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Abstract: A recent addition to the class of integral transforms is the quaternion quadratic-phase
Fourier transform (Q-QPFT), which generalizes various signal and image processing tools. However,
this transform is insufficient for addressing the quadratic-phase spectrum of non-stationary signals in
the quaternion domain. To address this problem, we, in this paper, study the (two sided) quaternion
windowed quadratic-phase Fourier transform (QWQPFT) and investigate the uncertainty principles
associated with the QWQPFT. We first propose the definition of QWQPFT and establish its relation
with quaternion Fourier transform (QFT); then, we investigate several properties of QWQPFT which
includes inversion and the Plancherel theorem. Moreover, we study different kinds of uncertainty
principles for QWQPFT such as Hardy’s uncertainty principle, Beurling’s uncertainty principle,
Donoho–Stark’s uncertainty principle, the logarithmic uncertainty principle, the local uncertainty
principle, and Pitt’s inequality.

Keywords: quaternion quadratic-phase Fourier transform; Inversion; Plancherel theorem; uncertainty
principle; Donoho–Stark

1. Introduction

Due to its applications in signal representation, image processing, and quantum
mechanics, the theory of parametric time-frequency analysis has attracted the attention in
the last few decades [1,2]. The windowed Fourier transform, linear canonical transform,
fractional Fourier transform, and Wigner distributions are some well known parametric
time-frequency analysis tools.

The quadratic-phase Fourier transform (QPFT), which is the neoteric and most im-
portant parametric time-frequency analysis tool introduced by Castro et al. [3], treats both
the stationary and non-stationary signals in a simple and insightful way. In the quadratic-
phase domain, most of the signals arising in communications like sonar and radar reveal
their characteristics better. With a slight modification in [3], the authors in [4] defined the
QPFT as

Qµ[ f ](w) =
∫
R

f (x)Qµ(x, w)dx (1)

where Qµ(x, w) is a quadratic-phase kernel represented by

Qµ(x, w) =

√
bi
2π

e−i(ax2+bxw+cw2+dx+ew) (2)

where a, b, c, d, e ∈ R, b 6= 0 are the arbitrary real parameters and have great importance.
These can be better used in the analysis of non-transient signals that are involved in radar
and other communication systems. With its global kernel and extra degrees of freedom,
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the QPFT has become one of the efficient tools in solving several problems. To quote some
of these, we have science and engineering branches including harmonic analysis, image
processing, sampling, reproducing kernel Hilbert spaces, and many more [5]. Although
QPFT is the generalization of well known integral transformations, it is inadequate in
localizing the quadratic-phase spectrum content of the non-stationary signals. Various
authors have come to rescue these shortcomings like Shah et al., who introduced short-time
quadratic phase Fourier transform [6], whereas Bhat and Dar [7] studied quadratic phase
wave packet transform (QPWPT), wherein they studied the properties of QPWPT and
established some of its uncertainty principles (UP).

In the quaternion setting, the generalization of integral transforms from real and
complex numbers is the need for the study of higher dimensions like: the quaternion
Fourier transform (QFT) [8], the quaternion windowed Fourier transform (QWFT) [9],
the quaternion linear canonical transform (QLCT) [10], the fractional quaternion Fourier
transform (Fr-QFT) [11], and the quaternion offset linear canonical transform (QOLCT) [12].
Over time, quaternion algebra has proven to be a hot area of research with its applications
in image filtering, color image processing, and many more [13,14]. The quaternion Fourier
transform (QFT) and its generalizations play a great role in the representation of hyper-
complex signals in signal and image processing.

On the other hand, the uncertainty principle (UP) first proposed by German physicist
W. Heisenberg in 1927 plays a great role in numerous scientific fields such as quantum
physics, mathematics, signal processing, and information theory [15,16]. The UPs like
Heisenberg’s, Hardy’s, and Beurling’s related to QFT are discussed in [17–20], and the
further extension of UPs in the spectrums of QLCT and QOLCT is discussed in [21–24].
These UPs have numerous applications in the study of optical systems, signal recovery,
and many more [25,26]. Recently, Gupta and Verma introduced short-time quadratic
phase Fourier transform in quaternion setting and studied some of its associated UPs.
Later on, Bhat and Dar [27] introduced quaternion quadratic phase Fourier transform and
generalized it to the Gabor quaternion quadratic phase Fourier transform besides studying
logarithmic UP and Heisenberg’s UP. Thus, there is a need to study the other types of
uncertainty principles in a windowed quaternion quadratic phase domain. Thus, motivated
by this, we in this paper propose the novel integral transform coined as the two-sided
quaternion windowed quadratic-phase Fourier transform (QWQPFT), which provides a
unified treatment for several existing classes of signal processing tools. Therefore, it is
worthwhile to rigorously study the QWQPFT and associated UPs which can be productive
for signal processing theory and applications.

1.1. Paper Contributions

The contributions of this paper are summarized below:

• We introduce the novel integral transform coined as the two-sided quaternion win-
dowed quadratic-phase Fourier transform (QWQPFT);

• We establish the basic relationship between the proposed transform (QWQPFT),
the quaternion Fourier transform (QFT) and quaternion quadratic phase Fourier
transform (Q-QPFT);

• To study the fundamental properties of the QWQPFT, like the inversion formula,
Plancherel formula, and boundedness;

• To examine several classes of uncertainty principles, such as the Hardy’s UP, Beurling’s
UP, Donoho–Stark’s UP, the logarithmic UP, and the local UP associated with the
proposed transform;

• We explore Pitt’s Inequality associated with the QWQPFT.

1.2. Paper Outlines

The paper is organized as follows: In Section 2, we give a brief review of two-sided
QFT useful and Q-QPFT, useful in the succeeding sections. In Section 3, we introduce the
quaternion windowed quadratic phase Fourier transform and study some of its properties.
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In Section 4, we establish some different forms of uncertainty principles (UPs) for the
QWQPFT, which includes Hardy’s UP, Beurling’s UP, Donoho–Stark’s UP, the logarithmic
UP, the local UP, and Pitt’s inequality. Finally, conclusions are drawn in Section 5.

2. Preliminary

In this section, we give a brief review to the two-sided QFT useful and Q-QPFT, which
will be needed throughout the paper.

2.1. Quadratic-Phase Fourier Transform

In this subsection, we recall the fundamentals of quadratic-phase Fourier transform
(QPFT).

Definition 1 (QPFT [3,4]). For any real parameter set µ = (a, b, c, d, e), the QPFT of f ∈ L2(R)
is denoted by Qµ[ f ] and defined as

Qµ[ f ](w) =
∫
R

f (x)Qµ(x, w)dx (3)

where Qµ(x, w) is a quadratic-phase kernel and is given by

Qµ(x, w) =

√
bi
2π

e−i(ax2+bxw+cw2+dx+ew). (4)

The inversion and Parseval’s formula for the QPFT are given by

f (x) =
∫
R
Qµ[ f ](w)Qµ(x, w)dw, (5)

〈 f , g〉 =
〈
Qµ[ f ],Qµ[g]

〉
, ∀ f , g ∈ L2(R). (6)

Theorem 1 (QPFT Plancherel [3,4]). For any signal f ∈ L2(R), we have

‖ f ‖2
L2(R) =

∥∥Qµ[ f ]
∥∥2

L2(R).

2.2. Quaternion Algebra

In 1834, W. R. Hamilton introduced quaternion algebra by extension of the complex
number to an associative non-commutative 4D algebra, denoted by H in his honor where
every element of H has a Cartesian form given by

H = {q|q := [q]0 + i[q]1 + j[q]2 + k[q]3, [q]i ∈ R, i = 0, 1, 2, 3} (7)

where i, j, k are imaginary units obeying Hamilton’s multiplication rules:

i2 = j2 = k2 = −1, (8)

ij = −ji = k, jk = −kj = i, ki = −ik = j. (9)

Let [q]0 and q = i[q]1 + j[q]2 + k[q]3 denote the real scalar part and the vector part of
quaternion number q = [q]0 + i[q]1 + j[q]2 + k[q]3, respectively. Then, the real scalar part
has a cyclic multiplication symmetry

[pql]0 = [qlp]0 = [lpq]0, ∀q, p, l ∈ H, (10)

the conjugate of a quaternion q is defined by q = [q]0 − i[q]1 − j[q]2 − k[q]3, and the norm
of q ∈ H is defined as

|q| =
√

qq̄ =
√
[q]20 + [q]21 + [q]22 + [q]23. (11)
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It is easy to verify that

pq = qp, |qp| = |q||p|, ∀q, p ∈ H. (12)

In this paper, we will study the quaternion-valued signal f : R2 → H, f , which can be
expressed as f = f0 + i f1 + j f2 + k f3, with fm : R2 → R for m = 0, 1, 2, 3. The quaternion
inner product for quaternion valued signals f , g : R2 → H, as follows:

〈 f , g〉 =
∫
R2

f (x)g(x)dx (13)

where x = (x1, x2), f (x) = f (x1, x2), x = dx1dx2, and so on.
Hence, the natural norm is given by

| f |2 =
√
< f , f > = (

∫
R2
| f (x)|2dx)

1
2

(14)

and the quaternion module L2(R2, H), is given by

L2(R2, H) = { f : R2 → H, | f |2 < ∞}. (15)

We now define the space of rapidly decreasing smooth quaternion function [10].

Definition 2. For a multi-index β = (β1, β2) ∈ R+ ×R+, the Schwartz space in L2(R2,H), is
defined as

S(R2,H) =

{
f ∈ C∞(R2,H); ] sup

x∈R2

(
1 + |x|k

)∣∣∣∣∣∂β1+β2 [ f (x)]

∂
β1
x1 ∂

β2
x2

∣∣∣∣∣ < ∞

}

where C∞(R2,H) is the set of smooth functions from R2 to H.

2.3. Quaternion Fourier Transform

Let us begin this part with the QFT. There are three different types of QFT: the left-sided
QFT, the two-sided QFT, and the right-sided QFT. Here, our focus will be on two-sided
QFT (in the rest of the paper, QFT means two-sided QFT).

Definition 3 (QFT [9]). The two-sided QFT of a quaternion signal f ∈ L1(R2,H) is defined by

FH[ f ](w) =
∫
R2

e−ix1w1 f (x)e−jx2w2 dx (16)

and corresponding inverse QFT is given by

f (x) =
1

(2π)2

∫
R2

eix1w1FH[ f ](w)ejx2w2 dw (17)

where x = (x1, x2) and w = (w1, w2).

Lemma 1 (QFT Parseval [8]). The quaternion product of f , g ∈ L1(R2,H) ∩ L2(R2,H) and its
QFT are related by

〈 f , g〉L2(R2,H) =
〈
FH[ f ],FH[g]

〉
L2(R2,H)

. (18)

In particular, if f = g, we obtain the quaternion version of the Plancherel formula; that is,

‖ f ‖2
L2(R2,H) =

∥∥∥FH[ f ]
∥∥∥

L2(R2,H)
. (19)



Symmetry 2022, 14, 2650 5 of 17

Lemma 2 ([24]). If 1 ≤ p ≤ 2 and letting 1
p + 1

q = 1, for all f ∈ Lp(R2,H), then it holds

‖FH‖q ≤ (2π)
1
q−

1
p ‖ f ‖p. (20)

2.4. Two-Sided Q-QPFT

In this subsection, we study the two-sided Q-QPFT (for simplicity of notation, we
write the Q-QPFT instead of the two-sided Q-QPFT). We recall the definition of Q-QPFT
and some of its properties.

Definition 4 (Q-QPFT [4,27]). Let µs = (as, bs, cs, ds, es) for s = 1, 2; then, the two-sided
Q-QPFT of signals f ∈ L1(R2,H) is denoted by QH

µ1,µ2
[ f ] and defined as

QH
µ1,µ2

[ f ](w) =
∫
R2
Qi

µ1
(x1, w1) f (x)Qj

µ2(x2, w2)dx (21)

where w = (w1, w2) ∈ R2, x = (x1, x2) ∈ R2, Qi
µ1
(x1, w1) and Qj

µ2(x2, w2) are quaternion
kernel signals given by

Qi
µ1
(x1, w1) =

√
b1i
2π

e−i(a1x2
1+b1x1w1+c1w2

1+d1x1+e1w1) (22)

Qj
µ2(x2, w2) =

√
b2 j
2π

e−j(a2x2
2+b2x2w2+c2w2

2+d2x2+e2w2) (23)

where as, bs, cs, ds, es ∈ R, bs 6= 0, and s = 1, 2.

Under some suitable conditions, the Q-QPFT above is invertible, and the inversion is
given in the following Lemma.

Lemma 3 (Q-QPFT Inversion [4,27]). Let QH
µ1,µ2

[ f ] ∈ L1(R2,H), then every signal f ∈
L1(R2,H) can be reconstructed back by the formula

f (x) =
∫
R2
Qi

µ1
(x1, w1)QH

µ1,µ2
[ f ](w)Qj

µ2(x2, w2)dw. (24)

Theorem 2 (Q-QPFT Plancherel [4,27]). For any signal f ∈ L2(R2,H), we have

‖ f ‖2
L2(R2,H) =

∥∥∥QH
µ1,µ2

[ f ]
∥∥∥2

L2(R2,H)
. (25)

3. Quaternionic Windowed Quadratic-Phase Fourier Transform

In this section, we shall formally introduce the notion of the two-sided quaternionic
windowed quadratic-phase Fourier transform (QWQPFT) and then establish some proper-
ties of the proposed transform.

Definition 5 (QWQPFT). Let µs = (as, bs, cs, ds, es), be a matrix parameter such that as, bs,
cs, ds, es ∈ R, bs 6= 0, for s = 1, 2. The two-sided quaternion windowed quadratic-phase
Fourier transform of any quaternion valued signal f ∈ L2(R2,H), with respect window function
Ξ ∈ L2(R2,H) given by

VHΞ,µ1,µ2

[
f
]
(w, u) =

∫
R2
Qi

µ1
(x1, w1) f (x)Ξ(x− u)Qj

µ2(x2, w2)dx (26)

where x = (x1, x2), w = (w1, w2), u = (u1, u2), the quaternion kernels Qi
µ1
(x1, w1), and

Qj
µ2(x2, w2) are given by Equations (22) and (23), respectively.
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Remark 1. By appropriately choosing parameters in
µs = (as, bs, cs, ds, es), s = 1, 2, the QWQPFT (26) includes many well-known linear transforms
as special cases:

• For µs = (0,−1, 0, 0, 0), s = 1, 2, the QWQPFT (26) boils down to the Quaternion Windowed
Fourier Transform [9].

• As a special case, when µs = (as, bs, cs, 0, 0), s = 1, 2, the QWQPFT (26) can be viewed as
the Quaternion Windowed Linear Canonical Transform [28].

• For µs = (cot θ,− csc θ, cot θ, 0, 0), s = 1, 2, the QWQPFT (26) leads to the two-sided
Quaternion Fractional Fourier Transform [29].

Remark 2. For fixed u, we can see that the relationship between the quaternion windowed quadratic-
phase Fourier transform and the quaternion quadratic-phase Fourier transform is given by,

VHΞ,µ1,µ2

[
f
]
(w, u) = QH

µ1,µ2

[
f (x)Ξ(x− u)

]
(w) (27)

= QH
µ1,µ2

[
f Ξ
u (x)

]
(w)

where f Ξ
u (x) is a modified signal.

Now, we give the relationship between the proposed QWQPFT and the QFT.

Theorem 3. The QWQPFT (26) of a quaternion signal f ∈ L2(R2,H) can be reduced to the QFT
(16) as

VHΞ,µ1,µ2
[ f ](w, u) (28)

=

√
b1i
2π

e−i(c1w2
1+e1w1)FH[F](bw, u)

√
b2 j
2π

e−j(c2w2
2+e2w2)

where
F(x) = e−i(a1x2

1+d1x1) f Ξ
u (x)e

−j(a2x2
2+d2x2) (29)

and b = (b1, b2).

Proof. From Definition 5, we obtain

VHΞ,µ1,µ2
[ f ](w, u)

=
∫
R2

√
b1i
2π

e−i(a1x2
1+b1x1w1+c1w2

1+d1x1+e1w1) f (x)Ξ(x− u)

×
√

b2 j
2π

e−j(a2x2
2+b2x2w2+c2w2

2+d2x2+e2w2)dx

=

√
b1i
2π

e−i(c1w2
1+e1w1)

{∫
R2

e−ix1b1w1

×
(

e−i(a1x2
1+d1x1) f Ξ

u (x)e
−j(a2x2

2+d2x2)
)

e−jx2b2w2 dx
}

×
√

b2 j
2π

e−j(c2w2
2+e2w2).

Setting F(x) = e−i(a1x2
1+d1x1) f Ξ

u (x)e
−j(a2x2

2+d2x2), we have from the above equation

VHΞ,µ1,µ2
[ f ](w, u)

=

√
b1i
2π

e−i(c1w2
1+e1w1)FH[F](bw, u)

√
b2 j
2π

e−j(c2w2
2+e2w2)

where bw = (b1w1, b2w2). This leads to the desired result.
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Prior to establishing the vital properties of the proposed QWQPFT, we present an
explicit example for lucid illustration of the proposed Definition 5:

Example 1. Consider a 2D Gaussian quaternionic function of the form f (x) = exp
{
−(k1x2

1 + k2x2
2)
}

,
for k1, k2 are both positive real constants.
The QWQPFT of a f with respect to the rectangular window function

Ξ(x) =
{

1,
0,

if |x1| < λ, |x2| < λ, λ > 0,
elsewhere,

is given by

VHΞ,µ1,µ2
[ f ](w, u)

=

√
b1b2

2π

∫
R2
Qi

µ1
(x1, w1) f (x)Ξ(x− u)Qj

µ2(x2, w2)dx

=

√
b1b2

2π

∫ u1+λ

u1−λ

∫ u2+λ

u2−λ
e−i(a1x2

1+b1x1w1+c1w2
1+d1x1+e1w1)−k1x2

1

×e−j(a2x2
2+b2x2w2+c2w2

2+d2x2+e2w2)−k2x2
2 dx

=

√
b1b2

2π
e−i(c1w2

1+e1w1)
∫ u1+1/2

u1−λ
e−i((a1−ik1)x2

1+b1x1w1+d1x1 dx1

×
∫ u2+λ

u2−λ
e−j((a2−jk2)x2

2+b2x2w2+d2x2 dx2 × e−j(c2w2
2+e2w2). (30)

For simplicity, we choose k1 = −ia1 and k2 = −ja2, and we obtain from (30)

VHΞ,µ1,µ2
[ f ](w, u)

=

√
b1b2

2π
e−i(c1w2

1+e1w1)
∫ u1+λ

u1−λ
e−i(b1w1+d1)x1 dx1

×
∫ u2+λ

u2−λ
e−j(b2w2+d2)x2 dx2 × e−j(c2w2

2+e2w2)

=

√
b1b2e−i(b1w1u1+c1w2

1+Du1+e1w1)

2π(b1w1 + d1)

(
e−i(b1w1+d1)λ − ei(b1w1+d1)λ

)
×
(

e−j(b2w2+d2)λ − ej(b2w2+d2)λ
) e−j(b2w2u2+c2w2

2+Du2+e2w2)

(b2w2 + d2)
.

Properties of QWQPFT

In this subsection, we study some properties of the proposed QWQPFT which are
useful for signal processing. Some of these have been proved in [27], but we have made a
slight modification in the definition of QWQPFT so these properties will change accordingly.

Theorem 4. Let f , g ∈ L2(R2,H) be two quaternion signals and Ξ1, Ξ2 be the non zero window
functions; then, the QWQPFT satisfies the following properties:

1. Linearity:

VHΞ,µ1,µ2
[α f + βg](w, u) = αVHΞ,µ1.µ2

[ f ](w, u) + βVHΞ,µ1.µ2
[g](w, u) (31)

where α and β are in C.
2. Boundedness ∣∣∣VHΞ,µ1.µ2

∣∣∣ ≤ |b1b2|1/2

2π
‖ f ‖L2(R2,H)‖Ξ‖L2(R2,H). (32)
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3. Anti-linearity:

VHαΞ1+βΞ2,µ1,µ2
[ f ](w, u) = VHΞ1,µ1.µ2

[ f ](w, u)ᾱ + VHΞ2,µ1.µ2
[ f ](w, u)β̄ (33)

where α and β are in C.

Proof. It follows from Definition 5 [or see [27]].

Theorem 5 (Inversion formula). Let Ξ ∈ L2(R2,H) be a quaternion window function; then,
every quaternion signal f ∈ L2(R2,H) can be recovered back from the transformed signal
VHΞ,µ1,µ2

[ f ](w, u) by the following formula:

f (x) =
1

‖Ξ‖2
L2(R2,H)

∫
R2

∫
R2

(34)

×Qi
µ1
(x1, w1)VHΞ,µ1,µ2

[ f ](w, u)Qj
µ2(x2, w2)Ξ(x− u)dwdu.

Proof. Applying the Inverse QQPFT to (27), we obtain

f Ξ
u (x) = f (x)Ξ(x− u)

= Q−1
µ1,µ2

[
VHΞ,µ1,µ2

[
f
]
(w, u)

]
(35)

=
∫
R2
Qi

µ1
(x1, w1)VHΞ,µ1,µ2

[
f
]
(w, u)Qj

µ2(x2, w2)dw.

Multiplying the above equation both sides from right by Ξ(x− u) and integrating
with respect to du, we obtain

f (x)
∫
R2
|Ξ(x− u)|2du

=
∫
R2

∫
R2
Qi

µ1
(x1, w1)VHΞ,µ1,µ2

[ f ](w, u)Qj
µ2(x2, w2)Ξ(x− u)dwdu.

Equivalently, we have

f (x) =
1

‖Ξ‖2
L2(R2,H)

∫
R2

∫
R2

×Qi
µ1
(x1, w1)VHΞ,µ1,µ2

[ f ](w, u)Qj
µ2(x2, w2)Ξ(x− u)dwdu

which completes the proof.

Theorem 6 (QWQPFT Plancherel). Let VHΞ,µ1,µ2
[ f ](w, u) be the quaternion windowed quadratic-

phase Fourier transform of a signal f ∈ L2(R2,H) with respect to a window function function
Ξ ∈ L2(R2,H), then we have∥∥∥VHΞ,µ1,µ2

[ f ](w, u)
∥∥∥2

L2(R4,H)
= ‖ f ‖2

L2(R2,H)‖Ξ‖
2
L2(R2,H). (36)

Proof. From Remark 2, we have∥∥∥VHΞ,µ1,µ2
[ f ]
∥∥∥2

L2(R4,H)
=
∥∥∥QH

µ1,µ2

[
f (x)Ξ(x− u)

]∥∥∥2

L2(R4,H)
. (37)
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Applying Theorem 2 to the R.H.S of (37) yields∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥2

L2(R4,H)
=

∥∥∥ f (x)Ξ(x− u)(w)
∥∥∥2

L2(R2,H)

=
∫
R2

∫
R2
| f (x)|2|Ξ(x− u)|2dxdu

=
∫
R2
| f (x)|2dx

∫
R2
|Ξ(y)|2dy

= ‖ f ‖2
L2(R2,H)‖Ξ‖

2
L2(R2,H)

where we have applied Fubini’s theorem in the second to last equation. This completes the
proof.

4. Uncertainty Principles Associated with the Quaternion-QPFT

In this section, we investigate some different forms of UPs associated with QWQPFT
including Hardy’s UP, Beurling’s UP, logarithmic UPs, Donoho–Stark’s UP, and Local UP.
Let us begin with Hardy’s uncertainty principle for the quaternion quadratic-phase Fourier
transform (21). We first recall Hardy’s uncertainty principle for the QFT.

Lemma 4 (Hardy’s UP for the two-sided QFT [17]). Let α and β be positive constants.
For f ∈ L2(R2,H), if

| f (x)| ≤ ce−α|x|2 and |FH[ f ](w)| ≤ c′e−β|w|2 , u, w ∈ R2,

with some positive constants c, c′. Then, the following three cases can occur:

(1) if αβ > 1
4 , then f (x) ≡ 0;

(2) if αβ = 1
4 , then f (x) = Ke−α|x|2 , for any constant K;

(3) if αβ < 1
4 , then there are many infinite such functions f (x).

Motivated and inspired by Hardy’s UP for the two-sided QFT, we establish Hardy’s
UP for the Q-QPFT.

Theorem 7 (Hardy’s UP for the QWQPFT). Let α, β be positive constants and Ξ ∈ L2(R2,H)
be a non zero window function. Then, for any signal f ∈ L2(R2,H) satisfying

| f (x)| ≤ Ce−α|x|2 , and
∣∣∣VHΞ,µ1,µ2

[ f ](
w
b

, u)
∣∣∣ ≤ C′e−β|w|2 , u, w ∈ R2,

with some positive constants C, C′, the following three cases can occur:

(1) if αβ > 1
4 , then f (x) ≡ 0;

(2) if αβ = 1
4 , then f (x) = ei(a1x2

1+d1x1) K
|Ξ(0)|

e−α|x|2 ej(a2x2
2+d2x2), for any constant K;

(3) if αβ < 1
4 , then there are many infinite such functions f (x).

Proof. Taking x = u in (29), we obtain

F(x) = e−i(a1x2
1+d1x1) f (x)Ξ(0)e−j(a2x2

2+d2x2).

Clearly, F(x) ∈ L2(R2,H) and |Ξ(0)| is a positive quantity; therefore,

|F(x)| = | f (x)||Ξ(0)|
≤ |Ξ(0)|Ce−α|x|2

= C1e−α|x|2 .
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From (28), we obtain

|FH[F](w)| =
2π√
b1b2

∣∣∣VHΞ,µ1,µ2
[ f ](

w
b

, u)
∣∣∣

≤ 2π√
b1b2

C′e−β|w|2

= C′1e−β|w|2

where C1 = |Ξ(0)|C and C′1 = 2π√
b1b2

C′.
Thus, by Lemma 4, the following three cases can occur:

(1) if αβ > 1
4 , then F(x) ≡ 0;

(2) if αβ = 1
4 , then F(x) = Ke−α|x|2 , for any constant K;

(3) if αβ < 1
4 , then there are many infinite such functions F(x).

Equivalently, we have the following conclusions:

(1) if αβ > 1
4 , then f (x) ≡ 0 for F(x) ≡ 0;

(2) if αβ = 1
4 , it yields f (x) = ei(a1x2

1+d1x1) K
|Ξ(0)|

e−α|x|2 ej(a2x2
2+d2x2), where K is a constant;

(3) if αβ < 1
4 , then it is clear that there are many infinite such functions f (x),

which completes the proof.

Now, using the relationship between the proposed transform (Q-QPFT) and QFT,
we obtain Beurling’s uncertainty principle for the Q-QPFT. First, we recall the Beurling’s
uncertainty principle for the QFT.

Lemma 5 (Beurling’s UP for the two-sided QFT [18]). Let f (x) ∈ L2(R2,H) and d ≥ 0
such that ∫

R2

∫
R2

| f (x)|
∣∣FH[ f ](w)

∣∣
(1 + |x|+ |w|)d e|x||w|dxdw < ∞, (38)

then f (x) = P(x)e−k|x|2 , where k > 0 and P is a polynomial of degree < d−2
2 . In particular, f = 0

when d ≤ 2.

By applying Theorem 3 and Lemma 5, we extend the validity of Beurling’s UP for
the QWQPFT.

Theorem 8 (Beurling’s UP for the QWQPFT ). Let f (x) ∈ L2(R2,H) and d ≥ 0 satisfying

∫
R2

∫
R2

| f (x)||Ξ(x− u)|
∣∣∣VHΞ,µ1,µ2

[ f ](w, u)
∣∣∣

(1 + |x|+ |bw|)d e|x||bw|dxdw < ∞,

then f (x) = ei(a1x2
1+d1x1) P(x)

Ξ(x−u)
e−k|x|2 ej(a2x2

2+d2x2), where k > 0 and P(x) is a polynomial of

degree < d−2
2 . In particular, f = 0 when d ≤ 2.
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Proof. Taking f = h(x, u) given in (29), we have from (38)

∫
R2

∫
R2

|F(x)|
∣∣FH[F](w)

∣∣
(1 + |x|+ |w|)d e|x||w|dxdw

=
∫
R2

∫
R2

| f Ξ
u (x)|

∣∣∣ 2π√
b1b2
VHΞ,µ1,µ2

[ f ](w
b , u)

∣∣∣
(1 + |x|+ |w|)d e|x||w|dxdw

=
∫
R2

∫
R2

2π√
b1b2

| f Ξ
u (x)|

∣∣∣VHΞ,µ1,µ2
[ f ](w

b , u)
∣∣∣

(1 + |x|+ |w|)d e|x||w|dxdw

= 2π
√

b1b2

∫
R2

∫
R2

| f (x)||Ξ(x− u)|
∣∣∣VHΞ,µ1,µ2

[ f ](w, u)
∣∣∣

(1 + |x|+ |bw|)d e|x||bw|dxdw < ∞.

By Lemma 5, we must have F(x) = P(x)e−k|x|2 .

Since F(x) = e−i(a1x2
1+d1x1) f (x)Ξ(x− u)e−j(a2x2

2+d2x2), which implies

f (x) = ei(a1x2
1+d1x1) P(x)

Ξ(x−u)
e−k|x|2 ej(a2x2

2+d2x2). In particular, f = 0 on account F(x) = 0

when d ≤ 2, which completes the proof.

In continuation, we establish Donoho–Stark’s uncertainty principle for the QWQPFT
by considering the relationship between the proposed transform (QWQPFT) and QFT. Let
us begin with the definition.

Definition 6 ([30]). A quaternion function f ∈ L2(R2,H) is said to be ε−concentrated on a
measurable set L ⊆ R2, if (∫

R2\L
| f (x)|2dx

)1/2
≤ ε‖ f ‖2.

Lemma 6 (Donoho–Stark’s UP for the two-sided QFT [30,31]). Let f ∈ L2(R2,H) with f 6= 0
be εL1−concentrated on L1 ⊆ R2 and FH[ f ] be εL2−concentrated on L2 ⊆ R2. Then,

|L1||L2| ≥ 2π(1− εL1 − εL2)
2.

Theorem 9 (Donoho–Stark’s UP for the QWQPFT). Assuming that non-zero quaternion func-
tion Q−1

µ1,µ2

[
VHΞ,µ1,µ2

[ f ]
]

in L2(R2,H) is a εL1−concentrated on L1 ⊆ R2 and VHΞ,µ1,µ2
[ f ] is

εL2−concentrated on L2 ⊆ R2. Then,

|L1||L2| ≥ 2π|b|(1− εL1 − εL2)
2. (39)

Proof. From (29), we have

F(x) = e−i(a1x2
1+d1x1) f Ξ

u (x)e
−j(a2x2

2+d2x2). (40)

Inserting (35) in (40), we obtain

F(x) = e−i(a1x2
1+d1x1)Q−1

µ1,µ2

[
VHΞ,µ1,µ2

[ f ]
]
(x, u)e−j(a2x2

2+d2x2). (41)

Since Q−1
µ1,µ2

[
VHΞ,µ1,µ2

[ f ]
]
∈ L2(R2,H) is εL1−concentrated on L1 ⊆ R2, it implies

F(x) ∈ L2(R2,H) is εL1−concentrated on L1 ⊆ R2.
On the other hand, we have that VHΞ,µ1,µ2

[ f ] is εL2−concentrated on L2 ⊆ R2; thus, by (28),

we obtainFH(bw, u) is εL2−concentrated on L2 ⊆ R2, henceFH(w, u) is εL2−concentrated
on L2

b ⊆ R2.
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Hence, by Lemma 6, we obtain

|L1|
∣∣∣∣ L2

b

∣∣∣∣ ≥ 2π(1− εL1 − εL2)
2,

which completes the proof.

Based on the relation with Quaternion Quadratic-phase Fourier, the logarithmic un-
certainty principle for the QWQPFT has been proved in [27]. Here, using a logarithmic
uncertainty principle for the QFT, we establish a new version of the logarithmic uncertainty
principle for the proposed QWQPFT.

Lemma 7 (Logarithmic uncertainty principle for the QFT [24]). For f ∈ S(R2,H) [Schwartz
space], ∫

R2
ln |x|| f (x)|2dx +

∫
R2

ln |w|
∣∣∣FH[ f ](w)

∣∣∣2dw ≥ D
∫
R2
| f (x)|2dx (42)

where D = ln(2π2)− 2ψ(1/2), ψ = d
dt (ln(Γ(x))) and Γ(x) is a Gamma function.

Theorem 10 (Logarithmic UP for the QWQPFT). Let Ξ ∈ S(R2,H) be a nonzero window
function and VHΞ [ f ] be the quaternion window quadratic-phase Fourier transform of signal f ∈
S(R2,H). Then, we have the following logarithmic inequality

‖Ξ‖2
L2(R2,H)

(2π)2

∫
R2

ln |x|| f (x)|2dx +
∫
R2

∫
R2

ln |w||VHΞ,µ1,µ2
[ f ](w, u)|2dudw

≥ 1
(2π)2 (D− ln |b|)‖Ξ‖2

L2(R2,H)‖ f ‖2
L2(R2,H). (43)

Proof. From (28), we have∫
R2

∫
R2

ln |w||VHΞ,µ1,µ2
[ f ](w, u)|2dudw

=
|b|

(2π)2

∫
R2

∫
R2

ln |w||FH[F](bw, u)|2dudw

=
1

(2π)2

∫
R2

∫
R2

ln
∣∣∣ y
b

∣∣∣|FH[F](y, u)|2dudy

=
1

(2π)2

∫
R2

∫
R2

ln |y||FH[F](y, u)|2dudy

− 1
(2π)2

∫
R2

∫
R2

ln |b||FH[F](y, u)|2dudy.

Using Parseval’s formula for QFT yields∫
R2

∫
R2

ln |w||VHΞ,µ1,µ2
[ f ](w, u)|2dudw

=
1

(2π)2

∫
R2

∫
R2

ln |y||FH[F](y, u)|2dudy− ln |b|
(2π)2

∫
R2

∫
R2
|F(y)|2dudy

=
1

(2π)2

∫
R2

∫
R2

ln |y||FH[F](y, u)|2dudy− ln |b|
(2π)2 ‖ f ‖2

L2(R2,H)‖Ξ‖
2
L2(R2,H). (44)

As f , Ξ ∈ S(R2,H) implies F(y) ∈ S(R2,H). Thus, replacing f with F, in the logarith-
mic uncertainty principle for QFT, we have∫

R2
ln |x||F(x)|2dx +

∫
R2

ln |w|
∣∣∣FH[F](w)

∣∣∣2dw ≥ D
∫
R2
|F(x)|2dx, (45)
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multiplying and integrating both sides of (45), with 1
(2π)2 and du, respectively. We obtain

1
(2π)2

∫
R2

∫
R2

ln |x||F(x)|2dxdu +
1

(2π)2

∫
R2

∫
R2

ln |w|
∣∣∣FH[F](w)

∣∣∣2dwdu

≥ 1
(2π)2 D

∫
R2

∫
R2
|F(x)|2dxdu, (46)

which implies

‖Ξ‖2
L2(R2,H)

(2π)2

∫
R2

ln |x|| f (x)|2dx +
1

(2π)2

∫
R2

∫
R2

ln |w|
∣∣∣FH[F](w)

∣∣∣2dwdu

≥ 1
(2π)2 D‖Ξ‖2

L2(R2,H)‖ f ‖2
L2(R2,H). (47)

On inserting (44) into the (47), we obtain

‖Ξ‖2
L2(R2,H)

(2π)2

∫
R2

ln |x|| f (x)|2dx +
∫
R2

∫
R2

ln |w||VHΞ,µ1,µ2
[ f ](w, u)|2dudw

+
ln |b|
(2π)2 ‖ f ‖2

L2(R2,H)‖Ξ‖
2
L2(R2,H) ≥

1
(2π)2 D‖Ξ‖2

L2(R2,H)‖ f ‖2
L2(R2,H),

which simplifies to

‖Ξ‖2
L2(R2,H)

(2π)2

∫
R2

ln |x|| f (x)|2dx +
∫
R2

∫
R2

ln |w||VHΞ,µ1,µ2
[ f ](w, u)|2dudw

≥ 1
(2π)2 (D− ln |b|)‖Ξ‖2

L2(R2,H)‖ f ‖2
L2(R2,H).

This completes the proof.

Theorem 11. Let Λ be a measurable set ⊂ R2 × R2 and VHΞ,µ1,µ2
[ f ](w, u) be the quaternion

windowed quadratic-phase Fourier transform of any signal f ∈ L2(R2,H) with ‖ f ‖2
L2(R2,H) =

‖Ξ‖2
L2(R2,H)

= 1 such that

∫ ∫
Λ

∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣2dwdu ≥ 1− ε. (48)

Then, we have 2π(1−ε)√
b1b2

≤ m(Λ), where m(Λ) is Lebesgue measure of Λ.

Proof. From Definition 5, we obtain∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣ =

∣∣∣∣∫R2
Qi

µ1
(x1, w1) f (x)Ξ(x− u)Qj

µ2(x2, w2)dx
∣∣∣∣

≤
√

b1b2

2π

∫
R2

∣∣∣ f (x)Ξ(x− u)
∣∣∣dx. (49)

By virtue of Holder’s inequality, we obtain∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥
L∞(R2,H)

≤
√

b1b2

2π
‖ f ‖L2(R2,H)‖Ξ‖L2(R2,H). (50)
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On inserting (50) in (48), we obtain

1− ε ≤
∫ ∫

Λ

∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣2dwdu

≤ m(Λ)
∥∥∥VHΞ,µ1,µ2

[ f ](w, u)
∥∥∥

L∞(R2,H)

≤ m(Λ)

√
b1b2

2π
‖ f ‖L2(R2,H)‖Ξ‖L2(R2,H)

≤ m(Λ)

√
b1b2

2π
,

which completes the proof.

Next, we prove Local UP for the QWQPFT which states that, for a non zero quaternion
signal f whose QWQPFT VHΞ,µ1,µ2

[ f ] is concentrated on a measurable set Λ satisfying
0 < m(Λ) < 1, then either f ≡ 0 or Ξ ≡ 0.

Theorem 12 (Local UP for the QWQPFT). Let Λ be a measurable subset of R2 ×R2 such that
0 < m(Λ) < 1. Then, for every f , Ξ ∈ L2(R2,H), the following inequality holds

‖ f ‖L2(R2,H)‖Ξ‖L2(R2,H) ≤
1√

1−m(Λ)

∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥
L2(Λc ,H)

. (51)

Proof. Theorem 11 together with (36) yields∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥2

L2(R2×R2,H)

=
∫
R2

∫
R2

∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣2dwdu

=
∫ ∫

Λ

∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣2dwdu +
∫ ∫

Λc

∣∣∣VHΞ,µ1,µ2
[ f ](w, u)

∣∣∣2dwdu

≤ m(Λ)‖ f ‖2
L2(R2,H)‖Ξ‖

2
L2(R2,H) +

∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥2

L2(Λc ,H)
.

Hence, ∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥2

L2(Λc ,H)

≥
∥∥∥VHΞ,µ1,µ2

[ f ](w, u)
∥∥∥2

L2(R2×R2,H)
−m(Λ)‖ f ‖2

L2(R2,H)‖Ξ‖
2
L2(R2,H).

Again, by virtue of (36), we obtain∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥2

L2(Λc ,H)
≥ (1−m(Λ))‖ f ‖2

L2(R2,H)‖Ξ‖
2
L2(R2,H).

Equivalently, we have

‖ f ‖L2(R2,H)‖Ξ‖L2(R2,H) ≤
1√

1−m(Λ)

∥∥∥VHΞ,µ1,µ2
[ f ](w, u)

∥∥∥
L2(Λc ,H)

,

which completes the proof.

Towards the end of this section, we explore Pitt’s inequality associated with the
QWQPFT. First, we shall state the following Lemma.



Symmetry 2022, 14, 2650 15 of 17

Lemma 8 (Pitt’s inequality of the QFT [31]). For f ∈ S(R2t,H),∫
R2t
|w|−α|FH[ f ](w)|2dw

≤ ∆α

∫
R2t
|x|α| f (x)|2dx, (52)

where ∆α = πα
[
Γ
( 2t−α

4
)
Γ
( 2t+α

4
)]

, 0 ≤ α ≤ 2t and Γ is a Gamma function.

According to the above Lemma, we obtain Pitt’s inequality of the QWQPFT.

Theorem 13 (Pitt’s inequality of the QWQPFT). For f ∈ S(R2t,H),∫
R2t

∫
R2t
|w|−α|VHΞ,µ1,µ2

[ f ](w, u)|2dudw

≤ |b|
α

4π2 ∆α‖Ξ‖2
L2(R2t ,H)

∫
R2t
|x|α| f (x)|2dx (53)

where ∆α = πα
[
Γ
( 2t−α

4
)
Γ
( 2t+α

4
)]

, 0 ≤ α ≤ 2t and Γ is a Gamma function.

Proof. From Theorem 3, we have∫
R2t

∫
R2t
|w|−α|VHΞ,µ1,µ2

[ f ](w, u)|2dudw

=
|b1b2|
(2π)2

∫
R2t

∫
R2t
|w|−α|FH[ f ](bw, u)|2dudw.

Setting bw = y yields ∫
R2t

∫
R2t
|w|−α|VHΞ,µ1,µ2

[ f ](w, u)|2dudw

=
1

(2π)2

∫
R2t

∫
Rs

∣∣∣ y
b

∣∣∣−α
|FH[F](y, u)|2dudy

=
|b|α
(2π)2

∫
R2t

∫
R2t
|y|−α|FH[F](y, u)|2dudy.

Now, by Lemma 8, we obtain∫
R2t

∫
R2t
|w|−α|VHΞ,µ1,µ2

[ f ](w, u)|2dudw

≤ |b|α
(2π)2 ∆α

∫
R2t

∫
R2t
|x|α|F(x)|2dudx.

Currently, using (29) yields∫
R2t

∫
R2t
|w|−α|VHΞ,µ1,µ2

[ f ](w, u)|2dudw

≤ |b|α
(2π)2 ∆α

∫
R2t

∫
R2t
|x|α| f (x)Ξ(x− u)|2dudx

=
|b|α
(2π)2 ∆α

∫
R2t
|x|α| f (x)|2

(∫
Rs
|Ξ(x− u)|2du

)
dx

≤ |b|α
(2π)2 ∆α‖Ξ‖2

L2(R2t ,H)

∫
R2t
|x|α| f (x)|2dx,

which completes the proof.
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5. Conclusions

In the study, we have accomplished two major objectives: first, we have introduced
the definition of the quaternion windowed quadratic-phase Fourier transform (QWQPFT)
and established fundamental properties of the proposed transform, including the inver-
sion formula, linearity, boundedness, and Plancherel formula. Secondly, we investigated
some different forms of UPs associated with QWQPFT including Hardy’s UP, Beurling’s
UP, Donoho–Stark’s, logarithmic UP, and Local UP. In our future works, we shall study
Wigner distribution in the quaternion quadratic-phase domain and its relation with the
proposed QWQPFT.
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