3.0674 3.5624 4.7060

Table 5 shows the evaluation results when using different levels for the trimmed
mean object depth, namely 10%, 20%, and 30%. Among the three different levels, using a
20% trimmed mean depth achieved the best performance in distance prediction for the
three distance prediction models, except for the RF model. Since our framework will use
the XGBoost and LSTM models only, using the 20% trimmed mean depth is recommended.

Table 5. Evaluation results of the eXtreme Gradient Boosting (XGBoost), Random Forest (RF),
and Long Short-Term Memory (LSTM) models for distance prediction in terms of mean absolute
error (MAE) with different levels (10%, 20%, and 30%) of trimmed mean object depth using the
testing dataset.

Model
MAE (m)

10% Trimmed 20% Trimmed 30% Trimmed

XGBoost 1.2279 1.2194 1.2258
LSTM 1.1909 1.1658 1.1895

RF 1.2665 1.3134 1.2657

Table 6 shows the evaluation results of the three distance prediction models trained
using the ground truth bounding boxes from the KITTI dataset and those trained using the
identified bounding boxes with the object detector in the proposed framework. This study
found that the latter showed better performance. This is the reason why our models were
trained using the identified bounding boxes.
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Table 6. Evaluation results of the eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and
Long Short-Term Memory (LSTM) models trained using the ground truth bounding boxes and
those trained using the identified bounding boxes for distance prediction in terms of mean absolute
error (MAE) using the testing dataset.

Model

MAE (m)

Trained Using Ground Truth
Bounding Boxes

Trained Using Identified
Bounding Boxes

XGBoost 1.5130 1.2194
LSTM 1.6205 1.1658

RF 1.5295 1.3134

Table 7 shows the performance comparison results for the KITTI dataset between the
proposed framework and various other methods, including one stereo camera-based study
that used stereo image pairs to train their network. The proposed framework outperformed
the other studies in terms of the five measurements.

Table 7. Performance comparison of the proposed framework with other methods for the Karlsruhe
Institute of Technology and Toyota Institute (KITTI) dataset.

Studies Camera Type
Error Metric Accuracy Metric

AbsRel SquaRel RMSE RMSE log δ δ δ

Zhou et al. [19] Monocular 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yin and Shi [11] Monocular 0.147 0.936 4.348 0.218 0.810 0.941 0.977
Liang et al. [6] Monocular 0.101 0.715 NA 0.178 0.899 0.981 0.990
Shu et al. [14] Monocular 0.088 0.712 4.137 0.169 0.915 0.965 0.982

Guizilini et al. [13] Monocular 0.078 0.420 3.485 0.121 0.931 0.986 0.996
Ding et al. [5] Stereo 0.071 NA * 3.740 NA 0.934 0.979 0.992

Ours Monocular 0.047 0.116 2.091 0.076 0.982 0.996 1.000

* NA: not available; AbsRel: absolute relative error; SquaRel: squared relative difference; RMSE: root mean
squared error.

Table 8 shows the on-road evaluation results of the proposed distance prediction
framework. Compared with other studies [7,42], the proposed framework showed the
best performance at different distance levels. The time required for distance prediction by
the proposed framework was approximately 0.3 sec per frame. Kim [7] reported that the
processing time was 0.76 sec per frame.

Table 8. On-road evaluation results of the proposed distance prediction framework at different
distance levels.

Distance (m)
Accuracy (%)

Proposed Framework Kim [7] Kumar et al. [42]

10 98.33 98.0 NA
20 98.67 92.2 NA
30 98.44 91.7 98.02
40 99.50 91.3 NA
50 97.52 91.2 96.32
60 97.47 NA * NA
70 93.19 NA NA
80 96.33 NA 95.89

* NA: not available.

A potential limitation of the proposed distance prediction framework is that the
accuracy of the distance predictor depends on the accuracy of the object detector and that of
the depth estimator. For the distance predictor, this study suggests that if the detected object
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is a car or a bicycle, then the XGBoost model is used for distance prediction; otherwise,
the LSTM model is used. It is possible that a non-car or non-bicycle object could be falsely
detected as a car or a bicycle. In that case, the accuracy of distance prediction could be
slightly affected.

To use our proposed framework in a vehicle, any webcam can be used, since the
proposed framework does not require a high-end webcam. The webcam needs to be
mounted so it is approximately level with the ground plane. The webcam can be mounted
at the head of the vehicle. In this case, no calibration is needed. The webcam can be
mounted on the platform above the center console of a vehicle or attached to the top
of the windshield of the vehicle as well. In this case, simple calibration is needed. The
horizontal distance between the head of the vehicle and the camera needs to be measured.
The measurement can be performed within one minute using a tape measure or any other
distance measurement tools. Then, the measured distance can be input into the proposed
framework to subtract the measured distance from the predicted distance, and thus the
proposed framework can provide the distance between the front vehicle and the head of
the driver’s vehicle. A smartphone can be used instead of a webcam for video recording.
In this case, the one-site video stream can be sent to a cloud server with the proposed
framework installed for distance prediction, and then the predicted distance can be sent
back to the smartphone for driving assistance.

ADAS plays a more and more important role in preventing deaths and injuries by
decreasing the number of car accidents. Typical ADAS features include adaptive cruise
control, forward collision warnings, automatic emergency braking (AEB), pedestrian AEB,
rear AEB, lane keeping assistance, blind spot warnings, parking sensor ADAS, and rearview
camera ADAS. Based on each ADAS feature, its sensors are mounted at different locations
of a vehicle, including the top of the front windshield, the lower front bumper, and the
front, rear, and sides of a vehicle. In the U.S., 92.7% of new vehicles had at least one ADAS
feature in 2018 [43]. Distance prediction between a driver’s vehicle and its surroundings is
an essential task for ADAS. The proposed framework can be used for accomplishing the
distance prediction task.

5. Conclusions

The proposed framework estimates the distances between one’s vehicle and the objects
in front of the vehicle from an image captured by a webcam mounted in the vehicle. The
object detector in the proposed framework detects the classes and bounding boxes of the
objects. The depth estimator in the proposed framework estimates the depth map of the
captured image. The depth map is overlaid with the bounding boxes to extract the depth
features for each object. If the object is a car or a bicycle, then the XGBoost model is used
for predicting the distance between the camera and the object, based on the bounding box
and depth features of the object. Otherwise, the LSTM model is used.

In the on-road experiment, the accuracy of the proposed framework for distance
estimation was 93.19–99.50% at different distance levels. The processing time was
0.3 sec per frame. The proposed framework outperformed the existing studies in terms of
accuracy and efficiency. A limitation of this work is that the experiment was conducted
on a wide road without many cars in order to mark the ground truth distances. For fu-
ture work, the proposed framework needs to be comprehensively evaluated in various
road conditions.
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