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Abstract: Scientific progression has allowed researchers to develop novel and innovative ways to
deal with uncertainty in data, allowing for the development of more precise and accurate data repre-
sentation models. This paper aims to extend an already reported concept of Cubic Pythagorean fuzzy
set to Cubic Pythagorean Fuzzy Soft Set (CPFSs) as it incorporates both interval-valued Pythagorean
fuzzy sets (IVPFS) and Pythagorean fuzzy sets (PFS) at the same time, providing a more targeted
approach to deal with uncertainty. This hybrid structure can better handle data in comparison to the
ones in the literature by having the characteristics of PFS and soft sets, leading to a more targeted
approach to handle attributes in decision-making studies. In this study, we defined various internals
and externals of CPFSs, set operators, aggregation operators, and developed an algorithm based on
distance measures for (CPFSs), which are applied in a disease diagnostic decision-making problem.

Keywords: fuzzy set theory; soft set; decision making; distance measures; similarity measures

1. Introduction

The terms vagueness and randomness have been used over time as an element in
probability theory. The terms indeterminacy and uncertainty gained significant attention
around the 1960s when they were characterized using different dimensions. This allowed
for the division of the concept of uncertainty into a multitude of factors; randomness,
considered to be vagueness before, is now only a small part of computing the uncertainty
of a system. The term vagueness nowadays refers to the deficiency or inadequacy of
information in a system. These deficiencies can be technological constraints, measurement
constraints, intuitionistic constraints, time-dependent variables, and functional biological
variables. Finding the optimal solution to a particular problem has become better due to
recent developments in information technology and decision sciences. Theoretically, facts
regarding likely selections are acquired in precise quantities, but aggregated statistics tend
to hide misinformation which leads to uncertain and inaccurate results. The decision maker
must re-evaluate the options based on various suggestive criteria such as intervals and
figures. However, due to the record’s various feedback effects, it is sometimes impossible
for one individual to take action. One explanation may be a lack of knowledge or a
contradiction. As a result, a series of statements are offered to consider the measurement
of the indicated unfavourable features in a scientific manner. Considering these factors,
in studies involving similarity measures or in mapping studies for the determination
of symmetry or pattern recognition of real systems, it is essential to determine these
uncertainties as these may have implications and may lead to unrealistic results when
considering numerous factors at the same time. In order to put these indeterministic factors
into computational and measurable boundaries, Zadeh [1] presented the idea of a fuzzy
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set (FS) in 1965. It deviates from classical set theory by assigning a membership degree
between [0, 1] to a given element in a set.

In classical set theory, scenarios are dealt with as exact solutions, which is not ideal
for most cases as some parameters are approximations that leave room for uncertainty
to hinder the final solution. FS theory allows for the computation of an approximation
solution. Zadeh [2] also presented the concept of interval-valued fuzzy sets (IVFS) in
1975. The FSs are based on the membership value, but some situations are still difficult to
address just by using the membership function. Here, interval-valued fuzzy is preferred to
determine the membership degree as the membership value is expressed in a fuzzy interval.
In 2012, Y.B. JUN [3] came up with a concept of a hybrid IVFS and FS structure to develop a
Cubic Set (CS) and its associated properties. Cubic sets can be applied to address the range
evaluation issue of an object at a particular event in time.

Atanassov [4] defined the term intuitionistic fuzzy set (IFS) in 1986. The membership
function, non-membership function, and hesitation margins are the three parameters that
define IFS, whereas the membership function is the only component that defines the FS.
In IFS, each element will be allocated both membership and non-membership values which
are more appropriate than others. The following factors can cause these:

1. Decision makers (DMs) may lack precise or sufficient information about the problem.
2. DMs may be unable to explicitly discriminate the superiority of one alternative over

another [5]. In such cases, DMs may provide their assessments on alternatives to a
degree rather than with complete certainty [6].

Atanassov and Gargov [7] developed the concept of interval-valued intuitionistic
fuzzy set (IVIFS) in 1989, which is a further development of IFS. As a result, DMs may
find it more convenient to convey their judgements using IFS rather than exact numerical
values or linguistic variables [8,9], particularly IVIFSs. In reality, using membership and
non-membership degrees to communicate ideas allows DMs to quickly and properly
represent their judgments of decision difficulties. A significant amount of research has
been performed on IVIFS in the literature, with a focus on the basic theory of IVIFS, such
as the relations and operations of IVIFS [10], the correlation and correlation coefficients
of IVIFS [11,12], the topology of IVIFS [13], the relationships among the IVIFS, L-fuzzy
set, IFS, IVFS [14], and pattern recognition [15]. Gagandeep Kaur and Harish Garg [16,17]
presented the idea of a cubic intuitionistic fuzzy set (CIFS) in 2018, characterized by two
parts simultaneously, one of which expresses the membership and non-membership values
by an IVIFS and the other by an IFS.

After some modernization of fuzzy sets, a soft set (SS) was introduced by Molodtsov [18]
in 1999. The soft set theory defines the parameters along all elements of the universal set.
With the concept of fuzzy sets and soft sets, Maji et al. [19] established the notion of fuzzy
soft sets (FSS) in 2001. In everyday life, people are frequently confronted with challenges
that require the use of good judgment. However, in most circumstances, it becomes per-
plexing to define the best answer. Several solution-related parameters must be investigated
to achieve the best viable solution to these issues. In 2009, X.B. Yang et al. [20] developed a
hybrid of the interval-valued fuzzy soft set (IVFSS) and defined some operations. By using
interval-valued fuzzy soft set and fuzzy soft set, Muhiuddin et al. [21] introduced a new no-
tion called cubic soft set (CSS) in 2014. A structure of intuitionistic fuzzy soft sets (IFSS) [22]
was proposed by Maji et al. in 2004. Yunqiang Yin et al. [23] investigated the operation fea-
tures and algebraic structure of IFSS in 2012. Yuncheng Jiang et al. proposed a combination
of IVFSS and IFSS in 2010 [24], which they refer to as interval-valued intuitionistic fuzzy
soft set (IVIFSS).

In 2018, by changing the function into a multi-attributive function, Florentin Smaran-
dache [25] expanded the soft set to the hypersoft set (HSS) and presented the hybrids Crisp,
Fuzzy (FHSS), Intuitionistic Fuzzy (IFHSS), Neutrosophic (NHSS), and Plithogenic Hyper-
soft Set (PHSS). Compared to SS and other current theories, HSS is the most appropriate to
address multi-attribute decision-making problems when considering the parameters’ multi-
subattributes while managing to address ambiguous and uncertain information. Several
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HSS extensions have been developed in the literature and have been applied in decision-
making. In 2021, Amarendra babu and Siva Naga Malleswari [26] defined intuitionistic
fuzzy soft cubic relations and used some examples of intuitionistic fuzzy soft cubic.

Pythagorean Fuzzy Sets lack the ability to address individual parameters in a decision-
making problem with multiple parameters. Its combination with soft set theory helps to
address this issue. The combination of the hybrid structure with Cubic Fuzzy Set (CFS)
addresses interval values and membership and non-membership values simultaneously.
This hybrid model considers two different time zones used in an experiment simultaneously.
To elaborate further, consider an individual performing an experiment and observations
are made at two different intervals as one of the observations may have some uncertainty.
Let the observations be in the uncertain range of [0.3, 0.6] at time T1; the crisp value will
either agree with the interval (P-order) or disagree (R-order). This hybrid environment
greatly influences the precision of the process by enhancing the scope of the interval by
considering a membership value of a fuzzy nature that corresponds to the interval. A cubic
Pythagorean fuzzy soft set allows for a realm of possibilities of handling complex data
types and addressing a number of time-scale problems when proper operations are defined.

The structure is particularly useful when considering data where a fuzzy value in the
form of a membership and non-membership value are to be simultaneously considered
with the interval from which those values are extrapolated from. The soft set aspect of
the structure helps to address individual parameters in a cubic Pythagorean fuzzy format
which provides a more diverse and concise analysis. This structure is particularly useful
when considering data present in the form of medical tests. The test results of a patient are
presented in the form of membership value that needs to be in an interval for the patient
to be in a healthy condition. With the distance measures developed in the manuscript,
tentative testing can be performed for proof of concept, thereby making the structure
applicable in this area.

The paper is divided into the following five sections: Section 2 focuses on the prelimi-
nary definitions that are used for defining the novel concept in the paper. Section 3 presents
the concept of Cubic Pythagorean Fuzzy Soft Set alongside its fundamental operations.
Section 4 defines different distance measures with examples for the novel structure while
Section 6 presents the application of those distance measures in developing a decision-
making algorithm that is used to develop a decision-support system for medical diagnostic
purposes. The conclusion section presents the summary of the work alongside the future
directions that can be generated from the presented work.

2. Preliminaries

This section of the paper focuses on providing some basic definitions from the literature
that have been utilized for this research.

2.1. Fuzzy Set

Introduced by Zadeh [1], fuzzy set has become a necessary tool to hold errors and
vagueness in different areas.
Assume Ω to be a universal set. Then, the fuzzy set in Ω can be initiated by the membership
function ιF in which every element of universal set maps with the membership function
whose value lies between 0 and 1.

Γ = {〈ℵ, ιF(w)〉|ℵ ∈ Ω}

where ιF(ℵ) ∈ [0, 1].

2.2. Interval-Valued Fuzzy Set

Zadeh [2] also developed the concept of interval-valued fuzzy sets, alongside Grattan-
Guiness [27], Jahn [28], Sambuc [29] , in the seventies, in the same year. An interval-valued
membership function defines an interval-valued fuzzy set (IVF).
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Assume Ω to be a universal set. Then, the interval-valued fuzzy set can be initiated by
the ιI

IVF membership function which is the subinterval of [0, 1] in which every element of
universal set maps with the interval-valued degree membership.

Λ = {〈ℵ, ιI
IVF(ℵ)〉|ℵ ∈ Ω}

where ιI
IVF(ℵ) ⊆ [0, 1].

2.3. Cubic Set

Jun et al. [3] proposed a fascinating idea known as cubic set theory. Cubic set is the
hybrid of an Interval-Valued Fuzzy Set and Fuzzy Set.

A = {(ℵ, ΛF(ℵ), ΓF(ℵ))|ℵ ∈ Ω},

where ΛF(ℵ) is the IVF and ΓF(ℵ) is the FS.

2.4. Fuzzy Soft Set

By incorporating the notions of fuzzy sets [1], Maji et al. [30] proposed the concept of
fuzzy soft sets. Many intriguing applications of soft set theory have been expanded on by
certain researchers utilising this notion.
A pair ($, Ξ1) is said to be fuzzy soft set over Ω

$ = {(v, f℘(v))|v ∈ Ξ1, f℘(v) ∈ F(Ω)}

where

f℘(v) = {〈ℵ, ιF(ℵ)〉|ℵ ∈ Ω}

ιF(ℵ) ∈ [0, 1]

where f℘ : Ξ1 → F(Ω)

2.5. Interval-Valued Fuzzy Soft Set

The extension of fuzzy soft sets was introduced by Maji et al. [30] to interval-valued
fuzzy soft sets . IVFSs were created on their own to address some of the issues with fuzzy
soft sets.

Suppose Ω to be a universal set, Ξ to be an attributive set and Ξ1 ⊆ Ξ. Then, the pair
(Λ̃, Ξ1) is defined as an interval-valued fuzzy soft set with the mapping

Λ̃ : Ξ1 → P̃(Ω)

where P̃(Ω) is the subsets of all interval-valued fuzzy elements.
A pair (Λ̃, Ξ1) can be expressed as

(Λ̃, Ξ1) = {〈v, f℘(v)〉|v ∈ Ξ1, f℘(v) ∈ IVF(Ω)}

where

f℘(v) = {〈ℵ, ιI
IVF(ℵ)|ℵ ∈ Ω}

and

ιI
IVF(ℵ) ⊆ [0, 1]

where ιI
IVF(ℵ) = [ιL

IVF, ιUIVF].

Example 1. Assume that Ω = {ℵ1,ℵ2,ℵ3} is a universal set, and Ξ = {v1, v2, v3, v4} is an
attributive set with respect to Y . Let Ξ1 = {v1, v2, v3} ⊆ Ξ; then, an interval-valued fuzzy soft
set Λ̃ can be defined as

Λ̃ = {〈v1, {(ℵ1, [0.1, 0.2]), (ℵ2, [0.3, 0.7]), (ℵ3, [0.2, 0.6])}〉,

〈v2, {(ℵ1, [0.2, 0.6]), (ℵ2, [0.1, 0.8]), (ℵ3, [0.2, 0.5])}〉,

〈v3, {(ℵ1, [0.1, 0.3]), (ℵ2, [0.3, 0.6]), (ℵ3, [0.2, 0.7])}〉}.
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2.6. Cubic Soft Sets

Suppose Ω is a universal set, Ξ is an attributive set and Ξ1 ⊆ Ξ. Then, the cubic soft
set can be expressed as

C = {〈v, f℘(v)〉|v ∈ Ξ1, f℘(v) ∈ C(Ω)}

where

f℘(v) = {〈ℵ, (ιI
c(ℵ), ιc(ℵ))〉|ℵ ∈ Ω}

where ιI
c(ℵ) is interval-valued fuzzy soft set and ιc(ℵ) is the fuzzy soft set with ιI

c(ℵ) ∈ [0, 1]
and ιc(ℵ) ∈ [0, 1], see [21].

Example 2. Assume that Ω = {ℵ1,ℵ2,ℵ3} is a universal set, and Ξ = {v1, v2, v3, v4} is an
attributive set with respect to Ω. Let Ξ1 = {v1, v2, v3} ⊆ Ξ; then, a cubic soft set C can be
defined as

C = {〈v1, {(ℵ1, [0.1, 0.2], 0.3), (ℵ2, [0.3, 0.7], 0.4), (ℵ3, [0.2, 0.6], 0.7)}〉,

〈v2, {(ℵ1, [0.2, 0.6], 0.4), (ℵ2, [0.1, 0.8], 0.9), (ℵ3, [0.2, 0.5], 0.3)}〉,

〈v3, {(ℵ1, [0.1, 0.3], 0.4), (ℵ2, [0.3, 0.6], 0.5), (ℵ3, [0.2, 0.7], 0.8)}〉}.

2.7. Intuitionistic Fuzzy Set

Atanassov [4] created the Intuitionistic Fuzzy Set (IFS), which generalises the Zadeh
fuzzy set [1]. Assume Ω to be an universal set; then, the intuitionistic fuzzy set can be
generated by the membership function ιχ(ℵ) ⊆ [0, 1] and the non membership function
σχ(ℵ) ⊆ [0, 1] such as

χ = {〈ℵ, ιχ(ℵ), σχ(ℵ)〉|ℵ ∈ Ω}

where

0 ≤ ιχ(ℵ)) + σχ(ℵ) ≤ 1

Example 3. Assume that Ω = {ℵ1,ℵ2,ℵ3} be a universal set, then the IFS χ can be written as

χ = {〈ℵ1, (0.2, 0.6)〉, 〈ℵ2, (0.4, 0.5)〉, 〈ℵ3, (0.3, 0.7)〉}.

2.8. Pythagorean Fuzzy Set

The Pythagorean fuzzy set is the extension of intuitionistic fuzzy set. However, in some
problems, the sum of membership degree and non membership degree may be ≥ 1, but the
square sum is ≤ 1. So, Yager [31,32] presented the idea of a Pythagorean fuzzy set (PFS). A
comparison of PFS and IFS in Figure 1.

Assume Ω to be a universal set; then, the Pythagorean fuzzy set can be generated by
the membership function ιδ(ℵ) ⊆ [0, 1] and the non-membership function σδ(ℵ) ⊆ [0, 1]
such as

δ = {〈ℵ, ιδ(ℵ), σδ(ℵ)〉|ℵ ∈ Ω}

where

0 ≤ (ιδ(ℵ))2 + (σδ(ℵ))2 ≤ 1

and the degree of indeterminacy is

πδ =
√

1− (ιδ(ℵ))2 + (σδ(ℵ))2.

Example 4. Let Ω = {ℵ1,ℵ2,ℵ3} be a universal set; then, a Pythagorean fuzzy set δ can be
written as follows:
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δ = {〈ℵ1, (0.2, 0.6)〉, 〈ℵ2, (0.4, 0.9)〉, 〈ℵ3, (0.3, 0.7)〉}

Figure 1. Comparison of IFS and PFS

2.9. Pythagorean Fuzzy Soft Set

The Pythagorean fuzzy soft set (PFSs) is a helpful expansion of the Pythagorean fuzzy
set (PFS) for dealing with material that is imprecise or unclear [33]. Peng et al. [34] proposed
the concept of Pythagorean fuzzy soft set by combining Ss with PFS (PFSs).

Suppose Ω is a universal set, Ξ is an attributive set and Ξ1 ⊆ Ξ. Then, the pair (δ̃, Ξ1)
is called a Pythagorean fuzzy soft set, where its mapping is

fδ : Ξ1 → δΩ

where δΩ is the Pythagorean fuzzy subsets of Ω. A pair (δ̃, Ξ1) can be defined as

δ̃ = {〈v, fδ̃(v)〉|v ∈ Ξ1, fδ̃(v) ∈ δΩ}

where

fδ̃(v) = {(ℵ, ιδ(ℵ), σδ(ℵ))|ℵ ∈ Ω}

if it satisfies

0 ≤ (ιδ(ℵ))2 + (σδ(ℵ))2 ≤ 1.

3. Cubic Pythagorean Fuzzy Soft Set

In this section, the cubic Pythagorean fuzzy soft set is introduced, which is a hybrid of
the cubic Pythagorean fuzzy set and soft set.

Interval-Valued Pythagorean Fuzzy Soft Set

Suppose Ω is a universal set; then, the interval-valued Pythagorean fuzzy soft set can
be initiated by ιI

δ(ℵ) ⊆ [0, 1], which is the membership function and σI
δ (ℵ) ⊆ [0, 1] is the

non-membership function.

δ̂ = {〈v, fδ̃(v)〉|v ∈ Ξ1, fδ̃(v) ∈ δ̂Ω}

where δ̂Ω is the interval-valued Pythagorean fuzzy subset and

fδ̃(v) = {〈ℵ, ιI
δ(ℵ), σI

δ (ℵ)〉|ℵ ∈ Ω}

where

ιI
δ(ℵ) = [ιL

δ (ℵ), ιUδ (ℵ)]
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and

σI
δ (ℵ) = [σL

δ (ℵ), σU
δ (ℵ)]

if it satisfies 0 ≤ (ιUδ (ℵ))
2 + (σU

δ (ℵ))2 ≤ 1

and πδ(ℵ) = [
√

1− (ιL
δ (ℵ))2 − (σL

δ (ℵ))2,
√

1− (ιUδ (ℵ))2 − (σU
δ (ℵ))2], which is called an

interval-valued Pythagorean fuzzy soft number.

Example 5. Assume Ω = {ℵ1,ℵ2,ℵ3} be a set of agricultural sites and Ξ = {v1, v2, v3, v4}
be the expected yield of those sites. Let Ξ1 = {v1, v2, v3} ⊆ Ξ; δ̂ can then be written as

δ̂ =


〈v1, {(ℵ1, ([0.3, 0.8], [0.2, 0.4])), (ℵ2, ([0.1, 0.3], [0.2, 0.3])), (ℵ3, ([0.3, 0.4], [0.2, 0.9]))}〉,
〈v2, {(ℵ1, ([0.2, 0.4], [0.1, 0.3])), (ℵ2, ([0.4, 0.5], [0.1, 0.3])), (ℵ3, ([0.1, 0.5], [0.1, 0.3]))}〉,
〈v3, {(ℵ1, ([0.3, 0.6], [0.2, 0.5])), (ℵ2, ([0.4, 0.7], [0.2, 0.6])), (ℵ3, ([0.3, 0.9], [0.4, 0.6]))}〉


4. Cubic Pythagorean Fuzzy Soft Set

Suppose Ω is a universal set, Ξ is an attributive set and Ξ1 ⊆ Ξ, then the cubic
Pythagorean fuzzy soft set can be generated as follows:

= {〈v, fδ̃(v)〉|v ∈ Ξ1, fδ̃(v) ∈ C̃(Ω)}
where C̃(Ω) is the cubic Pythagorean fuzzy soft set,

fδ̃(v) = {〈ℵ, (ιI
c̃(ℵ), σI

c̃ (ℵ)), (ιc̃(ℵ), σc̃(ℵ))〉|ℵ ∈ Ω}
where (ιc̃(ℵ), σc̃(ℵ)) is the Pythagorean fuzzy set and (ιI

c̃(ℵ), σI
c̃ (ℵ)) is the interval-valued

Pythagorean fuzzy set.

Example 6. Assume Ω = {ℵ1,ℵ2,ℵ3} to be a set of agricultural sites and Ξ = {v1, v2, v3, v4}
is the expected yield of those sites. Let Ξ1 = {v1, v2, v3} ⊆ Ξ; then, can be written as

= 〈v1, {(ℵ1, ([0.2, 0.9], [0.2, 0.4]), (0.9, 0.3)), (ℵ2, ([0.1, 0.3], [0.2, 0.3]), (0.3, 0.6)), (ℵ3, ([0.3, 0.4], [0.3, 0.9]), (0.2, 0.5))}〉,

〈v2, {(ℵ1, ([0.2, 0.4], [0.1, 0.3]), (0.3, 0.6)), (ℵ2, ([0.5, 0.7], [0.1, 0.3]), (0.7, 0.6)), (ℵ3, ([0.1, 0.5], [0.1, 0.3]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.3, 0.6], [0.2, 0.5]), (0.3, 0.8)), (ℵ2, ([0.4, 0.5], [0.5, 0.6]), (0.3, 0.7)), (ℵ3, ([0.3, 0.4], [0.4, 0.6]), (0.4, 0.9))}〉}

4.1. Positive-Internal Cubic Pythagorean Fuzzy Soft Set

Suppose Ω is the universal set; then, the positive-internal of CPFSs in Ω is said to be

if ιL
c̃ (ℵ) ≤ ιc̃(ℵ) ≤ ιUc̃ (ℵ) ∀ ℵ ∈ Ω

Example 7. Suppose Ω = {ℵ1,ℵ2,ℵ3} is the universal set; then, the positive-internal of the cubic
Pythagorean fuzzy soft set is

={〈v1, {(ℵ1, ([0.2, 0.9], [0.2, 0.4]), (0.9, 0.3)), (ℵ2, ([0.1, 0.3], [0.2, 0.3]), (0.3, 0.6)), (ℵ3, ([0.1, 0.4], [0.3, 0.9]), (0.3, 0.6))}〉,

〈v2, {(ℵ1, ([0.2, 0.4], [0.1, 0.3]), (0.3, 0.6)), (ℵ2, ([0.5, 0.7], [0.1, 0.3]), (0.7, 0.6)), (ℵ3, ([0.1, 0.5], [0.1, 0.3]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.3, 0.6], [0.2, 0.5]), (0.3, 0.8)), (ℵ2, ([0.4, 0.6], [0.5, 0.6]), (0.6, 0.7)), (ℵ3, ([0.3, 0.4], [0.4, 0.6]), (0.4, 0.9))}〉}

4.2. Negative-Internal of Cubic Pythagorean Fuzzy SoftSets

Suppose Ω is the universal set; then, the negative-internal of CPFSs in Ω is said to be

if σL
c̃ (ℵ) ≤ σc̃(ℵ) ≤ σU

c̃ (ℵ) ∀ ℵ ∈ Ω

Example 8. If Ω = {ℵ1,ℵ2,ℵ3} is the universal set, then the negative-internal of the cubic
Pythagorean fuzzy soft set is

={〈v1, {(ℵ1, ([0.2, 0.9], [0.2, 0.4]), (0.9, 0.3)), (ℵ2, ([0.1, 0.3], [0.2, 0.7]), (0.3, 0.6)), (ℵ3, ([0.3, 0.4], [0.3, 0.9]), (0.2, 0.5))}〉,

〈v2, {(ℵ1, ([0.2, 0.4], [0.1, 0.7]), (0.3, 0.6)), (ℵ2, ([0.5, 0.7], [0.1, 0.7]), (0.7, 0.6)), (ℵ3, ([0.1, 0.5], [0.1, 0.5]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.3, 0.6], [0.2, 0.5]), (0.3, 0.4)), (ℵ2, ([0.4, 0.5], [0.5, 0.7]), (0.3, 0.6)), (ℵ3, ([0.3, 0.4], [0.4, 0.8]), (0.4, 0.7))}〉}
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4.3. Internal Cubic Pythagorean Fuzzy Soft Set

If Ω is the universal set, then the CPFSs in Ω is said to be the internal cubic Pythagorean
fuzzy soft set if it satisfies the properties of the positive-internal of CPFSs and negative-
internal of CPFSs.

Example 9. If Ω = {ℵ1,ℵ2,ℵ3} is the universal set, then the internal cubic Pythagorean fuzzy
soft set is

={〈v1, {(ℵ1, ([0.2, 0.5], [0.5, 0.6]), (0.4, 0.5)), (ℵ2, ([0.3, 0.5], [0.4, 0.7]), (0.4, 0.6)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.2, 0.9))}〉,

〈v2, {(ℵ1, ([0.1, 0.7], [0.4, 0.6]), (0.6, 0.4)), (ℵ2, ([0.5, 0.8], [0.2, 0.7]), (0.5, 0.6)), (ℵ3, ([0.2, 0.4], [0.4, 0.7]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.2, 0.6], [0.2, 0.7]), (0.3, 0.4)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.3, 0.4)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.3, 0.5))}〉

Theorem 1

Let the universal set be ℵ = ∅ and the pair α1 = 〈(ιI , σI), (ι, σ)〉 be a cubic Pythagorean
fuzzy soft set in ℵ. If the pair α1 = 〈(ιI , σI), (ι, σ)〉 is a positive internal, then the complement
αc

1 = 〈(ιI , σI)c, (ι, σ)c〉 of α1 = 〈(ιI , σI), (ι, σ)〉 is a positive internal cubic Pythagorean fuzzy
soft set in ℵ.

Proof. Let the pair α1 = 〈(ιI , σI), (ι, σ)〉 be a positive internal cubic picture fuzzy set in
R. Then, by 3.2, we have ιL

c̃ (ℵ) ≤ ιc̃(ℵ) ≤ ιUc̃ (ℵ) ∀ ℵ ∈ Ω; this implies that ∀ ℵ ∈ Ω,
1− ιL

c̃ (ℵ) ≤ 1− ιc̃(ℵ) ≤ 1− ιUc̃ (ℵ)
Therefore, αc

1 = 〈(ιI , σI)c, (ι, σ)c〉 is a positive internal cubic Pythagorean fuzzy soft
set in ℵ.

4.4. Positive-External of Cubic Pythagorean Fuzzy Soft Set

Suppose Ω is the universal set; then, the positive-external of CPFSs in Ω is said to be

if ιc̃(ℵ) /∈ [ιL
c̃ (ℵ), ιUc̃ (ℵ)], ∀ ℵ ∈ Ω

Example 10. If Ω = {ℵ1,ℵ2,ℵ3} is the universal set, then the positive-external of CPFSs is
={〈v1, {(ℵ1, ([0.2, 0.5], [0.5, 0.6]), (0.1, 0.5)), (ℵ2, ([0.3, 0.5], [0.4, 0.7]), (0.2, 0.6)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.4, 0.9))}〉,

〈v2, {(ℵ1, ([0.1, 0.7], [0.4, 0.6]), (0.8, 0.4)), (ℵ2, ([0.5, 0.8], [0.2, 0.5]), (0.2, 0.6)), (ℵ3, ([0.2, 0.4], [0.4, 0.7]), (0.5, 0.4))}〉,

〈v3, {(ℵ1, ([0.2, 0.6], [0.7, 0.8]), (0.7, 0.4)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.1, 0.4)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.7, 0.5))}〉

4.5. Negative-External of Cubic Pythagorean Fuzzy Soft Sets

If Ω is the universal set, then the negative-internal of CPFSs in Ω is said to be

if σc̃(ℵ) /∈ [σL
c̃ (ℵ), σU

c̃ (ℵ)], ∀ ℵ ∈ Ω

Example 11. Suppose Ω = {ℵ1,ℵ2,ℵ3} is the universal set; then, the negative-external of cubic
Pythagorean fuzzy soft set is

={〈v1, {(ℵ1, ([0.2, 0.5], [0.5, 0.6]), (0.4, 0.7)), (ℵ2, ([0.3, 0.5], [0.4, 0.7]), (0.4, 0.3)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.2, 0.1))}〉,

〈v2, {(ℵ1, ([0.1, 0.7], [0.4, 0.6]), (0.6, 0.3)), (ℵ2, ([0.5, 0.8], [0.2, 0.7]), (0.5, 0.1)), (ℵ3, ([0.2, 0.4], [0.4, 0.7]), (0.2, 0.3))}〉,

〈v3, {(ℵ1, ([0.2, 0.6], [0.2, 0.7]), (0.3, 0.1)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.3, 0.8)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.3, 0.9))}〉,

4.6. External Cubic Pythagorean Fuzzy Soft Set

Suppose Ω is the universal set; then, the CPFSs in Ω is said to be the internal cubic
Pythagorean fuzzy soft set if it satisfies the properties of positive-internal of CPFSs and
negative-internal CPFSs.

Example 12. Suppose Ω = {ℵ1,ℵ2,ℵ3} is the universal set; then, the external cubic Pythagorean
fuzzy soft set is
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={〈v1, {(ℵ1, ([0.2, 0.5], [0.5, 0.6]), (0.1, 0.7)), (ℵ2, ([0.3, 0.5], [0.4, 0.7]), (0.2, 0.3)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.5, 0.1))}〉,

〈v2, {(ℵ1, ([0.1, 0.7], [0.4, 0.6]), (0.8, 0.3)), (ℵ2, ([0.5, 0.8], [0.2, 0.7]), (0.4, 0.1)), (ℵ3, ([0.2, 0.4], [0.4, 0.7]), (0.5, 0.3))}〉,

〈v3, {(ℵ1, ([0.2, 0.6], [0.2, 0.7]), (0.7, 0.1)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.2, 0.8)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.7, 0.9))}〉,

4.7. Theorem

the universal set be ℵ = ∅ and the pair α1 = 〈(ιI , σI), (ι, σ)〉 be a cubic Pythagorean
fuzzy soft set in ℵ. If the pair α1 = 〈(ιI , σI), (ι, σ)〉 is a positive external, then the comple-
ment αc

1 = 〈(ιI , σI)c, (ι, σ)c〉 of α1 = 〈(ιI , σI), (ι, σ)〉 is a positive external cubic Pythagorean
fuzzy soft set in ℵ.

Proof. Let the pair α1 = 〈(ιI , σI), (ι, σ)〉 be a positive external cubic picture fuzzy set in
R. Then, by 3.5, we have ιc̃(ℵ) /∈ [ιL

c̃ (ℵ), ιUc̃ (ℵ)], ∀ ℵ ∈ Ω; this implies that ∀ ℵ ∈ Ω
1− ιc̃(ℵ) /∈ [1− ιL

c̃ (ℵ), 1− ιUc̃ (ℵ)]
Therefore, αc

1 = 〈(ιI , σI)c, (ι, σ)c〉 is a positive external cubic Pythagorean fuzzy soft
set in ℵ.

4.8. Set Operators on Cubic Pythagorean Fuzzy Soft Set

We introduced some set operators in the cubic Pythagorean fuzzy soft set.
Let Ω = {ℵ1,ℵ2,ℵ3} be a Universal set, and Ξ = {v1, v2, v3, v4} be an attributive set

with respect to Ω. Let Ξ1 = {v1, v2, v3} ⊆ Ξ.
Assume there are two cubic Pythagorean fuzzy soft sets

β1 = {〈v, {ℵ, ([ιI
c̃(ℵ), σI

c̃ (ℵ)]), (ιc̃(ℵ), σc̃(ℵ))}〉}

β2 = {〈v, {ℵ, ([ψI
c̃ (ℵ), λI

c̃(ℵ)]), (ψc̃(ℵ), λc̃(ℵ))}〉}

β1 ={〈v1, {(ℵ1, ([0.2, 0.5], [0.3, 0.6]), (0.4, 0.5)), (ℵ2, ([0.3, 0.5], [0.4, 0.7]), (0.2, 0.6)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.1, 0.9))}〉,

〈v2, {(ℵ1, ([0.1, 0.5], [0.4, 0.6]), (0.1, 0.4)), (ℵ2, ([0.5, 0.7], [0.2, 0.5]), (0.1, 0.6)), (ℵ3, ([0.2, 0.4], [0.4, 0.7]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.2, 0.6], [0.7, 0.8]), (0.1, 0.4)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.3, 0.4)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.3, 0.5))}〉,

and
β2 ={〈v1, {(ℵ1, ([0.2, 0.6], [0.2, 0.4]), (0.3, 0.4)), (ℵ2, ([0.1, 0.3], [0.2, 0.3]), (0.3, 0.6)), (ℵ3, ([0.3, 0.4], [0.2, 0.5]), (0.2, 0.5))}〉,

〈v2, {(ℵ1, ([0.2, 0.4], [0.1, 0.3]), (0.3, 0.6)), (ℵ2, ([0.4, 0.5], [0.1, 0.3]), (0.3, 0.6)), (ℵ3, ([0.1, 0.5], [0.1, 0.3]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.3, 0.6], [0.2, 0.5]), (0.3, 0.8)), (ℵ2, ([0.4, 0.5], [0.2, 0.6]), (0.3, 0.7)), (ℵ3, ([0.3, 0.4], [0.4, 0.6]), (0.3, 0.6))}〉}

4.8.1. Addition

α1 + α2 = {〈vi , [{1−
2

∏
i=1

(1− (ιL
i )

2)} 1
2 , {1−

2
∏
i=1

(1− (ιUi )
2)} 1

2 ], [
2

∏
i=1

σL
i ,

2
∏
i=1

σU
i ]〉, 〈

2
∏
i=1

ιi , {1−
2

∏
i=1

(1− (σi)
2)} 1

2 〉}

Example 13. α1 + α2 =

〈v1, {(ℵ1, ([0.3, 0.7], [0.06, 0.2]), (0.1, 0.6)), (ℵ2, ([0.3, 0.6], [0.08, 0.2]), (0.06, 0.8)), (ℵ3, ([0.3, 0.5], [0.04, 0.5]), (0.02, 0.9))}〉,

〈v2, {(ℵ1, ([0.2, 0.6], [0.04, 0.2]), (0.03, 0.7)), (ℵ2, ([0.6, 0.8], [0.02, 0.2]), (0.03, 0.8)), (ℵ3, ([0.2, 0.6], [0.04, 0.2]), (0.04, 0.5))}〉,

〈v3, {(ℵ1, ([0.4, 0.8], [0.1, 0.4]), (0.03, 0.8)), (ℵ2, ([0.5, 0.7], [0.04, 0.4]), (0.09, 0.8)), (ℵ3, ([0.3, 0.7], [0.2, 0.4]), (0.09, 0.7))}〉}

4.8.2. Multiplication

α1 × α2 = {〈vi , [
2

∏
i=1

ιL
i ,

2
∏
i=1

ιUi ], [{1−
2

∏
i=1

(1− (σL
i )

2)} 1
2 , {1−

2
∏
i=1

(1− (σU
i )2)} 1

2 ]〉, 〈{1−
2

∏
i=1

(1− (ιi)
2)} 1

2 ,
2

∏
i=1

σi〉}

Example 14. α1 × α2 =

〈v1, {(ℵ1, ([0.04, 0.3], [0.4, 0.7]), (0.5, 0.2)), (ℵ2, ([0.03, 0.2], [0.4, 0.7]), (0.4, 0.4)), (ℵ3, ([0.03, 0.1], [0.3, 0.9]), (0.2, 0.5))}〉,

〈v2, {(ℵ1, ([0.02, 0.2], [0.4, 0.6]), (0.3, 0.2)), (ℵ2, ([0.2, 0.4], [0.2, 0.6]), (0.3, 0.4)), (ℵ3, ([0.02, 0.2], [0.4, 0.7]), (0.3, 0.2))}〉,

〈v3, {(ℵ1, ([0.06, 0.4], [0.7, 0.9]), (0.3, 0.3)), (ℵ2, ([0.1, 0.3], [0.3, 0.8]), (0.4, 0.3)), (ℵ3, ([0.03, 0.2], [0.5, 0.8]), (0.4, 0.3))}〉}
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4.8.3. Union

β1 ∪ β2 =

(
{〈vi, ([max{ιL

c̃1
, ιL

c̃2
}, min{ιUc̃1

, ιUc̃2
}], [max{σL

c̃1
, σL

c̃2
}, min{σU

c̃1
, σU

c̃2
}]);

(max{ιc̃1 , ιc̃2}, min{σc̃1 , σc̃2})〉}
)

Example 15. β1 ∪ β2 =

{〈v1, {(ℵ1, ([0.2, 0.5], [0.3, 0.4]), (0.4, 0.4)), (ℵ2, ([0.3, 0.3], [0.4, 0.3]), (0.3, 0.6)), (ℵ3, ([0.3, 0.3], [0.2, 0.5]), (0.2, 0.5))}〉,

〈v2, {(ℵ1, ([0.2, 0.4], [0.4, 0.3]), (0.3, 0.4)), (ℵ2, ([0.5, 0.5], [0.2, 0.3]), (0.3, 0.6)), (ℵ3, ([0.2, 0.4], [0.4, 0.3]), (0.2, 0.4))}〉,

〈v3, {(ℵ1, ([0.3, 0.6], [0.7, 0.5]), (0.3, 0.4)), (ℵ2, ([0.4, 0.5], [0.2, 0.6]), (0.3, 0.4)), (ℵ3, ([0.3, 0.4], [0.4, 0.6]), (0.3, 0.5))}〉}

4.8.4. Intersection

β1 ∩ β2 =

(
{〈vi, ([min{ιL

c̃1
, ιL

c̃2
}, max{ιUc̃1

, ιUc̃2
}], [min{σL

c̃1
, σL

c̃2
}, max{σU

c̃1
, σU

c̃2
}]);

(min{ιc̃1 , ιc̃2}, max{σc̃1 , σc̃2})〉}
)

Example 16. β1 ∩ β2 =

{〈v1, {(ℵ1, ([0.2, 0.6], [0.2, 0.6]), (0.3, 0.5)), (ℵ2, ([0.1, 0.5], [0.2, 0.7]), (0.2, 0.6)), (ℵ3, ([0.1, 0.4], [0.2, 0.9]), (0.1, 0.9))}〉,

{〈v2, {(ℵ1, ([0.1, 0.5], [0.1, 0.6], (0.1, 0.6)), (ℵ2, ([0.4, 0.7], [0.1, 0.5]), (0.1, 0.6)), (ℵ3, ([0.1, 0.5], [0.1, 0.7]), (0.2, 0.4))}〉,

{〈v3, {(ℵ1, ([0.2, 0.6], [0.2, 0.8]), (0.1, 0.8)), (ℵ2, ([0.3, 0.5], [0.2, 0.6]), (0.3, 0.7)), (ℵ3, ([0.1, 0.6], [0.4, 0.7]), (0.3, 0.6))}〉}

4.8.5. Direct Sum

α1 ⊕ α2 =

(
{〈vi , ([

√
(ιL

c̃1
)2 + (ιL

c̃2
)2 − (ιL

c̃1
)2(ιL

c̃2
)2,
√
(ιUc̃1

)2 + (ιUc̃2
)2 − (ιUc̃1

)2(ιUc̃2
)2], [σL

c̃1
σL

c̃2
, σU

c̃1
σU

c̃2
]);

(
√

ι2c̃1
+ ι2c̃2

− ι2c̃1
ι2c̃2

, σc̃1 σc̃2 )〉}
)

Example 17. α1 ⊕ α2 =

{〈v1, {(ℵ1, ([0.3, 0.7], [0.06, 0.2]), (0.5, 0.2)), (ℵ2, ([0.3, 0.6], [0.08, 0.2]), (0.6, 0.4)), (ℵ3, ([0.3, 0.5], [0.04, 0.5]), (0.2, 0.5))}〉,

{〈v2, {(ℵ1, ([0.2, 0.6], [0.04, 0.2]), (0.3, 0.2)), (ℵ2, ([0.6, 0.8], [0.02, 0.2]), (0.3, 0.4)), (ℵ3, ([0.2, 0.6], [0.04, 0.2]), (0.3, 0.2))}〉,

{〈v3, {(ℵ1, ([0.4, 0.8], [0.1, 0.4]), (0.3, 0.3)), (ℵ2, ([0.5, 0.8], [0.04, 0.4]), (0.4, 0.3)), (ℵ3, ([0.3, 0.7], [0.2, 0.4]), (0.4, 0.3))}〉}

4.8.6. Direct Product

α1 ⊗ α2 =

(
{〈vi , ([ιL

c̃1
ιL
c̃2

, ιUc̃1
ιUc̃2

], [
√
(σL

c̃1
)2 + (σL

c̃2
)2 − (σL

c̃1
)2(σL

c̃2
)2,
√
(σU

c̃1
)2 + (σU

c̃2
)2 − (σU

c̃1
)2(σU

c̃2
)2]);

(ιc̃1 ιc̃2 ,
√

σ2
c̃1
+ σ2

c̃2
− σ2

c̃1
σ2

c̃2
)〉}
)

Example 18. α1 ⊗ α2 =

{〈v1, {(ℵ1, ([0.04, 0.3], [0.4, 0.7]), (0.1, 0.6)), (ℵ2, ([0.03, 0.2], [0.4, 0.7]), (0.06, 0.8)), (ℵ3, ([0.03, 0.1], [0.3, 0.9]), (0.02, 0.9))}〉,

{〈v2, (ℵ1, ([0.02, 0.2], [0.4, 0.6]), (0.03, 0.7)), (ℵ2, ([0.2, 0.4], [0.2, 0.6]), (0.03, 0.8)), (ℵ3, ([0.02, 0.2], [0.4, 0.7]), (0.04, 0.5))}〉,

{〈v3, (ℵ1, ([0.06, 0.4], [0.7, 0.9]), (0.03, 0.8)), (ℵ2, ([0.1, 0.3], [0.3, 0.8]), (0.09, 0.5)), (ℵ3, ([0.03, 0.2], [0.5, 0.8]), (0.09, 0.7))}〉}
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5. Distance Measures

Assume (ℵ) is the family of CPFSs, which is defined using ℵ.

Definition 1. CPFSs α1, α2 and 3; the distance measure is a real-valued function d : (ℵ)× (ℵ)→
[0, 1]

satisfying the following properties

1. 0 ≤ d(α1, α2) ≤ 1;

2. d(α1, α2) = 0 if and only if α1 = α2;

3. d(α1, α2) = d(α2, α1);

4. If α1 ⊆ α2 ⊆ 3 , then d(α1, α2) ≤ d(α1, 3) and d(α2, 3) ≤ d(α1, 3).

The distance measures for the CPFSs is defined as

dG
q (α1, α2) =



1
6m

m
∑

i=1

n
∑

j=1

∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣q + ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣q



1
q

and

dGN
q (α1, α2) =



1
6mn

m
∑

i=1

n
∑

j=1

∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣q + ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣q



1
q

Assume that the weight of the element is wi(i = 1, 2, 3, . . . , n), where 0 ≤ wi ≤ 1 and
n
∑

i=1
(wi)

2 = 1; then, we define the generalised weight distance measure between CPFSs α1

and α2 as follows:

dGW
q (α1, α2) =


1

6m

m
∑

i=1

n
∑

j=1
(wi)

2



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣q + ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣q + ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣q





1
q

we also define the generalised Hausdorff distance measure for two CPFSs of α1 and α2
as follows:

dGW
q (α1, α2) =


1
6

m
∑

i=1

n
∑

j=1
max



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣q,
∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣q,
∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣q+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣q,
∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣q





1
q

For q = 1, we have the following distance measures:

1. Hamming Distance

dG
1 (α1, α2) = 1

6m

m
∑

i=1

n
∑

j=1



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣+ ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣





Symmetry 2022, 14, 2639 12 of 20

2. Normalised Hamming Distance

dGN
1 (α1, α2) =

1
6mn

m
∑

i=1

n
∑

j=1



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣+ ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣


3. Weighted Hamming Distance

dG
1 (α1, α2) =

1
6m

m
∑

i=1

n
∑

j=1
(wi)

2



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣+∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣+ ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣


4. Hausdorff Hamming distance

dH
1 (α1, α2) =


1

6m

m
∑

i=1

n
∑

j=1
max



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣, ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣,∣∣∣∣F1(vi)(σ

L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣, ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣,∣∣∣∣F1(vi)(ια1 (ℵj))

2 − F2(vi)(ια2 (ℵj))
2
∣∣∣∣, ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣




Here, we define some examples:
Assume that there are three CPFSs

β1 ={〈v1, {(ℵ1, ([0.2, 0.5], [0.2, 0.8]), (0.6, 0.4)), (ℵ2, ([0.3, 0.5], [0.1, 0.7]), (0.9, 0.3)), (ℵ3, ([0.1, 0.3], [0.2, 0.9]), (0.9, 0.2))}〉,

〈v2, {(ℵ1, ([0.1, 0.3], [0.1, 0.9]), (0.4, 0.4)), (ℵ2, ([0.5, 0.6], [0.2, 0.8]), (0.7, 0.6)), (ℵ3, ([0.2, 0.4], [0.2, 0.8]), (0.5, 0.6))}〉,

〈v3, {(ℵ1, ([0.2, 0.3], [0.1, 0.8]), (0.7, 0.4)), (ℵ2, ([0.3, 0.5], [0.1, 0.8]), (0.8, 0.4)), (ℵ3, ([0.1, 0.2], [0.1, 0.9]), (0.8, 0.5))}〉,

and
β2 ={〈v1, {(ℵ1, ([0.2, 0.6], [0.3, 0.7]), (0.5, 0.6)), (ℵ2, ([0.3, 0.6], [0.2, 0.7]), (0.9, 0.7)), (ℵ3, ([0.4, 0.5], [0.2, 0.7]), (0.8, 0.5))}〉,

〈v2, {(ℵ1, ([0.1, 0.6], [0.1, 0.8]), (0.3, 0.4)), (ℵ2, ([0.2, 0.5], [0.2, 0.6]), (0.7, 0.6)), (ℵ3, ([0.1, 0.4], [0.2, 0.7]), (0.4, 0.6))}〉,

〈v3, {(ℵ1, ([0.2, 0.4], [0.1, 0.7]), (0.6, 0.7)), (ℵ2, ([0.3, 0.5], [0.2, 0.8]), (0.7, 0.5)), (ℵ3, ([0.1, 0.5], [0.1, 0.8]), (0.4, 0.5))}〉}

Example 19. The hamming distance for CPFSs is

dG
1 (α1, α2) =

1
18


0.11 + 0.05 + 0.15 + 0.11 + 0.2 + 0.11 + 0.03 + 0.4 + 0.15 + 0.16 + 0.32 + 0.17 + 0.21 + 0.27+

0.17 + 0.07 + 0.21 + 0.11 + 0.28 + 0.03 + 0.15 + 0.09 + 0.07 + 0.15 + 0.15 + 0.13 + 0.33+

0.03 + 0.15 + 0.09 + 0.07 + 0.15 + 0.13 + 0.33 + 0.03 + 0.15 + 0.09 + 0.21 + 0.17 + 0.48


= 0.298

Example 20. The normalised hamming distance for CPFSs is

dGN
1 (α1, α2) =

1
54


0.11 + 0.05 + 0.15 + 0.11 + 0.2 + 0.11 + 0.03 + 0.4 + 0.15 + 0.16 + 0.32 + 0.17 + 0.21+

0.27 + 0.17 + 0.07 + 0.21 + 0.11 + 0.28 + 0.03 + 0.15 + 0.09 + 0.07 + 0.15 + 0.15 + 0.13+

0.33 + 0.03 + 0.15 + 0.09 + 0.07 + 0.15 + 0.13 + 0.33 + 0.03 + 0.15 + 0.09 + 0.21 + 0.17 + 0.48


= 0.09926

Example 21. The weighted hamming distance for CPFSs in which w1 = 0.2, w2 = 0.3 and
w3 = 0.93
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dG
1 (α1, α2) = 1

18


(0.2)2(0.11 + 0.05 + 0.15 + 0.11 + 0.2 ++0.11 + 0.03 + 0.4 + 0.15 + 0.16 + 0.32 + 0.17 + 0.21)+

(0.3)2(0.27 + 0.17 + 0.07 + 0.21 + 0.11 + 0.28 + 0.03 + 0.15 + 0.09)+

(0.93)2(0.07 + 0.15 + 0.13 + 0.33 + 0.03 + 0.15 + 0.09 + 0.21 + 0.17 + 0.48)


where w1 = 0.2, w2 = 0.3 and w3 = 0.93

= 1
18 (0.0868 + 0.1242 + 1.5747)

= 0.099206

Example 22. The Hausdorff Hamming distance of CPFSs is

dH
1 (α1, α2) =

1
18

[
0.2 + 0.4 + 0.32 + 0.27 + 0.28 + 0.15 + 0.15 + 0.15 + 0.48

]
= 0.1333

For q = 2, the following distance measures are defined.

5. Euclidean Distance

dGE
2 (α1, α2) =


1

6m
m
∑

i=1

n
∑

j=1



(
F1(vi )(ι

L
α1

(ℵj ))
2 − F2(vi )(ι

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(ι

U
α1

(ℵj ))
2 − F2(vi )(ι

U
α2

(ℵj ))
2
)2

+(
F1(vi )(σ

L
α1

(ℵj ))
2 − F2(vi )(σ

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(σ

U
α1

(ℵj ))
2 − F2(vi )(σ

U
α2

(ℵj ))
2
)2

+(
F1(vi )(ια1 (ℵj ))

2 − F2(vi )(ια2 (ℵj ))
2
)2

+

(
F1(vi )(σα1 (ℵj ))

2 − F2(vi )(σα2 (ℵj ))
2
)2





1
2

6. Normalised Euclidean Distance

dGNE
2 (α1, α2) =


1

6mn
m
∑

i=1

n
∑

j=1



(
F1(vi )(ι

L
α1

(ℵj ))
2 − F2(vi )(ι

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(ι

U
α1

(ℵj ))
2 − F2(vi )(ι

U
α2

(ℵj ))
2
)2

+(
F1(vi )(σ

L
α1

(ℵj ))
2 − F2(vi )(σ

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(σ

U
α1

(ℵj ))
2 − F2(vi )(σ

U
α2

(ℵj ))
2
)2

+(
F1(vi )(ια1 (ℵj ))

2 − F2(vi )(ια2 (ℵj ))
2
)2

+

(
F1(vi )(σα1 (ℵj ))

2 − F2(vi )(σα2 (ℵj ))
2
)2





1
2
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7. Weighted Euclidean Distance Measure

dGW
2 (α1, α2) =


1

6m
m
∑

i=1

n
∑

j=1
w2

i



(
F1(vi )(ι

L
α1

(ℵj ))
2 − F2(vi )(ι

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(ι

U
α1

(ℵj ))
2 − F2(vi )(ι

U
α2

(ℵj ))
2
)2

+(
F1(vi )(σ

L
α1

(ℵj ))
2 − F2(vi )(σ

L
α2

(ℵj ))
2
)2

+

(
F1(vi )(σ

U
α1

(ℵj ))
2 − F2(vi )(σ

U
α2

(ℵj ))
2
)2

+(
F1(vi )(ια1 (ℵj ))

2 − F2(vi )(ια2 (ℵj ))
2
)2

+

(
F1(vi )(σα1 (ℵj ))

2 − F2(vi )(σα2 (ℵj ))
2
)2





1
2

8. Hausdorff Euclidean Distance Measure

dH
2 (α1, α2) =


1

6m
m
∑

i=1

n
∑

j=1
max



∣∣∣∣F1(vi )(ι
L
α1

(ℵj ))
2 − F2(vi )(ι

L
α2

(ℵj ))
2
∣∣∣∣2,
∣∣∣∣F1(vi )(ι

U
α1

(ℵj ))
2 − F2(vi )(ι

U
α2

(ℵj ))
2
∣∣∣∣2,∣∣∣∣F1(vi )(σ

L
α1

(ℵj ))
2 − F2(vi )(σ

L
α2

(ℵj ))
2
∣∣∣∣2,
∣∣∣∣F1(vi )(σ

U
α1

(ℵj ))
2 − F2(vi )(σ

U
α2

(ℵj ))
2
∣∣∣∣2,∣∣∣∣F1(vi )(ια1 (ℵj ))

2 − F2(vi )(ια2 (ℵj ))
2
∣∣∣∣2,
∣∣∣∣F1(vi )(σα1 (ℵj ))

2 − F2(vi )(σα2 (ℵj ))
2
∣∣∣∣2





1
2

Example 23. The euclidean distance of CPFSs is

dGE
2 (α1, α2) =

 1
18


0.0121 + 0.0025 + 0.0225 + 0.0121 + 0.04 + 0.0121 + 0.0009+
0.16 + 0.1024 + 0.0049 + 0.0225 + 0.0169 + 0.1089 + 0.0009+

0.0225 + 0.0081 + 0.0441 + 0.0289 + 0.2304




1
2

= 0.2581

Example 24. The normalised euclidean distance measure of CPFSs is

dGNE
2 (α1, α2) =


1

54



0.0121 + 0.0025 + 0.0225 + 0.0121 + 0.04 + 0.0121 + 0.0009 + 0.16+

0.1024 + 0.0289 + 0.0441 + 0.0729 + 0.0289 + 0.0049 + 0.0441 + 0.0121+

0.0784 + 0.0009 + 0.0225 + 0.0081 + 0.0049 + 0.0225 + 0.0169 + 0.1089+

0.0009 + 0.0225 + 0.0081 + 0.0441 + 0.0289 + 0.2304





1
2

= 0.14896

Example 25. The weighted euclidean distance measure of CPFSs in which w1 = 0.2, w2 = 0.3 and
w3 = 0.93

dGW
2 (α1, α2) =


1

18



(0.2)2(0.0121 + 0.0025 + 0.0225 + 0.0121 + 0.04 + 0.0121 + 0.0009 + 0.16 + 0.1024+

0.0289 + 0.0441) + (0.3)2(0.0729 + 0.0289 + 0.0049 + 0.0441 + 0.0121 + 0.0784+

0.0009 + 0.0225 + 0.0081) + (0.93)2(0.0049 + 0.0225 + 0.0169 + 0.1089 + 0.0009+

0.0225 + 0.0081 + 0.0441 + 0.0289 + 0.2304)





1
2

= 0.025928

Example 26. The Hausdorff euclidean distance measure of CPFSs is

dH
2 (α1, α2) =

{
1

18

(
0.04 + 0.16 + 0.1024 + 0.0729 + 0.0784 + 0.0225 + 0.0225 + 0.0225 + 0.2304

)} 1
2

= 0.2044

6. Development of a Decision-Support System Using Cubic Pythagorean Fuzzy
Soft Set

Based on the distance measures defined in the previous section, this section defines a
decision-making algorithm utilizing the pragmatic nature of the cubic Pythagorean fuzzy
soft set. The algorithm is systematically defined below:
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Step 1: Consider Ã1, Ã2, Ã3, . . . , Ãn to be a set of “n” alternatives and C̃1, C̃2, C̃3, . . . , C̃n to
be the “m” criteria for each alternative. The ratings of every alternative are represented
with the help of CPFSs.

Ñij = (vi, Ãij, Eij), where

Cij = ([ιL
ij, ιUij ], [σ

L
ij , σU

ij ]) denotes the IVPFS and Eij = 〈(ιij, σij)〉 denotes the PFS. Thus,

[ιL
ij, ιUij ] and ιij represent the degree of membership of the alternative Ãi; i = 1, 2, . . . , n for

the criterion C̃j; j = 1, 2, . . . , m. Similarly, [σL
ij , σU

ij ] and σij represent the degree of non-

membership of the alternative Ãi for the criterion C̃j. The relation between the alternatives
and criteria can be initiated as follows: h̄11 h̄12 . . . h̄1m

h̄21 h̄22 . . . h̄2m
h̄n1 h̄n2 . . . h̄nm


Step 2: CPFSs are used to assign weights ŵjk; j = 1, 2, . . . , m ; k = 1, 2, . . . , p to various
criteria for a certain group. The weights can be initiated in matrix form as follows:

ŵ11 ŵ12 . . . ŵ1k
ŵ21 ŵ22 . . . ŵ2k
. . . . . . . . .

ŵm1 ŵm2 . . . ŵmk


Step 3: In Step 3, calculate the distances between the alternative ratings and the applicable
criterion’s weights. The relation between the alternatives and the different groups in matrix
form can be created as follows: 

D̃11 D̃12 . . . D̃1k
D̃21 D̃22 . . . D̃2k
. . . . . . . . .
D̃n1 D̃n2 . . . D̃nk


where D̃ik is the distance of the alternative Ãi from the weights of the criteria C̃j for belong-
ing to a certain group.

Step 4: If the distance between the alternatives is smaller, it means that the option is closer
to the relevant group. As a result, the alternatives can be ranked based on their lowest
distance from the reference set.

Distance measures have great significance in terms of determining the similarities
between two points or events expressed in data. Hamming Distance is primarily used
for the comparison of two binary strings of data of equal length. Its primary application
is the detection and correction of error in large scale computer networks. This has great
applications in coding theory as it provides a great way to measure two strings of data of
equal length. The limitation of this distance measure is it cannot deal with data when the
dimensions are not the same or the length of the string is not equal. For that purpose, the
Hausdorff distance is used in the literature with applications in medical image segmenta-
tion, designing decision support systems for applications in diagnostic systems, supply
chain management, and policy design. When considering multiple dimensions, Euclidean
distance is best as it can deal with parameters in multiple dimensions, making it ideal
for multi-attribute decision making. These distance measures when combined with fuzzy
concepts can address decision-making parameters while having the advantage of tackling
uncertainty as well.
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7. Developing a Medical Decision-Support System for Presenting a Tentative
Diagnosis Based reference Symptomatic Set

The need for data-driven decision-support systems in the field of medicine has in-
creased over the years due to increased complexity and the abundance of available symp-
tomatic data. These decision-support systems help medical professionals confirm their
tentative diagnosis, and in turn decrease diagnostic error and save lives. For this purpose,
this section focuses on developing a medical decision-support system for presenting a
tentative diagnosis based reference symptomatic set. The proposed distance measures
based on CPFSs are utilized for this purpose. The very first component, IVPFSs, of CPFSs,
is utilised to show the progression of an infectious disease in its early stage, i.e., before
diagnosis; hence, the second component of PFSs is utilised to express the same disease after
the diagnosis.

Let Disease = { COVID-19, Influenza, MERS } be the set of diseases, Patients =
{α, β, γ, δ} be the set of patients, let Tests = { CBC, LFT, TSH } be the set of tests, which is
the universal set and let Symptoms = {Headache, Nausea, Dietary Problems } be the set of
symptoms, which is the set of parameters.

We provide further characteristics of these parameters.

• The symptom “Headache” can cause Headaches, Seizures, Vision Changes, Hearing
Changes, Drooping of the face.

• The symptom “nausea” can cause a new mole or a change in an existing mole. A sore
that does not heal, Jaundice (yellowing of the skin and whites of the eyes).

• The symptom “Dietary Problems” can cause pain after eating, such as belly pain,
nausea and vomiting, and appetite changes.

Our aim is to make the best decision possible for each patient ρi;i = 1, 2, 3, 4 from the
set of symptoms §j;j = 1, 2, 3 and tests >l ; l = 1, 2, 3 for each disease dk;k = 1, 2, 3.

Step 1. In the first step, the P-T relation Patients → Tests is given in the form of CPFSNs, as
follows:

ρ1 =


〈§1{>1([0.3, 0.4], [0.1, 0.9]), (0.4, 0.9)}, {>2([0.2, 0.9], [0.3, 0.4]), (0.9, 0.4)}, {>3([0.2, 0.5], [0.3, 0.8]), (0.7, 0.6)}〉,

〈§2{>1([0.2, 0.5], [0.4, 0.8]), (0.3, 0.8)}, {>2([0.2, 0.4], [0.3, 0.9]), (0.9, 0.2)}, {>3[0.1, 0.5], [0.4, 0.6]), (0.4, 0.6)}〉,

〈§3{>1([0.3, 0.8], [0.2, 0.3]), (0.9, 0.2)}, {>2([0.5, 0.7], [0.2, 0.6]), (0.5, 0.3)}, {>3([0.4, 0.7][0.2, 0.6]), (0.8, 0.2)}〉



ρ2 =


〈§1{>1([0.1, 0.4], [0.2, 0.7]), (0.3, 0.8)}, {>2([0.1, 0.5], [0.2, 0.6]), (0.7, 0.5)}, {>3([0.4, 0.6], [0.2, 0.6]), (0.3, 0.7)}〉,

〈§2{>1([0.5, 0.7], [0.2, 0.6]), (0.8, 0.3)}, {>2([0.1, 0.7], [0.2, 0.7]), (0.7, 0.3)}, {>3, ([0.3, 0.5], [0.5, 0.7]), (0.2, 0.6)}〉,

〈§3{>1([0.2, 0.6], [0.5, 0.6]), (0.7, 0.1)}, {>2, ([0.1, 0.7], [0.2, 0.7]), (0.3, 0.4)}, {>3([0.2, 0.5], [0.2, 0.7]), (0.8, 0.2)}〉



ρ3 =


〈§1{>1([0.3, 0.8], [0.2, 0.3]), (0.7, 0.3)}, {>2([0.1, 0.7], [0.2, 0.4]), (0.8, 0.2), {>3([0.3, 0.8], [0.1, 0.6]), (0.9, 0.2)},

〈§2{>1([0.5, 0.7], [0.2, 0.6]), (0.5, 0.3)}, {>2([0.2, 0.6], [0.3, 0.7]), (0.3, 0.4)}, {>3([0.2, 0.5], [0.1, 0.4]), (0.7, 0.1)}〉,

〈§3{>1([0.3, 0.6], [0.4, 0.5]), (0.3, 0.8)}, {>2([0.4, 0.5], [0.2, 0.6]), (0.3, 0.7)}, {>3, ([0.3, 0.5], [0.5, 0.7]), (0.2, 0.6)}〉



ρ4 =


〈§1{>1([0.4, 0.8], [0.2, 0.5]), (0.4, 0.7)}, {>2([0.2, 0.8], [0.1, 0.5]), (0.6, 0.3), {>3([0.2, 0.9], [0.1, 0.3]), (0.8, 0.3)},

〈§2{>1([0.1, 0.6], [0.5, 0.7]), (0.5, 0.8)}, {>2([0.3, 0.5], [0.2, 0.7]), (0.7, 0.4)}, {>3([0.4, 0.6], [0.2, 0.5]), (0.8, 0.3)}〉,

〈§3{>1([0.2, 0.7], [0.1, 0.7]), (0.5, 0.6)}, {>2([0.4, 0.6], [0.2, 0.7]), (0.1, 0.8)}, {>3, ([0.2, 0.4], [0.3, 0.8), (0.9, 0.4)}〉


The matrix form of the Patients − Tests relation Patients → Tests is presented as follows:

χρ1>1 χ1>2 χρ1>3

χρ2>1 χρ2>2 χρ2>3

χρ3>1 χρ3>2 χρ3>3

χρ4>1 χρ4>2 χρ4>3





Symmetry 2022, 14, 2639 17 of 20

where each entry χρi>l
( i = 1, 2, 3, 4 ) & ( l = 1, 2, 3 ) denotes the CPFSN for the symptoms

>l of the patients ρi.

Step 2. The D-T relation Disease → Tests is presented in the form of CPFSNs, as follows:

d1 =


〈§1, {>1([0.2, 0.5], [0.3, 0.8]), (0.2, 0.7)}, {>2([0.3, 0.6], [0.2, 0.5]), (0.7, 0.4)}, {>3([0.1, 0.4], [0.2, 0.7]), (0.3, 0.8)}〉,

〈§2, {>1([0.4, 0.8], [0.3, 0.4]), (0.8, 0.6)}, {>2([0.3, 0.5], [0.2, 0.6]), (0.6, 0.1)}, {>3([0.1, 0.6], [0.4, 0.7]), (0.3, 0.5)}〉,

〈§3, {>1([0.1, 0.6], [0.4, 0.7]), (0.3, 0.5)}, {>2([0.2, 0.6], [0.7, 0.8]), (0.1, 0.4)}, {>3([0.3, 0.5], [0.2, 0.6]), (0.8, 0.5)}〉



d2 =


〈§1, {>1([0.2, 0.5], [0.3, 0.8]), (0.4, 0.6)}, {>2([0.4, 0.7], [0.2, 0.6]), (0.2, 0.9)}, {>3([0.5, 0.6], [0.4, 0.6]), (0.1, 0.5)}〉,

〈§2, {>1([0.6, 0.7], [0.3, 0.4]), (0.9, 0.4)}, {>2([0.1, 0.5], [0.2, 0.7]), (0.1, 0.4)}, {>3([0.4, 0.6], [0.5, 0.8]), (0.6, 0.3)}〉,

〈§3, {>1([0.1, 0.6], [0.4, 0.7]), (0.3, 0.5)}, {>2([0.3, 0.5], [0.1, 0.6]), (0.6, 0.1)}, {>3([0.4, 0.6], [0.1, 0.7]), (0.6, 0.8)}〉



d3 =


〈§1, {>1([0.1, 0.7], [0.5, 0.6]), (0.8, 0.5)}, {>2([0.3, 0.8], [0.2, 0.5]), (0.7, 0.3), {>3([0.5, 0.8], [0.4, 0.6]), (0.8, 0.4)}〉,

〈§2, {>1([0.2, 0.6], [0.7, 0.8]), (0.1, 0.4)}, {>2([0.5, 0.7], [0.1, 0.7]), (0.6, 0.3)}, {>3([0.1, 0.9], [0.3, 0.4]), (0.2, 0.9)}〉,

〈§3, {>1([0.4, 0.8], [0.2, 0.5]), (0.4, 0.5)}, {>2([0.1, 0.5], [0.2, 0.7]), (0.3, 0.9)}, {>3([0.3, 0.5], [0.2, 0.6]), (0.6, 0.3)}〉


The matrix form of the above Disease − Tests relation Diseases → Tests is presented as follows: ŵd1>1 ŵd1>2 ŵd1>3

ŵd2>1 ŵd2>2 ŵd2>3
ŵd3>1 ŵd3>2 ŵd3>3


where ŵdk>l

( k = 1, 2, 3 ) & (l = 1, 2, 3 ) are used to denote weights in the form of CPFSNs
for each Tests (>l) towards the Disease (dk).

Step 3. The Normalised Euclidean distance is calculated to find the distance between
the Patients ρi and the Disease dk.

dGNE
1 (α1, α2) =


1

6mn

m
∑

i=1

n
∑

j=1


(F1(vi)(ι

L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2)2 + (F1(vi)(ι
U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2)2+

(F1(vi)(σ
L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2)2 + (F1(vi)(σ
U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2)2+

(F1(vi)(ια1 (ℵj))
2 − F2(vi)(ια2 (ℵj))

2)2 + (F1(vi)(σα1 (ℵj))
2 − F2(vi)(σα2 (ℵj))

2)2




1
2

given in Table 1.

Table 1. The Normalised Euclidean Distance Measure was used to determine the distance values.

COVID-19 (d1) Influenza (d2) MERS (d3)

α(ρ1) 0.248834 0.315241 0.276466
β(ρ2) 0.139259 0.202290 0.261941
γ(ρ3) 0.268221 0.271515 0.223328
δ(ρ4) 0.245311 0.280575 0.221784

The distance between the Patients ρi and Disease dk are calculated using the Normalised
Hamming Distance

dGN
1 (α1, α2) =

1
6mn

m
∑

i=1

n
∑

j=1



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣+

∣∣∣∣F1(vi)(σ
L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣+

∣∣∣∣F1(vi)(ια1 (ℵj))
2 − F2(vi)(ια2 (ℵj))

2
∣∣∣∣+ ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣


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given in Table 2.

Table 2. The Normalised Hamming Distance Measure was used to determine the distance values.

COVID-19 (d1) Influenze (d2) MERS (d3)

α(ρ1) 0.184449 0.237599 0.208339
β(ρ2) 0.102225 0.145189 0.188153
γ(ρ3) 0.200005 0.184449 0.160375
δ(ρ4) 0.175375 0.193894 0.157226

The distance between the Patients ρi and Disease dk are calculated using the Hausdorff
Hamming distance

dH
1 (α1, α2) =

1
6m

m
∑

i=1

n
∑

j=1
max



∣∣∣∣F1(vi)(ι
L
α1
(ℵj))

2 − F2(vi)(ι
L
α2
(ℵj))

2
∣∣∣∣, ∣∣∣∣F1(vi)(ι

U
α1
(ℵj))

2 − F2(vi)(ι
U
α2
(ℵj))

2
∣∣∣∣,

∣∣∣∣F1(vi)(σ
L
α1
(ℵj))

2 − F2(vi)(σ
L
α2
(ℵj))

2
∣∣∣∣, ∣∣∣∣F1(vi)(σ

U
α1
(ℵj))

2 − F2(vi)(σ
U
α2
(ℵj))

2
∣∣∣∣,

∣∣∣∣F1(vi)(ια1 (ℵj))
2 − F2(vi)(ια2 (ℵj))

2
∣∣∣∣, ∣∣∣∣F1(vi)(σα1 (ℵj))

2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣


given in Table 3.

Table 3. The Hausdorff Hamming distance measure was used to determine the distance values.

COVID-19 (d1) Influenza (d2) MERS (d3)

α(ρ1) 0.207778 0.226111 0.245
β(ρ2) 0.107222 0.168333 0.232222
γ(ρ3) 0.196111 0.218889 0.161111
δ(ρ4) 0.179444 0.246667 0.176667

The distances between the Patients ρi and the Disease dk are calculated by using Haus-
dorff Euclidean distance measure

dH
2 (α1, α2) =


1

6m

m
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n
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j=1
max
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2 − F2(vi)(σα2 (ℵj))
2
∣∣∣∣2





1
2

given in Table 4.

Table 4. The Hausdorff Euclidean distance measure was used to determine the distance values.

COVID-19 (d1) Influenza (d2) MERS (d3)

α(ρ1) 0.313165 0.421545 0.360085
β(ρ2) 0.183530 0.277779 0.344399
γ(ρ3) 0.328549 0.378329 0.278548
δ(ρ4) 0.285239 0.366394 0.280436

Step 4 In this step, different Disease are established based on the computed distance values
for the four Patients. The minimum distance value between the Patients and the Diseases shows
that which Patient is suffering from the particular Disease.
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8. Discussion

Under the innovative idea of a CPFSs environment, the suggested distance measure-
ments for CPFSs can be utilized for the development of a medical decision-support system
for medical diagnosis provided it is trained with the aid of medical professionals from
symptomatic data. The distance between the patients and the diseases are first calculated
using the distance measure dGNE

1 and the results are displayed in Table 1. Table 1 shows
that the smallest distance exists between the patient α and the disease COVID-19. As a
result, α is suffering from COVID-19 as predicted by the decision-support system. Similarly,
β is also suffering from COVID-19. The other patients γ and δ are suffering from Influenza.
Tables 2–4 are generated, on the other hand, when the other distances dGN

1 , dH
1 , and dH

2 , are
used to calculate the distances between the patients and the diseases, respectively. When
comparing the data obtained using various distance measurements, the results reveal the
same thing. Table 5 lists the disorders in order of severity for the selected group of patients.

Table 5. Diseases that have been identified in the Patients.

α(ρ1) β(ρ2) γ(ρ3) δ(ρ4)

Table 1 COVID-19 COVID-19 Influenza Influenza
Table 2 COVID-19 COVID-19 Influenza Influenza
Table 3 COVID-19 COVID-19 Influenza Influenza
Table 4 COVID-19 COVID-19 Influenza Influenza

9. Conclusions

This study focuses on developing a novel Cubic Pythagorean Fuzzy Soft Set structure
and presents its set operators (addition, multiplication, union, intersection, direct sum,
direct product), and distance measures (Hamming, Normalised Hamming, Weighted
Hamming, Hausdorff Hamming, Euclidean, Normalised Euclidean, Weighted Euclidean,
Hausdorff Euclidean). The structure is superior to the ones in the literature as it addresses
the attribute data in decision making studies with the benefit of the tool of a cubic fuzzy
set. Furthermore, the concept was used to develop a decision-making algorithm that has
numerous applications as it has great potential for utilizing human intuition-based data.
One of those applications was the development of a decision-support system which is
presented for the diagnosis of infectious diseases from symptomatic data. In future, this
study can be conducted with different disease diagnostic labs by considering data of actual
patients and actual data can be used to verify the presented technique.
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