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Abstract: The theory investigated in this analysis is substantially more suitable for evaluating the
dilemmas in real life to manage complicated, risk-illustrating, and asymmetric information. The com-
plex Pythagorean fuzzy set is expanded upon by the complex q-rung orthopair fuzzy set (Cq-ROFS).
They stand out by having a qth power of the real part of the complex-valued membership degree
and a qth power of the real part and imaginary part of the complex-valued non-membership degree
that is equal to or less than 1. We define the comparison method for two complex q-rung orthopair
fuzzy numbers as well as the score and accuracy functions (Cq-ROFNs). Some averaging and ge-
ometric aggregation operators are examined using the Cq-ROFSs operational rules. Additionally,
their main characteristics have been fully illustrated. Based on the suggested operators, we give a
novel approach to solve the multi-attribute group decision-making issues that arise in environmental
contexts. Making the best choice when there are asymmetric types of information offered by different
specialists is the major goal of this work. Finally, we used real data to choose an ideal extinguisher
from a variety of options in order to show the effectiveness of our decision-making technique. The
effectiveness of the experimental outcomes compared to earlier research efforts is then shown by
comparing them to other methods.

Keywords: confidence levels; complex q-rung orthopair fuzzy sets; multi-criteria group decision-making

1. Introduction

In 1965, Zadeh [1] defined the theory of fuzzy set (FS). A fuzzy set is a fantastic
achievement with several applications in numerous industries. A fuzzy set is centered on
the characteristic function whose membership degree (MD) is expressed by σ for every
element of universal set X on the [0, 1]. A relative fundamental uncertain information in
preference and uncertain involved information fusion were defined by Jin et al. [2]. In
group decision-making given basic uncertain information, Li et al. [3] presented some
extensive rules-based and preferences-induced weights allocation. An intuitionistic fuzzy
set (IFS) [4] has two functions, MD and non-membership degree (NMD), for every element
of universal set X, on the closed interval [0, 1]. Further, the total of µ and υ, or sum
(µ, υ) ∈ [0, 1], belongs to this range. The intuitionistic fuzzy set is aware that values should
not be permitted to exist apart from their attributes. Yager [5,6] established the Pythagorean
fuzzy set (PFS) definition for this restriction by broadening the IFS domain. Additionally, a
Pythagorean fuzzy set has two functions, MD and NMD, which represented by µ and υ
for each number on the closed interval [0, 1]. Because Pythagorean fuzzy set has a wider
domain than the intuitionistic fuzzy set, it is the generalized version of the intuitionistic
fuzzy set. For additional information on the IFS and Pythagorean fuzzy set see (Asiain
et al. [7], Li [8], and Peng and Yang [9], Garg [10], Lu et al. [11]).
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There are still some problems that IFSs and PFSs are unable to resolve, against the
fact that IFSs and PFSs can precisely characterize the confusing data. For instance, the
criterion of Pythagorean fuzzy numbers, such as 0.7 + 0.9 = 1.6 > 1, is met when the
expert chooses 0.7 for MD and 0.9 for NMD. In order to deal with complex and ambiguous
information, Yager [12] developed the idea of q-rung orthopair fuzzy set (q-ROFS), which
is more effective and general than the intuitionistic fuzzy set and Pythagorean fuzzy set. To
calculate the assessment details, Liu and Wang [13] proposed q-ROF aggregation operators.
The q-ROF Bonferroni mean q-ROFS setting operators have been studied by Liu et al. [14].
Riaz et al. [15] developed some q-ROF hybrid aggregation operators and TOPSIS method
for multi-attribute decision making (MADM). Riaz et al. [16] studied a robust q-ROF
Einstein prioritized aggregation operators (AOs) with application towards multi-attribute
group decision making (MAGDM). The AOs for q-ROFS are defined by Peng et al. [17],
and additional q-ROFS research was presented in [18–24].

It should be kept in mind that other researchers have combined fuzzy sets and com-
plex numbers, including Buckly [25], Zhang et al. [26], and Nguyen et al. [27]. The
complex fuzzy sets (CFSs) paradigm, which is a generalization of FSs, was also described
by Ramot et al. [28]. This definition is somewhat distinct from earlier research in that it
broadened the range of membership function of the unit circle in the complex plane. The
CFS is denoted by a complex valued function, for example µA(z) = κA(z)e

2πizκA (z) and
satisfied the condition: 0 ≤ κA(z) +zκA(z) ≤ 1. The difference between complex fuzzy
sets and fuzzy sets is that complex fuzzy sets range is stretched out in a sophisticated
plan to a unit disc rather than being restricted to [0, 1]. The information in the CFSs has
drawn more focus in the fuzzy set theory. The time series forecasting utilizing the complex
fuzzy logic and a thorough examination of CFSs has been proposed by Yazdanbakhsh
and Dick [29]. Recently, complex fuzzy geometric aggregation operators were defined by
Bi et al. [30]. The CFS has been widely used to solve issues in decision making (DM) and
other domains because of its advantages and qualities [31]. Since then, fuzzy sets and
complex fuzzy sets can define only the MD and their complex-valued degree, and cannot
express NMD and complex-valued degree. Alkouri et al. [32] defined the structure of CIFSs
that is represented by MD and NMD. Ma et al. [33] developed the idea of complex fuzzy
set for resolving issues with several periodic factors. Dick et al. [34] studied a number of
CFSs. Hu et al. [35] evaluated the consistency of CFS operations and proposed some new
procedures for the complex fuzzy set. Greenfield et al. [36] proposed a fresh definition of a
complex interval-valued fuzzy set, which unquestionably advanced the idea of complex
fuzzy sets and broadened the interval-valued fuzzy set concept.

After all, some theories, such as fuzzy set, intuitionistic fuzzy set, complex fuzzy set,
and complex interval-valued fuzzy set, are frequently employed to treat data imprecision.
Singh et al. [37] constructed interval valued lattices for CFS and their granular decomposi-
tion. The notion of a complex fuzzy soft set and entropy measure were first suggested and
examined by Selvachandran et al. [38] in their study. Selvachandran et al. [39] offered a
number of CFS similarity tests, and their properties in pattern recognition were researched.
Quek and Selvachandran investigated group-associated CIFS algebraic structures in [40],
while [41] discussed the uses of CFS in e-commerce. Complex fuzzy lattice and complex
fuzzy interval-valued soft set concepts are covered in [42,43], respectively. New general-
ized Bonferroni mean (BM) operators, as well as robust average/geometric aggregation
operators, were created for CIFS by Garg and Rani [44,45]. By combining competition
graphs with CPFSs, Akram and Aqsa [46] developed the new idea of CPF competition
graphs. Garg et al. [47] studied the unique technique of Cq-ROFS as a combination of
q-ROFS to deal with difficult and complex information in real life problems. The Cq-ROFS
requirement states that the sum of the q-powers of the real part (imaginary) part of the MD
and NMD shall not exceed one from the unit interval.

The theory of confidence level among the Cq-ROFS is presented in this paper, maintain-
ing the advantages of this hybrid concept and emphasizing the importance of aggregation
operators. To fuse various kinds of data, several averaging and geometric aggregation
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operators based on confidence levels complex q-rung orthopair are provided. The discus-
sion of some fundamental features continues. These operators are able to more clearly
explain the real-world problems. We provide details about these operators’ fundamental
characteristics. We also define a multi-criteria group decision-making (MCGDM) approach
based on the CCq-ROFS operators. An illustrative example is used to demonstrate the
strategy’s practicality and effectiveness.

The rest of the paper is organized as follows. We provide a brief summary of the
definitions of CFSs, CIFS, and CPFSs, in Section 2. In Section 3, we define Cq-ROFSs and
suggest a few straightforward operational laws for CCq-ROFNs, and on the basis of these
stated operational rules, a few series of averaging and geometric aggregation operators
was built. An algorithm using the defined operators and CCq-ROFS information about
MCGDM problem is discussed in Section 4. In Section 5, we describe an illustrative case to
demonstrate the functioning of the proposed method and contrast its outcomes with some
of the existing outcomes of the approaches, In Section 6, we summarize this study.

2. Preliminaries

In this section, we show other concepts and provide a brief literature review of earlier
ideas including CFS, CIFS, CPFS, and Cq-ROFSs.

Complex fuzzy set
It was Buckley [25] who first proposed this idea, and it has since grown to be a hot

area of study in fuzzy set theory. Complex numbers and fuzzy sets are absolutely relevant
to the complex fuzzy number, but in a quite different way from the way that is covered in
this article. The diversity of values that the membership function of the complex fuzzy set
may achieve is what makes it novel. This range is expanded to the complex plane’s unit
circle rather than being constrained to the range [0, 1], as is the case with a typical fuzzy
membership function. A mathematical framework for expressing membership in a set in
terms of a complex number is thus provided by the complex fuzzy set.

Definition 1 ([28]). A CFS C on a universal set X 6= φ is defined as C = {〈z, µC(z)〉|z ∈ X},
where µC : X → {z : z ∈ C, |z| ≤ 1} and µC(z) = a + ib = κC(z).e2πizC(z). Here, κC(z) =√

a2 + b2 ∈ R and κC(z),zC(z) ∈ [0, 1], where i =
√
−1.

Complex intuitionistic fuzzy set
Alkouri and Salleh [32] presented the idea of the complex intuitionistic fuzzy set,

which is generalized from the ground-breaking idea of a complex fuzzy set by including the
non-membership term in the definition of CFS. Instead of [0, 1] as in the conventional intu-
itionistic fuzzy functions, the ranges of values for both membership and non-membership
functions are extended to the unit circle in the complex plane.

Definition 2 ([31]). A CIFS I on a universal set X 6= φ is defined as I = {〈z, µI(z), υI(z)〉|z ∈ X},
where µI : X → {z1 : z1 ∈ I, |z1| ≤ 1}, υi : X → {z2 : z2 ∈ I, |z2| ≤ 1}, such as
µI(z) = z1 = a1 + ib1 and υI(z) = z2 = a2 + ib2 with 0 ≤ |z1| + |z2| ≤ 1 or µI(z) =

κI(z).e
2πizκI (z) and υi(z) = ξ I(z).e

2πizξ I (z) satisfy the condition; 0 ≤ κI(z) + ξ I(z) ≤ 1
and 0 ≤ zκI(z) +zξ I(z) ≤ 1. The term HI(z) = R.e2πizR , such as R = 1 − (|z1| + |z2|)
and zR(z) = 1 −

(
zκI(z) +zξ I(z)

)
is considered as a hesitancy degree of z. Furthermore,

I =
(

κ.e2πizκ , ξ.e2πizξ

)
is called complex intuitionistic fuzzy number.

Complex Pythagorean fuzzy set
Ullah et al. [46] presented the idea of the complex Pythagorean fuzzy set. The

Pythagorean fuzzy set extension known as complex Pythagorean fuzzy set is utilized to
manage degrees whose ranges are expanded from real to complex subset with unit disc.
The limitations of CIFS are addressed by the complex Pythagorean fuzzy set (CPFS), which
has relatively liberal amplitude and phase term constraints. Due to its propensity to handle
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two-dimensional ambiguous information effectively, the phase term of the CPFS is crucial
and gives it the upper hand over all other models.

Definition 3 ([46]). A CPFS P on a universal set X 6= φ is defined as P = {〈z, µP(z), υP(z)〉|z ∈ X},
where µP : X → {z1 : z1 ∈ P, |z1| ≤ 1}, υP : X → {z2 : z2 ∈ P, |z2| ≤ 1} such
as µP(z) = z1 = a1 + ib1 and υP(z) = z2 = a2 + ib2 with 0 ≤ |z1|2 + |z2|2 ≤ 1 or
µP(z) = κP(z).e

2πizκP(z) and υP(z) = ξP(z).e
2πizξP(z) satisfy the condition, 0 ≤ κ2

P(z) +
ξ2

P(z) ≤ 1 and 0 ≤ z2
κP(z)

+ z2
ξP(z)

≤ 1. The term HP(z) = R.e2πizR , such as R =√
1− (κ2

P(z) + ξ2
P(z)) and zR(z) =

√
1−

(
z2

κP(z)
+z2

ξP(z)

)
is the hesitancy degree of z.

Furthermore, P =
(

κ.e2πizκ , ξ.e2πizξ

)
is called complex Pythagorean fuzzy number.

3. Complex q-Rung Orthopair Fuzzy Aggregation Operators

This section introduces complex q-rung orthopair fuzzy set and its fundamental
operating laws and AOs for complex q-rung orthopair fuzzy numbers.

Complex q-rung orthopair fuzzy set
Liu [48] was the first to present the idea of the complicated q-rung orthopair fuzzy

set. The complex intuitionistic fuzzy sets and the complex Pythagorean fuzzy sets cannot
compare to the Cq-ROFS in terms of their ability to communicate ambiguous information.
Their distinguishing feature is that the space of uncertain information they can describe is
larger because the sum of the qth powers of the real part (or imaginary part, in the case of
complex-valued membership degrees), and the qth powers of the real part (or imaginary
part, in the case of complex-valued non-membership degrees, is equal to or less than 1.

Definition 4 ([48]). A Cq-ROFS S on a universal set X 6= φ is of the shape S = {〈z, µS(z), υS(z)〉|
z ∈ X}, where µS : X → {z1 : z1 ∈ S, |z1| ≤ 1}, and υS : X → {z2 : z2 ∈ S, |z2| ≤ 1},
such as µS(z) = z1 = a1 + ib1 and υS(z) = z2 = a2 + ib2, with 0 ≤ |z1|q + |z2|q ≤ 1 or
µS(z) = κS(z).e

2πizκS(z) and υS(z) = ξS(z).e
2πizξS(z) satisfy the conditions; 0 ≤ κ

q
S(z) + ξ

q
S(z) ≤ 1

and 0 ≤ zq
κS(z)

+zq
ξS(z)
≤ 1. The term HS(z) = R.e2πizR , such as R = q

√(
1− κ

q
S(z)− ξ

q
S(z)

)
and

zR(z) = q

√
1−

(
zq

κS(z)
+zq

ξS(z)

)
is the hesitancy degree of z. Furthermore, S =

(
κ.e2πizκ , ξ.e2πizξ

)
is referred as complex q-rung orthopair fuzzy number.

Definition 5 ([48]). For a Cq-ROFN < =
{
(κ<,zκ<), (ξ<,zξ<)

}
, the score function is de-

fined as,

Sco∗(<) = 1
2

∣∣∣(κ
q
< − ξ

q
<

)
+
(
zq

κ< −zq
ξ<

)∣∣∣, (1)

and accuracy function,

Hco∗(<) = 1
2

∣∣∣(κ
q
< + ξ

q
<

)
+
(
zq

κ< +zq
ξ<

)∣∣∣, (2)

where Sco∗(<) ∈ [−2, 2] and Hco∗(<) ∈ [0, 2].

Definition 6 ([48]). The two Cq-ROFNs <1 and <2 satisfy the subsequent comparison conditions:

1. If Sco∗(<1) > Sco∗(<2), then <1 > <2.
2. If Sco∗(<1) = Sco∗(<2), then <1 = <2.

(a). If Hco∗(<1) > Hco∗(<2), then <1 > <2.
(b). If Hco∗(<1) = Hco∗(<2), then <1 = <2.

Definition 7. Let <1 =
{(

κ<1 ,zκ<1

)
,
(

ξ<1 ,zξ<1

)}
and
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<2 =
{(

κ<2 ,zκ<2

)
,
(

ξ<2 ,zξ<2

)}
are the two Cq-ROFNs. Then, their distance measure is

defined as,

d(<1,<2) =
1
4


∣∣∣κq
<1
− κ

q
<2

∣∣∣+ ∣∣∣ξq
<1
− ξ

q
<2

∣∣∣
+ 1

2π

(∣∣∣zq
κ<1
−zq

κ<2

∣∣∣+ ∣∣∣zq
ξ<1
−zq

ξ<2

∣∣∣)
. (3)

Operational Laws on Complex q-Rung Orthopair Fuzzy Numbers

Definition 8 ([48]). For two Cq-ROFNs <1 =
{(

κ<1 ,zκ<1

)
,
(

ξ<1 ,zξ<1

)}
and

<2 =
{(

κ<2 ,zκ<2

)
,
(

ξ<2 ,zξ<2

)}
and λ (positive real number). Then, the basic operation

laws are defined as,

1. <1 ⊕<2 =



 q

√√√√1−
2

∏
i=1

(
1− κ

q
<i

)
, 2π

(
1−

2
∏
i=1

(
1−

zq
κ<i

2π

)),(
2

∏
i=1

ξ<i , 2π

(
2

∏
i=1

zξ<i
2π

))
.

2. <1 ⊗<2 =



(
2

∏
i=1

κ<i , 2π

(
2

∏
i=1

zκ<i
2π

))
, q

√√√√1−
2

∏
i=1

(
1− ξ

q
<i

)
, 2π

(
1−

2
∏
i=1

(
1−

zq
ξ<i

2π

))
.

3. λ<1 =


 q

√√√√√1−
(

1− κ
q
<1

)λ
, 2π

1−
(

1−
zq

κ<1
2π

)λ

,

(
ξλ
<1

, 2π

(
zξ<1

2π

)λ
).

4. <λ
1 =


(

κλ
<1

, 2π

(
zκ<1

2π

)λ
)

,

 q

√√√√√1−
(

1− ξ
q
<1

)λ
, 2π

1−
(

1−
zq

ξ<1
2π

)λ


.

Aggregation Operators on Complex q-Rung Orthopair Fuzzy Numbers

Definition 9 ([48]). Let a set of Cq-ROFNs are <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n).

Then, the aggregated value collected by utilizing the Cq-ROFA operator is still a Cq-ROFN and is
given as,

Cq− ROFWA(<1, dots,<n) (4)

=



 q

√√√√1−
n
∏
i=1

(
1− κ

q
<i

)wi
, 2π

(
1−

n
∏
i=1

(
1−

zq
κ<i

2π

)wi
),(

n
∏
i=1

ξ
wi
<i

, 2π

(
n
∏
i=1

(
zξ<i

2π

)wi
))

,

the weight vector of Cq-ROFNs are w = (w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1.

Definition 10 ([48]). Let a set of Cq-ROFNs be <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n).

Then, the aggregated value collected by utilizing the Cq-ROFG operator is still a Cq-ROFN and is
given as,

Cq− ROFWG(<1, . . . ,<n) (5)

=



(
n
∏
i=1

κ
wi
<i

, 2π

(
n
∏
i=1

(
zκ<i

2π

)wi
))

 q

√√√√1−
n
∏
i=1

(
1− ξ

q
<i

)wi
, 2π

(
1−

n
∏
i=1

(
1−

zq
ξ<i

2π

)wi
)

,
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the weight vector of Cq-ROFNs are w = (w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1.

4. Complex q-Rung Orthopair Fuzzy Operator with Confidence Levels

In general, not all current concepts include the confidence levels of experts regard-
ing their familiarity and grasp of the evaluated alternatives in the fusion of Cq-ROFNs.
Integrating expert confidence levels with the options evaluated results in the proposal of
a set of confidence complex q-rung orthopair fuzzy average and geometric aggregation
operators.

4.1. Confidence Complex q-Rung Orthopair Fuzzy Averaging Operator

Definition 11. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs

and Ii is the confidence levels of <i. Then, a confidence complex q-rung orthopair fuzzy weighted
average (CCq-ROFWA) aggregation operator is a function CCq− ROFA : Ωn → Ω is defined by

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) =
n⊕

i=1

wi(Ii<i), (6)

= w1(I1<1)⊕ w2(I2<2)⊕ ...⊕ wn(In<n)

where the weight vector of Cq-ROFNs are w = (w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1.

Theorem 1. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs and Ii

be the confidence levels of <i with 0 ≤ Ii ≤ 1, the corresponding weight vector w = (w1, . . . , wn)
T ,

such as wi > 0 and ∑n
i=1 wi = 1. Then, the aggregated value obtain by utilizing CCq-ROFWA

operator is again a Cq-ROFN and given as,

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) (7)

=



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
n
∏
i=1

ξ
Iiwi
<i

, 2π

(
n
∏
i=1

(
zξ<i

2π

)Iiwi
))


Proof. We prove that Equation (7) holds by using mathematical induction principle. For
each i,<i is a Cq-ROFN and <i > 0, therefore, wi(Ii<i) is again Cq-ROFN. Utilizing
mathematical induction on n, we obtain

(1). For n = 2, we have

CCq− ROFWA(〈<1, I1〉, 〈<2, I2〉) = w1(I1<1)⊕ w2(<2, I2).

We have,

w1(I1<1) =



 q

√√√√√1−
(

1− κ
q
<1

)I1w1
, 2π

1−
(

1−
zq

κ<1
2π

)I1w1

,

(
ξ I1w1
<1

, 2π

(
zξ<1

2π

)I1w1
)


and

I2(w2<2) =



 q

√√√√√1−
(

1− κ
q
<2

)I2w2
, 2π

1−
(

1−
zq

κ<2
2π

)I2w2

,

(
ξ I2w2
<2

, 2π

(
zξ<2

2π

)I2w2
)
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Thus, by applying the Cq-ROFNs addition law, we have

CCq− ROFWA(〈<1, I1〉, 〈<2, I2〉)

=



 q

√√√√√1−
(

1− κ
q
<1

)I1w1
, 2π

1−
(

1−
zq

κ<1
2π

)I1w1

,

(
ξ I1w1
<1

, 2π

(
zξ<1

2π

)I1w1
)



⊕



 q

√√√√√1−
(

1− κ
q
<2

)I2w2
, 2π

1−
(

1−
zq

κ<2
2π

)I2w2

,

(
ξ I2w2
<2

, 2π

(
zξ<2

2π

)I2w2
)



=



 q

√√√√√1−
2

∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
2

∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
2

∏
i=1

ξ
Iiwi
<i

, 2π

(
2

∏
i=1

(
zξ<i

2π

)Iiwi
))


Thus, the result holds for n = 2
(2). Suppose that Equation (7) is true for n = κ, then

CCq− ROFWA(〈<1, I1〉, . . . , 〈<κ , Iκ〉)

=



 q

√√√√√1−
κ

∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
κ

∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
κ

∏
i=1

ξ
Iiwi
<i

, 2π

(
κ

∏
i=1

(
zξ<i

2π

))Iiwi
)


Then, for n = κ + 1, we obtain

CCq− ROFWA(〈<1, I1〉, . . . , 〈<κ , Iκ〉, 〈<κ+1, Iκ+1〉)
= CCq− ROFWA(w1(I1<1), . . . , wκ(Iκ<κ)⊕ wκ+1(Iκ+1<κ+1))

=



 q

√√√√√1−
κ

∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
κ

∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
κ

∏
i=1

ξ
Iiwi
<i

, 2π

(
κ

∏
i=1

(
zξ<i

2π

)Iiwi
))



⊕



 q

√√√√√1−
(

1− κ
q
<κ+1

)Iκ+1wκ+1
, 2π

1−
(

1−
zq

κ<κ+1
2π

)Iκ+1wκ+1

,

(
ξ

Iκ+1wκ+1
<κ+1

, 2π

(
zξ<κ+1

2π

)Iκ+1wκ+1
)
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=



 q

√√√√√1−
κ+1
∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
κ+1
∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
κ+1
∏
i=1

ξ
II wi
<i

, 2π

(
κ+1
∏
i=1

(
zξ<i

2π

)Iiwi
))


Hence, Equation (7) is true for all value of n.

Using Theorem (1), the Cq-ROFA operator satisfies some of the properties described below.

Property 1 (Idempotency). Let <0 =
{(

κ<0 ,zκ<0

)
,
(

ξ<0 ,zξ<0

)}
(i = 1, . . . , n) be the set of

Cq-ROFNs, and I0 is the confidence levels of <0, and if (<i, Ii) = (<0, I0) ∀(i = 1, . . . , n). Then,

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) = (<0, I0) (8)

Proof. Let (<0, I0) and (<n, In) be the CCq-ROFNs, such that <i = <0 for all i, which
implies that κ<i = κ<0 , ξ<i = ξ<0 ,zκ<i

= zκ<0
, zξ<i

= zξ<0
and Ii = I0 for all i. Then,

using Definition of wi, we have ∑n
i=1 wi = 1. So, by the Theorem (1), we obtain

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉)

=



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<0

)Iwi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<0
2π

)Iwi

,

(
n
∏
i=1

ξ
Iwi
<0

, 2π

(
n
∏
i=1

(
zξ<0

2π

)Iwi
))



=



 q

√√√√√√1−
(

1− κ
q
<0

)I
n
∑

i=1
wi

, 2π

1−
(

1−
zq

κ<0
2π

)I
n
∑

i=1
wi


,

ξ
I

n
∑

i=1
wi

<0
, 2π

(
zξ<0

2π

)I
n
∑

i=1
wi





=



 q

√√√√√1−
(

1− κ
q
<0

)I
, 2π

1−
(

1−
zq

κ<0
2π

)I

,

(
ξ I
<0

, 2π

(
zξ<0

2π

)I
)


= (<0, I0)

Property 2 (Boundedness). Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of

Cq-ROFNs, and Ii is the confidence levels of <i, where <− = {min
i

(
κ<i

)
, min

i

(
zκ<i

)
, max

i

(
ξ<i

)
,

max
i

(
zξ<i

)
} and

<+ =

{
max

i

(
κ<i

)
, max

i

(
zκ<i

)
, min

i

(
ξ<i

)
, min

i

(
zξ<i

)}
. Then,

<− ≤ CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ <+. (9)



Symmetry 2022, 14, 2638 9 of 24

Proof. Take (<, I) ≤ CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉), then by the Theorem (1), for
a Cq-ROFN <i, we have

min
i

(
κ<i

)
≤ κ<i ≤ max

i

(
κ<i

)
⇒ 1−max

i

(
κ<i

)
≤ 1−

(
κ<i

)
≤ 1−min

i

(
κ<i

)
⇒
(

1−max
i

(
κ<i

))wi

≤ (1−<i)
wi ≤

(
1−min

i

(
κ<i

))Iiwi

⇒
n

∏
i=1

(
1−max

i

(
κ<i

))Iiwi

≤
n

∏
i=1

(
1− κ<i

)Iiwi ≤
n

∏
i=1

(
1−min

i

(
κ<i

))Iiwi

⇒
(

1−max
i

(
κ<i

))Ii
n
∑

i=1
wi

≤
n

∏
i=1

(
1− κ<i

)wi ≤
(

1−min
i

(
κ<i

)) n
∑

i=1
wi

⇒ 1−max
i

(
κ<i

)
≤

n

∏
i=1

(
1− κ<i

)Iiwi ≤ 1−min
i

(
κ<i

)
⇒ min

i

(
κ<i

)
≤ 1−

n

∏
i=1

(
1− κ<i

)Iiwi ≤ max
i

(
κ<i

)
⇒ min

i

(
κ<i

)
≤ κ< ≤ max

i

(
κ<i

)
.

Further,

min
i

(
ξ<i

)
≤ ξ<i ≤ max

i

(
ξ<i

)
⇒

(
min

i

(
ξ<i

))Iiwi

≤
(
ξ<i

)wi ≤
(

max
i

(
ξ<i

))Iiwi

⇒
n

∏
i=1

(
min

i

(
ξ<i

))Iiwi

≤
n

∏
i=1

(
ξ<i

)wi ≤
n

∏
i=1

(
max

i

(
ξ<i

))Iiwi

⇒
(

min
i

(
ξ<i

)) n
∑

i=1
Iiwi

≤
n

∏
i=1

(
ξ<i

)Iiwi ≤
(

max
i

(
ξ<i

)) n
∑

i=1
Iiwi

⇒ min
i

(
ξ<i

)
≤

n

∏
i=1

(
ξ<i

)Iiwi ≤ max
i

(
ξ<i

)
⇒ min

i

(
ξ<i

)
≤ ξ< ≤ max

i

(
ξ<i

)
.

Similarly, we can obtain min
i

(
zκ<i

)
≤ zκ< ≤ max

i

(
zκ<i

)
, and min

i

(
zξ<i

)
≤ zξ< ≤

max
i

(
zξ<i

)
. Now, by using Definition (5), we obtain

Sco∗(<) =
1
2

∣∣∣(κ
q
< − ξ

q
<

)
+
(
zq

κ< −zq
ξ<

)∣∣∣
≤

(
max

i

(
κ<i

)
−min

i

(
ξ<i

))
+

1
2

(
max

i

(
zκ<i

)
−min

i

(
zξ<i

))
= Sc∗

(
<−
)

Sco∗(<) =
1
2

∣∣∣(κ
q
< − ξ

q
<

)
+
(
zq

κ< −zq
ξ<

)∣∣∣
≥

(
min

i

(
κ<i

)
−max

i

(
ξ<i

))
+

1
2

(
min

i

(
zκ<i

)
−max

i

(
zξ<i

))
= Sco∗

(
<+
)
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Thus, Sco∗(<−) ≤ Sco∗(<) ≤ Sco∗(<+), hence by the ranking order, we obtain

<− ≤ CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ <+.

Property 3 (Monotonicity). Let <∗i =
{(

κ∗<i
,z∗κ<i

)
,
(

ξ∗<i
,z∗ξ<i

)}
(i = 1, . . . , n) be the set of

Cq-ROFNs, if
(
<∗1 , . . . ,<∗n

)
are the permutation of (<1, . . . ,<n), such that κ<i ≤ κ<∗i ,zκ<i

≤
zκ<∗i

, ξ<i ≥ ξ<∗i and zξ<i
≥ zξ<∗i

. Then,

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ CCq− ROFWA(〈<∗1 , I1〉, . . . , 〈<∗n, In〉). (10)

Proof. Since, its given that κ<i ≤ κ<∗i ,zκ<i
≤ zκ<∗i

, ξ<i ≥ ξ<∗i and zξ<i
≥ zξ<∗i

for all i,

then
1− κ<∗i ≤ 1− κ<i

=⇒
n

∏
i=1

(
1− κ

q
<∗i

)Iiwi ≤
n

∏
i=1

(
1− κ

q
<i

)Iiwi

=⇒ q

√√√√(1−
n

∏
i=1

(
1− κ

q
<i

)Iiwi

)
≤ q

√√√√(1−
n

∏
i=1

(
1− κ

q
<∗i

)Iiwi

)

Similarly, we can show that zκ<i
≤ zκ<∗i

, ξ<i ≤ ξ<∗i and zξ<i
≤ zξ<∗i

.

Thus,

=⇒



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
n
∏
i=1

ξ
Iiwi
<i

, 2π

(
n
∏
i=1

(
zξ<i

2π

)Iiwi
))



≤



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<∗i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<∗i
2π

)Iiwi

,

 n
∏
i=1

ξ
Iiwi
<∗i

, 2π

 n
∏
i=1

(
zξ<∗i

2π

)Iiwi



If CCq−ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) = Ψ and CCq−ROFWA

(〈
<∗1 , I1

〉
, . . . , 〈<∗n, In〉

)
= Ψ∗, then by using score function S(Ψ) ≤ S(Ψ∗), we obtain

CCq− ROFWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ CCq− ROFWA(〈<∗1 , I1〉, . . . , 〈<∗n, In〉).

4.2. Confidence Complex q-Rung Orthopair Fuzzy Ordered Weighted Average Operator

In this subsection, the defined weighted averaging aggregation operator has been
extended to its ordered weighted averaging operator.

Definition 12. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs

and Ii is the confidence levels of <i withe 0 ≤ Ii ≤ 1, and corresponding weight vector w =

(w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1. Then, a confidence complex q-rung orthopair
fuzzy ordered weighted average (CCq-ROFOWA) operator is a function CCq− ROFOWA : Ωn →
Ω defined as follows:
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CCq− ROFOWA(〈<1, I1〉 . . . , 〈<n, In〉) = w1

(
<σ(1), Iσ(1)

)
⊕ ...⊕ wn

(
<σ(n), Iσ(n)

)
, (11)

where Ω denote the set of Cq-ROFNs and σ(1), . . . , σ(n) are the permutation of (1, . . . , n) satisfies
that <σ(i−1) ≥ <σ(i) for i = 2, . . . , n.

Theorem 2. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs and

Ii is the confidence levels of <i withe 0 ≤ Ii ≤ 1. Then, aggregated value obtain by using the
CCq-ROFOWA operator is again a Cq-ROFN as,

CCq− ROFOWA(〈<1, I1〉 . . . , 〈<n, In〉) (12)

=



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<σ(i)

)Iσ(i)wi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<σ(i)
2π

)Iσ(i)wi

,

 n
∏
i=1

ξ
Iσ(i)wi
<σ(i)

, 2π

 n
∏
i=1

(
zξ<σ(i)

2π

)Iσ(i)wi



.

Proof. The proof is similar to the Theorem (1)

Similar to the CCq-ROFWA operator, the same property is also satisfied by the CCq-
ROFOWA operator, but these properties were introduced without proof here.

Property 1 (Idempotency). Let<0 =
{(

κ<0 ,zκ<0

)
,
(

ξ<0 ,zξ<0

)}
(i = 1, . . . , n) be the

set of Cq-ROFNs, and I0 is the confidence levels of <0, and if (<i, Ii) = (<0, I0) for all
i = 1, . . . , n. Then,

CCq-ROFOWA(〈<1, I1〉, . . . , 〈<n, In〉) = (<0, I0) (13)

Property 2 (Boundedness). Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the

set of Cq-ROFNs, and Ii is the confidence levels of <i, where

<− =

{
min

i

(
κ<i

)
, min

i

(
zκ<i

)
, max

i

(
ξ<i

)
, max

i

(
zξ<i

)}
and

<+ =

{
max

i

(
κ<i

)
, max

i

(
zκ<i

)
, min

i

(
ξ<i

)
, min

i

(
zξ<i

)}
. Then,

<− ≤ CCq-ROFOWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ <+. (14)

Property 3 (Monotonicity). Let <∗i =
{(

κ∗<i
,z∗κ<i

)
,
(

ξ∗<i
,z∗ξ<i

)}
(i = 1, . . . , n) be

the set of Cq-ROFNs, if
(
<∗1 , . . . ,<∗n

)
are the permutation of (<1, . . . ,<n), such as κ<i ≤

κ<∗i ,zκ<i
≤ zκ<∗i

, ξ<i ≥ ξ<∗i and zξ<i
≥ zξ<∗i

. Then,

CCq-ROFOWA(〈<1, I1〉, . . . , 〈<n, In〉) ≤ CCq− ROFOWA(〈<∗1 , I1〉, . . . , 〈<∗n, In〉). (15)

4.3. Confidence Complex q-Rung Orthopair Fuzzy Geometric Operator

The aggregation operators discussed above are expanded to geometric aggregation
operators with Cq-ROFNs and confidence level information throughout this part.

Definition 13. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs

and Ii be the confidence levels of <i withe 0 ≤ Ii ≤ 1. Then, a confidence complex q-rung orthopair
fuzzy weighted geometric (Cq-ROFWG) operator is a function CCq− ROFWG : Ωn → Ω is
defined by
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CCq− ROFWG(〈<1, I1〉, . . . , 〈<n, In〉) =
n⊗

i=1

(
<Ii

i

)w1
(16)

=
(
<I1

1

)w1 ⊗
(
<I2

2

)w2 ⊗ ...⊗
(
<In

n

)wn

where the weight vector of Cq-ROFNs are w = (w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1.

Theorem 3. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs and

Ii be the confidence levels of <i withe 0 ≤ Ii ≤ 1. Then, the aggregated value are obtain by using
CCq-ROFWG operator is again a Cq-ROFN as,

CCq− ROFWG(〈<1, I1〉, . . . , 〈<n, In〉) (17)

=



(
n
∏
i=1

κ
Iiwi
<i

, 2π

(
n
∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
n
∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi




.

Proof. We prove that Equation (17) holds by using mathematical induction. For each
i,<i is a Cq-ROFN and <i > 0, therefore, we have wi(Ii<i) is again Cq-ROFN. Utilizing
mathematical induction principle.

(1). For n = 2, we obtain

CCq− ROFWG(〈<1, I1〉, 〈<2, I2〉) =
(
<I1

1

)w1 ⊗
(
<I2

2

)w2
.

Using operational law, we have

(
<I1

1

)w1
=



(
κ I1w1
<1

, 2π

(
zκ<1

2π

)I1w1
)

 q

√√√√√1−
(

1− ξ
q
<1

)I1w1
, 2π

1−
(

1−
zq

ξ<1
2π

)I1w1




and

w2<2 =



(
κw2
<2

, 2π

(
zκ<2

2π

)w2
)

, q

√√√√1−
(

1− ξ
q
<2

)w2
, 2π

(
1−

(
1−

zq
ξ<2

2π

)w2
)


Consequently, we obtain using the Cq-ROFNs addition law

(
<I1

1

)w1 ⊗
(
<I2

2

)w2
=



(
κ I1w1
<1

, 2π

(
zκ<1

2π

)I1w1
)

, q

√√√√√1−
(

1− ξ
q
<1

)I1w1
, 2π

1−
(

1−
zq

ξ<1
2π

)I1w1





⊗



(
κ I2w2
<2

, 2π

(
zκ<2

2π

)I2w2
)

, q

√√√√√1−
(

1− ξ
q
<2

)I2w2
, 2π

1−
(

1−
zq

ξ<2
2π

)I2w2







Symmetry 2022, 14, 2638 13 of 24

=



(
2

∏
i=1

κ
Iiwi
<i

, 2π

(
2

∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
2

∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
2

∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi




Thus, the result is hold for n = 2.
(2). Let Equation (17) be true for n = κ, then

CCq− ROFWG((〈<1, I1〉, . . . , 〈<κ , Iκ〉))

= CCq− ROFWG
((
<I1

1

)w1 ⊗
(
<I2

2

)w2 ⊗ ...⊗
(
<Iκ

κ

)wκ
)

=



(
κ

∏
i=1

κ
Iiwi
<i

, 2π

(
κ

∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
κ

∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
κ

∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi




Then, n = κ + 1, we obtain

CCq− ROFWG(〈<1, I1〉, . . . , 〈<κ+1, Iκ+1〉)
= CCq− ROFWG(〈<1, I1〉, . . . , 〈<κ , Iκ〉)⊗ CCq− ROFWG〈<κ+1, Iκ+1〉

=



(
κ

∏
i=1

κ
Iiwi
<i

, 2π

(
κ

∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
κ

∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
κ

∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi

,



⊗



(
κ

wκ+1
<κ+1

, 2π

(
zκ<κ+1

2π

)Iiwκ+1
)

, q

√√√√√1−
(

1− ξ
q
<κ+1

)Iiwκ+1
, 2π

1−
(

1−
zq

ξ<κ+1
2π

)Iiwκ+1





=



(
κ+1
∏
i=1

κ
Iiwi
<i

, 2π

(
κ+1
∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
κ+1
∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
κ+1
∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi




Thus, Equation (17) is true for all values of n.

The Cq-ROFWPG operator also satisfies the following qualities, which are listed below
but without justification.

Property 1 (Idempotency). Let <0 =
{(

κ<0 ,zκ<0

)
,
(

ξ<0 ,zξ<0

)}
(i = 1, . . . , n) be

the set of Cq-ROFNs, and I0 is the confidence levels of <0, and if (<i, Ii) = (<0, I0)
∀(i = 1, . . . , n). Then,

CCq-ROFWG(〈<1, I1〉, . . . , 〈<n, In〉) = (<0, I0) (18)
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Property 2 (Boundedness). Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the

set of Cq-ROFNs, and Ii is the confidence levels of <i, where

<− =

{
min

i

(
κ<i

)
, min

i

(
zκ<i

)
, max

i

(
ξ<i

)
, max

i

(
zξ<i

)}
and

<+ =

{
max

i

(
κ<i

)
, max

i

(
zκ<i

)
, min

i

(
ξ<i

)
, min

i

(
zξ<i

)}
. Then,

<_ ≤ CCq-ROFWG(〈<1, I1〉, . . . , 〈<n, In〉) ≤ <+. (19)

Property 3 (Monotonicity). Let <∗i =
{(

κ∗<i
,z∗κ<i

)
,
(

ξ∗<i
,z∗ξ<i

)}
(i = 1, . . . , n) be the

set of Cq-ROFNs, if
(
<∗1 , . . . ,<∗n

)
are the permutation of (<1, . . . ,<n), such that κ<i ≤

κ<∗i ,zκ<i
≤ zκ<∗i

, ξ<i ≥ ξ<∗i and zξ<i
≥ zξ<∗i

. Then,

CCq-ROFWG(〈<1, I1〉, . . . , 〈<n, In〉) ≤ CCq− ROFWG(〈<∗1 , I1〉, . . . , 〈<∗n, In〉). (20)

4.4. Confidence Complex q-Rung Orthopair Fuzzy Ordered Weighted Geometric Operator

The existing weighted geometric aggregation operator was expanded to include their
ordered weighted AOs in this section.

Definition 14. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs

and Ii is the confidence levels of <i withe 0 ≤ Ii ≤ 1, and corresponding weight vector w =

(w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1. Then, a confidence complex q-rung orthopair
fuzzy ordered weighted geometric (CCq-ROFOWG) operator is a function CCq− ROFOWG :
Ωn → Ω defined by

CCq− ROFOWG(〈<1, I1〉, . . . , 〈<n, In〉) =
n⊗

i=1

(
<Iσ(i)

σ(i)

)w1
(21)

=
(
<Iσ(1)

σ(1)

)w1
⊗
(
<Iσ(2)

σ(2)

)w2
⊗ ...⊗

(
<Iσ(n)

σ(n)

)wn

where Ω denoted the set of Cq-ROFNs and σ(1), . . . , σ(n) are the permutation of (1, . . . , n) satisfies
that <σ(i−1) ≥ <σ(i) for i = 2, . . . , n.

Theorem 4. Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the set of Cq-ROFNs and

Ii is the confidence levels of <i withe 0 ≤ Ii ≤ 1. Then, the aggregated value obtained by using
CCq-ROFOWG operator is again a Cq-ROFN as,

CCq− ROFOWG(〈<1, I1〉, . . . , 〈<n, In〉) (22)

=



 n
∏
i=1

κ
Iσ(i)wi
<σ(i)

, 2π

 n
∏
i=1

(
zκ<σ(i)

2π

)Iσ(i)wi
, q

√√√√√√1−
n
∏
i=1

(
1− ξ

q
<σ(i)

)Iσ(i)wi
, 2π

1−
n
∏
i=1

1−
zq

ξ<σ(i)
2π

Iσ(i)wi




.

Proof. Proof is similar to Theorem (3).

The CCq-ROFWG operator also fulfills some properties, such as the properties of
CCq-ROFWG operator, which are as follows:
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Property 1 (Idempotency). Let <0 =
{(

κ<0 ,zκ<0

)
,
(

ξ<0 ,zξ<0

)}
(i = 1, . . . , n) be

the set of Cq-ROFNs, and I0 be the confidence levels of <0, and if (<i, Ii) = (<0, I0)
∀(i = 1, . . . , n). Then,

CCq-ROFOWG(〈<1, I1〉, . . . , 〈<n, In〉) = (<0, I0) (23)

Property 2 (Boundedness). Let <i =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , n) be the

set of Cq-ROFNs, and Ii be the confidence levels of <i, where

<− =

{
min

i

(
κ<i

)
, min

i

(
zκ<i

)
, max

i

(
ξ<i

)
, max

i

(
zξ<i

)}
and

<+ =

{
max

i

(
κ<i

)
, max

i

(
zκ<i

)
, min

i

(
ξ<i

)
, min

i

(
zξ<i

)}
. Then,

<_ ≤ CCq-ROFOWG(〈<1, I1〉, . . . , 〈<n, In〉) ≤ <+. (24)

Property 3 (Monotonicity). Let <∗i =
{(

κ∗<i
,z∗κ<i

)
,
(

ξ∗<i
,z∗ξ<i

)}
(i = 1, . . . , n) be

the set of Cq-ROFNs, if
(
<∗1 , . . . ,<∗n

)
are the permutation of (<1, . . . ,<n), such as κ<i ≤

κ<∗i ,zκ<i
≤ zκ<∗i

, ξ<i ≥ ξ<∗i and zξ<i
≥ zξ<∗i

. Then,

CCq-ROFOWG(〈<1, I1〉, . . . , 〈<n, In〉) ≤ CCq− ROFOWG(〈<∗1 , I1〉, . . . , 〈<∗n, In〉). (25)

5. MCGDM Approach Using Complex q-Rung Orthopair Fuzzy AOs

This section develops a MCGDM algorithm using the CCq-ROFS data and the defined
operators.

Consider a DM problem with the n criteria (C1, . . . , Cn) are used to evaluate the m
alternatives (A1, . . . , Am). Lets say we have p experts E =

(
E1, . . . , Ep), who assessed the

various alternatives according to their various criteria. With the help of the Cq-ROFN
information, each expert assesses each alternative and gives the Cq-ROFNs their rating

values as, <κ
ij =

{(
κκ
<ij

,zκ
κ<ij

)
,
(

ξκ
<ij

,zκ
ξ<ij

)}
, where (κ = 1, . . . , p; i = 1, . . . , m) and

(j = 1, . . . , n), 0 ≤ κκ
<ij

+ ξκ
<ij
≤ 1 and 0 ≤ zκ

κ<ij
+zκ

ξ<ij
≤ 2π. The experts additionally

indicate the degrees to which they are familiar with the options considered and assign
the confidence levels Iκ

ij

(
0 ≤ Iκ

ij ≤ 1
)

in order to incorporate the idea of confidence levels.

Assume also that the criteria weights are w = (w1, . . . , wn)
T , such as wi > 0 and ∑n

i=1 wi = 1.
The defined operators are then utilized along with the subsequent steps to determine the
most desirable alternatives:

Step 1. Develop a complex q-rung orthopair fuzzy decision matrix together with their
level of confidence Rκ =

(
<κ

ij, Iκ
ij

)
m×n

, with each alternative’s rating value provided by the

expert Rκ(κ = 1, . . . , p).

Rκ =



C1 C2 . . . Cn
A1

〈
<κ

11, Iκ
11
〉 〈

<κ
12, Iκ

12
〉

. . .
〈
<κ

1n, Iκ
1n
〉

A2
〈
<κ

21, Iκ
21
〉 〈

<κ
22, Iκ

22
〉 〈

<κ
2n, Iκ

2n
〉

. . . .

. . . .

. . . .
Am

〈
<κ

m1, Iκ
m1
〉 〈

<κ
m2, Iκ

m2
〉

. . . 〈<κ
mn, Iκ

mn〉


Step 2a. Aggregate the rating values of each expert Eκ(κ = 1, . . . , p) into the collective con-

fidence levels Cq-ROF decision matrix R =
(
Ξij
)
, where Ξij = 〈

((
κ<ij ,zκ<ij

)
,
(

ξ<ij ,zξ<ij

))
,

Iij〉 by using a CCq-ROFWA operator as follows:
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CCq− ROFWA(〈<1, I1〉..., 〈<n, In〉)

=



 q

√√√√√1−
n
∏
i=1

(
1− κ

q
<i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
κ<i

2π

)Iiwi

,

(
n
∏
i=1

ξ
Iiwi
<i

, 2π

(
n
∏
i=1

(
zξ<i

2π

)Iiwi
))


,

Step 2b. Aggregate the values of each expert Eκ(κ = 1, . . . , p) into the collective confidence

levels Cq-ROF decision matrix R =
(
Ξij
)
, where Ξij =

〈((
κ<ij ,zκ<ij

)
,
(

ξ<ij ,zξ<ij

))
, Iij

〉
by using a CCq-ROFWG operator as follows:

CCq− ROFWG(〈<1, I1〉, . . . , 〈<n, In〉)

=



(
n
∏
i=1

κ
Iiwi
<i

, 2π

(
n
∏
i=1

(
zκ<i

2π

)Iiwi
))

, q

√√√√√1−
n
∏
i=1

(
1− ξ

q
<i

)Iiwi
, 2π

1−
n
∏
i=1

(
1−

zq
ξ<i

2π

)Iiwi




.

Step 3a. Aggregate the total values R =
(
Ξij
)

of the alternative Ai(i = 1, . . . , m) in the

form of Ξi =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
using Equation (5).

Cq−ROFWA(<1, . . . ,<n) =



 q

√√√√1−
n
∏
i=1

(
1− κ

q
<i

)wi
, 2π

(
1−

n
∏
i=1

(
1−

zq
κ<i

2π

)wi
),(

n
∏
i=1

ξ
wi
<i

, 2π

(
n
∏
i=1

(
zξ<i

2π

)wi
))


Step 3b. Aggregate the total values R =

(
Ξij
)

of the alternative Ai(i = 1, . . . , m) in the

form of Ξi =
{(

κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
using Equation (10).

Ξi = Cq− ROFWG(Ξi1, . . . , Ξin)

=



(
n
∏
j=1

κ
wj
<ij

, 2π

(
n
∏
i=1

(
zκ<ij

2π

)wi
))

, q

√√√√√1−
n
∏
j=1

(
1− ξ

q
<ij

)wj
, 2π

1−
n
∏
j=1

1−
zq

ξ<ij
2π

wj




Step 4. Find the score value for Ξi =

{(
κ<i ,zκ<i

)
,
(

ξ<i ,zξ<i

)}
(i = 1, . . . , m) by

utilizing the following equation:

Sco∗(<) = 1
2

∣∣∣(κ
q
< − ξ

q
<

)
+
(
zq

κ< −zq
ξ<

)∣∣∣.
Step 5. Select the most suitable alternative, based on score values.

6. Example

In this evaluation, we find the best and the biggest fire extinguishers by using the pro-
posed operators defined based on the Cq-ROF information. The optimal fire extinguisher
according to some criteria explained below.

For this, we have considered four types of fire extinguishers, which are represented
in the shape of alternatives, whose brief information is of the form: A1: Amerex B402, A2:
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First, alert EZ fire spray, A3: First alert standard, and A4: Amerax B260. For this, we used
the following information as a criterion, represented by: C1: Best of reliability, C2: Best of
portability, C3: Budget pick, and C4: Best for a kitchen fire. To find the best decision, we used
the criteria weights ψ = (0.14, 0.26, 0.27, 0.33)T . Then, we computed the procedure of DM,
which is used to examine the beneficial decision from the collection of decisions. We have
three experts

(
E1, E2, E3) with weight vector v = (0.4, 0.3, 0.3)T and give their assessment

in the form of
〈((

κκ
<ij

,zκ
κ<ij

)
,
(

ξκ
<ij

,zκ
ξ<ij

))
, Iκ

ij

〉
, the corresponding information are

given in Tables 1–3, respectively.
Further, to deal with this MCGDM problem, we can use the developed approach to

perform the risk assessment of these projects, and the steps of the presented method is
demonstrated as follows:

Step 1. The decision matrix is illustrated in Tables 1–3, respectively. Three experts
evaluated alternatives within the context of the Cq-ROFN and Ii is the confidence levels of
<i with 0 ≤ Ii ≤ 1.

Table 1. Assessment of the alternatives given by expert E1.

C1 C2

A1 〈((0.5, 2π(0.4)), (0.7, 2π(0.6))), 0.96〉 〈((0.7, 2π(0.8)), (0.4, 2π(0.3))), 0.87〉
A2 〈((0.6, 2π(0.7)), (0.5, 2π(0.4))), 0.88〉 〈((0.2, 2π(0.5)), (0.1, 2π(0.2))), 0.74〉
A3 〈((0.6, 2π(0.4)), (0.6, 2π(0.7))), 0.74〉 〈((0.4, 2π(0.3)), (0.3, 2π(0.6))), 0.91〉
A4 〈((0.3, 2π(0.6)), (0.9, 2π(0.5))), 0.91〉 〈((0.1, 2π(0.2)), (0.2, 2π(0.1))), 0.83〉

C3 C4

A1 〈((0.2, 2π(0.2)), (0.1, 2π(0.4))), 0.77〉 〈((0.2, 2π(0.3)), (0.1, 2π(0.2))), 0.98〉
A2 〈((0.4, 2π(0.5)), (0.3, 2π(0.1))), 0.88〉 〈((0.4, 2π(0.2)), (0.2, 2π(0.3))), 0.75〉
A3 〈((0.3, 2π(0.2)), (0.2, 2π(0.3))), 0.93〉 〈((0.5, 2π(0.1)), (0.3, 2π(0.4))), 0.86〉
A4 〈((0.5, 2π(0.4)), (0.5, 2π(0.4))), 0.79〉 〈((0.1, 2π(0.4)), (0.4, 2π(0.1))), 0.94〉

Table 2. Assessment of the alternatives given by expert E2.

C1 C2

A1 〈((0.2, 2π(0.3)), (0.3, 2π(0.2))), 0.82〉 〈((0.3, 2π(0.2)), (0.5, 2π(0.3))), 0.72〉
A2 〈((0.3, 2π(0.4)), (0.1, 2π(0.4))), 0.93〉 〈((0.3, 2π(0.2)), (0.4, 2π(0.1))), 0.89〉
A3 〈((0.1, 2π(0.2)), (0.2, 2π(0.3))), 0.76〉 〈((0.1, 2π(0.2)), (0.3, 2π(0.4))), 0.79〉
A4 〈((0.5, 2π(0.3)), (0.4, 2π(0.5))), 0.84〉 〈((0.2, 2π(0.4)), (0.2, 2π(0.2))), 0.91〉

C3 C4

A1 〈((0.2, 2π(0.2)), (0.2, 2π(0.4))), 0.75〉 〈((0.1, 2π(0.3)), (0.3, 2π(0.4))), 0.81〉
A2 〈((0.4, 2π(0.2)), (0.3, 2π(0.2))), 0.85〉 〈((0.3, 2π(0.4)), (0.5, 2π(0.3))), 0.93〉
A3 〈((0.3, 2π(0.1)), (0.1, 2π(0.6))), 0.92〉 〈((0.3, 2π(0.5)), (0.4, 2π(0.1))), 0.71〉
A4 〈((0.4, 2π(0.3)), (0.2, 2π(0.4))), 0.87〉 〈((0.5, 2π(0.3)), (0.1, 2π(0.2))), 0.91〉

Table 3. Assessment of the alternatives given by expert E3.

C1 C2

A1 〈((0.2, 2π(0.1)), (0.5, 2π(0.3))), 0.91〉 〈((0.5, 2π(0.2)), (0.1, 2π(0.4))), 0.83〉
A2 〈((0.5, 2π(0.2)), (0.1, 2π(0.4))), 0.71〉 〈((0.4, 2π(0.2)), (0.2, 2π(0.5))), 0.79〉
A3 〈((0.1, 2π(0.3)), (0.3, 2π(0.6))), 0.82〉 〈((0.3, 2π(0.5)), (0.4, 2π(0.1))), 0.94〉
A4 〈((0.3, 2π(0.5)), (0.4, 2π(0.1))), 0.95〉 〈((0.6, 2π(0.4)), (0.1, 2π(0.2))), 0.88〉

C3 C4

A1 〈((0.3, 2π(0.5)), (0.4, 2π(0.1))), 0.87〉 〈((0.1, 2π(0.3)), (0.3, 2π(0.4))), 0.92〉
A2 〈((0.5, 2π(0.2)), (0.3, 2π(0.4))), 0.72〉 〈((0.4, 2π(0.5)), (0.4, 2π(0.2))), 0.85〉
A3 〈((0.4, 2π(0.4)), (0.2, 2π(0.3))), 0.96〉 〈((0.3, 2π(0.3)), (0.5, 2π(0.3))), 0.71〉
A4 〈((0.2, 2π(0.3)), (0.5, 2π(0.1))), 0.78〉 〈((0.1, 2π(0.2)), (0.3, 2π(0.1))), 0.97〉
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Step 2a. The different assessments of the experts <κ
ij(κ = 1, . . . , 3) are aggregated into

Ξij(i = 1, . . . , 4; j = 1, . . . , 4), using the CCq-ROFOWA operator. The obtained values are
given in Table 4 (we take q = 3).

Table 4. Aggregated values by using CCq-ROFOWA operator.

C1 C2

A1 ((0.526, 2π(0.331)), (0.237, 2π(0.252))) ((0.231, 2π(0.313)), (0.328, 2π(0.247)))
A2 ((0.422, 2π(0.441)), (0.137, 2π(0.131))) ((0.325, 2π(0.212)), (0.319, 2π(0.252)))
A3 ((0.322, 2π(0.222)), (0.325, 2π(0.321))) ((0.412, 2π(0.549)), (0.474, 2π(0.311)))
A4 ((0.349, 2π(0.191)), (0.232, 2π(0.311))) ((0.361, 2π(0.323)), (0.231, 2π(0.432)))

C3 C4

A1 ((0.511, 2π(0.214)), (0.226, 2π(0.128))) ((0.322, 2π(0.318)), (0.391, 2π(0.297)))
A2 ((0.376, 2π(0.231)), (0.212, 2π(0.228))) ((0.424, 2π(0.236)), (0.425, 2π(0.313)))
A3 ((0.457, 2π(0.262)), (0.327, 2π(0.241))) ((0.501, 2π(0.335)), (0.224, 2π(0.232)))
A4 ((0.332, 2π(0.132)), (0.219, 2π(0.233))) ((0.611, 2π(0.417)), (0.217, 2π(0.432)))

Step 2b. If we used the CCq-ROFOWG operator to aggregate the different assessments
of the experts, <κ

ij(κ = 1, . . . , 3) are aggregated into Ξij(i = 1, . . . , 4; j = 1, . . . , 4). Then, the
obtained values are given Table 5 (we take q = 3).

Table 5. Aggregated values by using CCq-ROFOWG operator.

C1 C2

A1 ((0.245, 2π(0.321)), (0.424, 2π(0.217))) ((0.423, 2π(0.225)), (0.329, 2π(0.374)))
A2 ((0.482, 2π(0.344)), (0.321, 2π(0.137))) ((0.342, 2π(0.436)), (0.236, 2π(0.292)))
A3 ((0.303, 2π(0.272)), (0.233, 2π(0.421))) ((0.275, 2π(0.323)), (0.433, 2π(0.236)))
A4 ((0.223, 2π(0.131)), (0.611, 2π(0.533))) ((0.328, 2π(0.562)), (0.319, 2π(0.431)))

C3 C4

A1 ((0.322, 2π(0.341)), (0.427, 2π(0.301))) ((0.412, 2π(0.214)), (0.302, 2π(0.521)))
A2 ((0.121, 2π(0.132)), (0.232, 2π(0.188))) ((0.324, 2π(0.473)), (0.192, 2π(0.352)))
A3 ((0.428, 2π(0.437)), (0.353, 2π(0.401))) ((0.272, 2π(0.340)), (0.235, 2π(0.249)))
A4 ((0.543, 2π(0.251)), (0.289, 2π(0.322))) ((0.346, 2π(0.231)), (0.417, 2π(0.261)))

Step 3a. Now, we utilized the Cq-ROFWA operator to aggregate the different values
Ξij(j = 1, . . . , 4), and Table 4, with the weight vector ψ = (0.14, 0.26, 0.27, 0.33), (we take
q = 3). The cumulative values of alternatives Ai(i = 1, . . . , 4) are:

A1 = ((0.452, 2π(0.237)), (0.344, 2π(0.292)))

A2 = ((0.364, 2π(0.431)), (0.426, 2π(0.354)))

A3 = ((0.299, 2π(0.536)), (0.273, 2π(0.415)))

A4 = ((0.332, 2π(0.249)), (0.384, 2π(0.547)))

Step 3b. If we utilized the Cq-ROFWG operator to aggregate the different values
Ξij(j = 1, . . . , 4) and Table 5, with the weight vector ψ = (0.14, 0.26, 0.27, 0.33), (we take
q = 3). The cumulative values of alternatives Ai(i = 1, . . . , 4) are:

A1 = ((0.632, 2π(0.239)), (0.326, 2π(0.435)))

A2 = ((0.327, 2π(0.424)), (0.221, 2π(0.373)))

A3 = ((0.483, 2π(0.213)), (0.436, 2π(0.325)))

A4 = ((0.369, 2π(0.542)), (0.307, 2π(0.389)))
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Step 4. The scores of the alternative Ai(i = 1, . . . , 4) for alternatives Ξi(i = 1, . . . , 4) as
follows:

Sco∗(A1) = 0.674, Sco∗(A2) = 0.699, Sco∗(A3) = 0.653, Sco∗(A4) = 0.739.

On the other hand, the score value of the alternative Ai(i = 1, . . . , 4), based on step
3b as:

Sco∗(A1) = 0.641, Sco∗(A2) = 0.686, Sco∗(A3) = 0.627, Sco∗(A4) = 0.716.

Step 5. Using score values, ranking of the alternatives Ai(i = 1, . . . , 4) is given in
Table 6.

Table 6. Ranking order of alternatives using averaging and geometric operators.

Operators Ranking

Cq-ROFWA A4 > A2 > A1 > A3

Cq-ROFWG A4 > A2 > A1 > A3

6.1. Sensitivity Analysis

With the flexibility and sensitivity of the parameter q, the suggested CCq-ROFWA
operator and CCq-ROFWG operator were used to conducted an analysis to look at the
variation in the scores and ranks of alternatives. The relevant findings are summarized in
Tables 7 and 8. These two tables make it abundantly evident that distinct score values are
discovered for the CCq-ROFWA and CCq-ROFWA operators that correspond to various
values of the parameter q. The rankings of the mentioned options that correspond to the
various q values taken into account were unaffected by these variations in the score values.
Additionally, the score value of the alternatives are relatively high when q is relatively small,
that is, between 1 and 25, and the scores decrease as q increases. Decision-makers therefore
adopt a more optimistic stance when q is between 1 and 25, and when q is large, the
pessimistic character of experts is evident. In general, experts may set q’s value differently
depending on their needs.

Table 7. Ranking order of the alternatives using CCq-ROFWA operator and different values of the
perimeter q.

q
Score Values

Ranking
A1 A2 A3 A4

q = 1 0.791 0.838 0.775 0.863 A4 > A2 > A1 > A3

q = 2 0.742 0.761 0.734 0.816 A4 > A2 > A1 > A3

q = 3 0.674 0.699 0.653 0.739 A4 > A2 > A1 > A3

q = 4 0.586 0.615 0.572 0.640 A4 > A2 > A1 > A3

q = 5 0.541 0.553 0.539 0.583 A4 > A2 > A1 > A3

q = 15 0.203 0.248 0.193 0.275 A4 > A2 > A2 > A3

q = 25 0.117 0.134 0.115 0.143 A4 > A2 > A1 > A3

As a result, A4 is the best option; it is the best alternative.

6.2. Validity Test

Uncertain outcomes are a result of the fact that, when applied to the same DM problem,
several MCGDM methods provide a different assessment (ranking), in order to assess the
validity and reliability of the MCGDM method. In Figure 1, we show the ranking of the
alternatives graphically.
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Figure 1. Ranking of alternatives using CCq-ROFWA operator .

Table 8. Ranking of the alternatives using CCq-ROFWG operator for different values of perimeter q.

q
Score Values

Ranking
A1 A2 A3 A4

q = 1 0.737 0.768 0.726 0.793 A4 > A2 > A1 > A3

q = 2 0.708 0.712 0.684 0.750 A4 > A2 > A1 > A3

q = 3 0.641 0.686 0.627 0.716 A4 > A2 > A1 > A3

q = 4 0.616 0.632 0.514 0.679 A4 > A2 > A1 > A3

q = 5 0.560 0.591 0.522 0.623 A4 > A2 > A1 > A3

q = 15 0.211 0.225 0.208 0.242 A4 > A2 > A2 > A3

q = 25 0.097 0.101 0.072 0.118 A4 > A2 > A1 > A3

In Figure 2, we show the ranking of the alternatives graphically.

Figure 2. Ranking of alternatives using CCq-ROFWG operator .
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Test criteria 1: The MCGDM method works well when the best alternative is kept
as the default and the non-optimal alternative is changed to a worse alternative without
altering the relative importance of any decision attribute.

Test criteria 2: Transitive qualities should be followed by an effective MCGDM strategy.
Test criteria 3: When the MCGDM problem is divided into smaller problems and

these smaller problems are subjected to the proposed MCGDM approach for the ranking
of alternatives, the MCGDM approach is effective. The cumulative rating of the options
maintains consistency with the ranking of the original problem.

The following criteria were used to evaluate the obtained solution’s validity.

6.3. Validity Check With Criteria 1

In order to assess the viability of the established technique using criteria 1, the worst
alternativeA/

4 is substituted for the non-optimal alternative A/
4 for each expert in the

original decision matrix, and the rating values are provided in Table 9.

Table 9. Transferred alternative A/
4 by each expert.

C1 C2

E1 〈(0.4, 2π(0.4)), (0.3, 2π(0.2)), 0.47〉 〈(0.5, 2π(0.3)), (0.6, 2π(0.7)), 0.74〉
E2 〈(0.6, 2π(0.5)), (0.4, 2π(0.7)), 0.92〉 〈(0.6, 2π(0.8)), (0.4, 2π(0.5)), 0.81〉
E3 〈(0.5, 2π(0.3)), (0.6, 2π(0.8)), 0.82〉 〈(0.8, 2π(0.7)), (0.5, 2π(0.4)), 0.95〉

C3 C4

E1 〈(0.6, 2π(0.4)), (0.6, 2π(0.7)), 0.83〉 〈(0.5, 2π(0.4)), (0.6, 2π(0.5)), 0.63〉
E2 〈(0.4, 2π(0.8)), (0.4, 2π(0.5)), 0.71〉 〈(0.6, 2π(0.5)), (0.5, 2π(0.6)), 0.75〉
E3 〈(0.7, 2π(0.5)), (0.7, 2π(0.3)), 0.87〉 〈(0.7, 2π(0.6)), (0.8, 2π(0.4)), 0.97〉

Utilizing the CCq-ROFOWA operator in step 2 and the Cq-ROFWA operator in
step 3 on transferring alternative, we obtain the score values of the alternatives, such
as Sco∗(A1) = 0.454, Sco∗(A2) = 0.561, Sco∗(A3) = 0.363, Sco∗(A4) = 0.645. As a result,
A4 is ranked as the best alternative in the final ranking of the options, and the proposed
method meets test criterion 1.

6.4. Validity Check with Criteria 2 and 3

We split the initial DM problem into smaller decision making problems (A1, A2, A3),
(A2, A3, A4) and (A1, A3, A4) using these possibilities in order to test the developed MCGDM
method using the criteria 2 and 3. When we use the provided MCGDM approach to solve
these subproblems, the rating of the alternatives will be as A2 > A1 > A3, A4 > A2 > A3
and A4 > A1 > A3. We achieve the ultimate ranking order as A4 > A2 > A1 > A3 by
adding a ranking of alternatives to the smaller problems. This shows a transitive property
and is equivalent to a non-decomposed problem. As a result, the criteria 2 and criteria
3 have same best alternative as the defined MCGDM approach. In Table 10, we show
different method their score values and ranking.

Table 10. Existing methods and their ranking.

Approach
Score Values

Ranking
A1 A2 A3 A4

Liu, P. and Liu, J [14] 0.825 0.781 0.736 0.869 A4 > A1 > A2 > A3

Liu et al. [23] 0.585 0.557 0.595 0.664 A4 > A3 > A1 > A2

Ullah et al. [46] 0.463 0.474 0.418 0.517 A4 > A2 > A1 > A3

Garg et al. [47] 0.175 0.221 0.192 0.268 A4 > A2 > A3 > A1

Liu et al. [48] 0.391 0.427 0.372 0.461 A4 > A2 > A1 > A3
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6.5. Comparative Analysis

This section compares the output of the specified MCGDM method with a few of
the existing approaches, such as CPFS and Cq-ROFS. To perform this, first the experts’
priorities are converted into CPFS and Cq-ROFS by setting the phase terms to zero. We
utilized the available techniques based on this setting; the outcomes are as follows:

In Figure 3, we show the ranking of the alternatives graphically.

Figure 3. Ranking of alternatives using different methods.

7. Conclusions

In this work, an effort has been made to propose different types of aggregation
operators regarding the Cq-ROFSs to assist in decision-making. The range of positive
degree and negative degree is extended from the real number to the complex number
with the unit disc in a variety of current aggregation operators that have previously been
proposed to Cq-ROFSs. The defined CCq-ROF aggregation operators are based on the
assumption that the experts are unquestionably knowledgeable about object evaluation,
i.e., that all experts are given the same amount of confidence to evaluate the various
alternatives. Such a circumstance has partially been realized in the simulation of real-
world issues. A number of confidence level averaging and confidence levels geometric
aggregation operators are proposed in this paper. We describe certain features of these
operators while keeping in mind these considerations and the specifics of the Cq-ROFSs.
These operators are also used in a decision-making algorithm to demonstrate how the
stated operators may more effectively explain real-world situations when employing expert
confidence levels during evaluation. By contrasting the specified technique with other
existing methods, a numerical example of fire extinguisher selection is provided to illustrate
the efficacy and use of the defined method.

In the future, we will extend this approach for complex vague soft sets [38], q-ROF
power Maclaurin symmetric mean operators [23], linear Diophantine fuzzy sets [49–51],
spherical Diophantine fuzzy sets [52], Fractional orthotriple fuzzy rough set [53], and
similarity measures for FOFSs using cosine and cotangent functions [54].
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