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Abstract: In this study, the nonlinear term in the two-dimensional Bratu equation has been replaced
by its Taylor’s expansion. Hence, the resulting nonlinear partial differential equation has been studied
using the Lie group method. The symmetry reductions that reduce nonlinear partial differential
equations to ordinary differential equations are determined using the Lie group theory. The resultant
ordinary differential equations were analytically solved, and the solutions were obtained in closed
form for some specified parameter values, while others were solved numerically. We investigated the
effect of increasing the value of the coefficient of the nonlinear term on the behavior of the solution in
the obtained results, and the solutions were graphically presented.

Keywords: two-dimensional Bratu equation; Lie group; similarity solutions; differential transformation
method

1. Introduction

The evolution of nonlinear differential equations played an important role in many
fields, such as fluid mechanics, chemical kinetics and plasma physics. Therefore, researchers
are interested to obtain the exact solution of nonlinear differential equations. The Bratu
equation appears in a large variety of applications, such as thermal reaction, radiative
heat transfer, the fuel ignition model of thermal combustion, the Chandrasekhar model
of the expansion of the universe, chemical reactor theory, non-deformable material of
constant density during the ignition period and nanotechnology [1–3]. Recently, the Bratu
equation was found in engineering, such as electro-spinning process for the manufacturing
of nano-fibers. Nonlinear elliptic equations with boundary conditions of this type have
been used to describe thermal explosions in the field of combustion theory (Gordon, Ko,
& Shivaji, 2014) [4], as well as BVP emerging in the modelling of electrically conducting
substances (Khuri & Wazwaz, 2013) [5].

In 1914, the Bratu equation was first set up by Bratu [6]. The generalization of the
Bratu equation has been presented by Gelfand and Liouville. The equation is also used as
a model for investigating the sun’s core temperature using the three-dimensional model
Chandrasekhar (1967) [7]. In 1980, Adomian introduced and developed the Adomian
decomposition method (ADM) [8]. The two-dimensional case was studied numerically by
Boyd 1986 [9], Kapania (1990) [10], Misirli and Gurefe (2011) [11]. Bebernes and Eberly
(1989) [12] used the Bratu equation with suitable boundary conditions to model the temper-
ature distribution in combustion models. In 2018, Agheli introduced the approximation
solution of Bratu differential equations using trigonometric basic functions [13]. He de-
fined the values of the transformation in relation to trigonometric basis functions. The
Bratu equation is widely used as a benchmarking tool for the validation of accuracy and
effectiveness of numerical techniques. Bratu appears in several numerical methods, such as
the finite difference method, finite element approximation, weighted residual method, a
variational iteration scheme, Adomian decomposition method (ADM) (Wazwaz, 2005) [14]
and homotopy analysis (Abbasbandy & Shivanian, 2010) [15].

Laplace transformed decomposition method (LTDM) (Khuri, 2004) [16], non-polynomial
spline method (NSM) (Jalilian, 2010) [17], pseudo-spectral collocation method (Boyd, 2011) [18],
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Lie group shooting method (LGSM) (Abbasbandy, Hashemi, & Liu, 2011) [19] and nonlinear
conjugate-gradient method (Mohsen, 2013) [20]. Stochastic solvers based on artificial
intelligence using neural networks optimized and local research methodology are relatively
less exploited in this domain. Artificial neural networks (ANNs) hybridized with the
evolutionary approach are used to solve two-dimensional Bratu’s type equations (Raga,
Ahmed, & Samar, 2013) [21]. Furthermore, this equation appears in a number of works that
have been solved analytically and numerically [22–24].

The two-dimensional Bratu equation is given by

∂2u
∂x2 +

∂2u
∂y2 + λeu = 0 (1)

with the boundary conditions:
u′(0) = u(1) = 0 (2)

The exact solution to Equation (1) is given in [16] for λ = 0.5, 1 and 2 λ can be positive
and negative values, but we are interested in case λ is a positive value, in this case, λ is
known as the Frank-Kamenetskii parameter in the combustion context.

Taylor’s expansion of the nonlinear term in (1) reads as

eu = 1 + u +
1
2!

u2 +
1
3!

u3 +
1
4!

u4 + . . . . . . (3)

by substituting (3) in (1) we obtain

∂2u
∂x2 +

∂2u
∂y2 + λ

(
1 + u +

1
2!

u2 +
1
3!

u3 +
1
4!

u4 + . . . . . .
)
= 0 (4)

in this study, (4) will take two forms. The first called modified Bratu equation in linear
form. Hence, (4) will be

∂2u
∂x2 +

∂2

∂y2 + λ(1 + u) = 0 (5)

the second is called modified Bratu equation in nonlinear form. Hence, (4) will be

∂2u
∂x2 +

∂2u
∂y2 + λ

(
1 + u +

1
2!

u2 +
1
3!

u3 +
1
4!

u4
)
= 0 (6)

Taylor’s expansion that is used in (1) enables us to obtain the linear form of Bratu (5)
when we take the first and second term from (4). This is helpful, as polynomials are much
easier to solve and deal with. If we use the number of terms of Taylor’s expansion, we
obtain the nonlinear form of Bratu (6). As a result, we used the expansion to cope with the
exponential part of Bratu (2).

The one-parameter group transformation is the mathematical technique used in this
investigation. The Lie group method represents the group’s infinitesimals in terms of
one or more functions known as infinitesimal functions, each of which is dependent on
independent and dependent variables. The procedure for determining the infinitesimals
is then reduced to determine the auxiliary equation, which can be obtained by solving a
system of coupled linear partial differential equations known as the determining equations,
which arise as a result of invoking the partial differential equations’ invariance and its
auxiliary conditions.

We used the Lie group method to investigate the modified Bratu problem in this
paper. The Lie group transformation methodology is an analytic technique. In the early
nineteenth century, Norwegian mathematician Sophus Lie promoted this approach, which
was later proposed by Ovsianikov and others [25–27]. The main idea of Lie symmetry
analysis is to find continuous transformations with one or more parameters that keep the
equation invariant [28–31]. The utility of the Lie point symmetry technique was widely
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demonstrated in a number of nonlinear differential equations encountered in various fields
of applied research. Recently, the Lie group technique was used in a variety of works to
solve linear and nonlinear problems, such as [32–36].

The above two cases (linear and nonlinear) have been considered. In the first case,
we studied the modified Bratu equation in linear form, hence, we obtained two cases. In
the first case, the analytical solution was in terms of Bessel function, while the analytical
solution in the second case was in terms of trigonometric sine and cosine. Moreover, by
solving the modified Bratu equation in nonlinear form, we also obtained two cases, the first
case has been solved using Differential Transformation Method [37,38], while the second
case has been solved numerically.

2. Lie Symmetry Group Method

Case (1): The modified Bratu equation in linear form
We consider the Bratu equation in the form.

∂2u
∂x2 +

∂2u
∂y2 + λ(1 + u) = 0 (7)

according to Lie’s method, the infinitesimal generator [28–31] of the symmetry group is
given by

X ≡ ξ
∂

∂x
+ τ

∂

∂y
+ η

∂

∂u
(8)

in which ξ, τ, η are infinitesimal functions of the group variables. Then, the corresponding
one-parameter Lie group of transformations is given by

x∗ = x + εξ(x, y, u) + O(ε2),
y∗ = y + ετ(x, y, u) + O(ε2),
u∗ = u + εη(x, y, u) + O(ε2),

 (9)

if (9) is left invariant by the transformation then (x, y, u)→ (x∗, y∗, u∗). Equivalently, we
can obtain (x∗, y∗, u∗) by solving.

dx∗
dε = ξ(x, y, u),

dy∗
dε = τ(x, y, u),

du∗
dε = η(x, y, u),

 (10)

since (7) contains second derivative, so we evaluate the second prolongation.

X(2) = ξ
∂

∂x
+ τ

∂

∂y
+ η

∂

∂u
+ ηx ∂

∂ux
+ ηy ∂

∂uy
+ ηxx ∂

∂uxx
+ ηyy ∂

∂uyy
(11)

where,
ηx = Dxη − uxDxξ − uyDxτ,
ηy = Dyη − uxDyξ − uyDyτ,
ηxx = Dxηx − uxxDxξ − uxyDxτ,
ηyy = Dyηy − uxyDyξ − uyyDyτ,

 (12)

With Dx ≡ ∂
∂x + ux

∂
∂u + · · · · · · and Dy ≡ ∂

∂y + uy
∂

∂u + · · · · · · . Therefore,

x(2){(7)} = 0 (13)

Solving the (13) we obtain the determining equations.
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ξuu = 0,−ξu = 0,−2ξu = 0,−3ξu = 0,
−τuu = 0,−τu = 0,−2τu = 0,−3τ = 0,−2τxu − 2ξyu = 0,−2τx − 2ξy = 0,
2ηxu − ξxx − ξyy = 0, ηu − 2ξx = 0, ηuu − 2ξxu = 0, 2ηyu − τxx − τyy = 0,
ηu − 2τy = 0, ηuu − 2τyu = 0.

 (14)

Solving (14), we obtain
ξ = −c1y + c2
τ = c1x + c3
η = 0

, (15)

the auxiliary equation will be

dx
−c1y + c2

=
dy

c1x + c3
=

du
0

(16)

Sub case (1.1): By setting c1 6= 0 & c2 = c3 = 0 in (16) we obtain

dx
−c1y

=
dy
c1x

=
du
0

(17)

Solving (17) we obtain
r =

√
x2 + y2

u = F(r)

}
, (18)

this type of symmetry converts the Bratu equation from rectangle geometry to cylindri-
cal geometry.

By Substituting (18) in (7) we obtain

d2F
dr2 +

1
r

dF
dr

+ λF = −λ (19)

The general solution of (19) will be

F(r) = AJ0

(√
λr
)
+ BY0

(√
λr
)
− 1 (20)

where Jn(r) is called the Bessel function of the first kind of order n, Yn(r) is called the Bessel
function of the second of order n, and A, B are arbitrary constants.

In Figure 1, we present the exact solution and the approximate analytical solution in
(21) for λ = 0.5, 1, 2 in (22) for u(x, y).
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F 
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 )

Exact
Approximate

λ = 2

  λ = 1

λ = 0.5

Figure 1. Represents the exact solution and the approximate analytical solution in (21) for λ = 0.5, 1, 2
in (22) for u(x, y).
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Since the two-dimensional Bratu equation is equivalent to the one-dimension bound-
ary value problem given in [21]. Hence, by applying the boundary conditions (2) on (20)
we obtain

F(r) =
J0

(√
λr
)

J0

(√
λ
) − 1 (21)

Clearly, the solution of the modified Bratu equation in linear form is suitable only for
0 < λ ≤ 1. Moreover, it is evident that the values of F(r) increase when the parameter
λ increases.

By substituting (21) in (18) we obtain

u(x, y) =
J0

(√
λ(x2 + y2)

)
J0

(√
λ
) − 1 (22)

In Figure 2. We present u(x, y) in (22) for λ = 0.5.
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0
0.5

1

-1
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0
0.5

1
0

0.05

0.1

0.15

u 
( x

 , 
y 

)

xy

Figure 2. Represents u(x, y) in (22) for λ = 0.5.

For 0 < λ ≤ 1, our result coincides with the result of [9].
Sub case (1.2): By setting c1 = 0 and c2, c3 6= 0 in (16), we obtain.

dx
c2

=
dy
c3

=
du
0

(23)

Solving (23), we obtain.
r = x− cy,
u(x, y) = F(r),

}
(24)

by substituting (24) in (7) we obtain

d2F
dr2 +

λ

1 + c2 F = − λ

1 + c2 (25)

Solution of (25) subject to boundary conditions in (2) will be

F(r) =
cos
(√

(λ/1 + c2)r
)

cos
(√

(λ/1 + c2)
) − 1 (26)

The solution in this case depends on two parameters; λ and c. We compared our result

with the exact solution in [21], by considering F(0) = a, therefore, c = ±
√
−(cos−1( 1/1+a))

2
+λ

cos−1(1/1+a) .
Hence, for λ = 0.5, 1 and 2 we found that the corresponding values of c are 1.0055, 0.99663
and 0.7370867, respectively.

In Figure 3, we present the exact and the approximate analytical solution in (26) for
λ = 0.5, 1, 2.
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Figure 3. Represents the exact and the approximate analytical solution in (26) for λ = 0.5, 1, 2.

From Figure 3, by increasing the coefficient of nonlinear term in the modified Bratu
equation λ, the error increased slightly. For this reason, one may use this approximate
analytical form to describe the behavior of the solution. Moreover, we noticed that the
values of F(r) increase when the parameter λ increases.

By substituting (26) in (24)

u(x, y) =
cos
(√

(λ/1 + c2)(x− cy)
)

cos
(√

(λ/1 + c2)
) − 1 (27)

In Figure 4, we present travelling wave solution in (27) for λ = 0.5 and c = 1.0055.
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Figure 4. Represents the travelling wave solution in (27) for λ = 0.5 and c = 1.0055.

Case (2): The modified Bratu equation in nonlinear form
Considering Bratu’s equation in the form.

∂2u
∂x2 +

∂2u
∂y2 + λ

(
1 + u +

1
2!

u2 +
1
3!

u3 +
1
4!

u4
)
= 0 (28)

Repeating the same procedures as we did from (8) to (15), we obtain

ξ = −c4y + c5,
τ = c4x + c6,
η = 0,

 (29)

the auxiliary equation will be

dx
−c4y + c5

=
dy

c4x + c6
=

du
0

(30)
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Sub Case (2.1): By setting c4 6= 0 & c5 = c6 = 0 in (30) we obtain

− dx
c4y

=
dy
c4x

=
du
0

(31)

Solving (31), we obtain
r =

√
x2 + y2,

u = F(r),

}
(32)

by substituting (32) in (28), we obtain

d2F
dr2 +

1
r

dF
dr

+ λ

(
1 + F +

1
2

F2 +
1
6

F3 +
1

24
F4
)
= 0 (33)

To solve Equation (33) we used Differential Transformation Method.
Differential Transformation Method is a different approach to getting an analytic

Taylor series solution to differential equations. The fundamental advantage of this method
is that it may be immediately used in nonlinear equations without the need for linearization
or discretization [37,38]. The concept of DTM was first introduced by Zhou [38] who solved
linear and nonlinear problems in electrical circuits.

The differential transform of a function y(x) is defined as follows [37,38]:

Y(k) =
1
k!

[
dky(x)

dxk

]
x=0

(34)

and the inverse differential transform of Y(k) is defined as:

y(x) =
∞

∑
k=0

Y(k)xk (35)

In Table 1 we summarized the main theorems of the differential transform.

Table 1. The main theorems of the differential transform method.

No Original Function Transformed Function

1 x(t) = α f (t)± β g (t) X(K) = α F (K)± β G (K)

2 x(t) = dm f (t)
dtm X(K) = (k+m)! F(k+m)

k!

3 x(t) = f (t) g(t) X(K) =
k
∑

l=0
F(l) G(k− l)

4 x(t) = xm
X(K ) = δ (k−m) =

{
1 , if k = m
0 , if k 6= m

5 x(t) = g1(t) g2(t) , . . . , gn−1(t) gn(t) X(k) =
k
∑

kn−1

kn−1

∑
kn−2

· · ·
k3

∑
k2=0

k2

∑
k1=0

G1(k) G2(k) · · ·Gn−1(kn−1 − kn−2) GN(k− kN−1)

By multiplying (32) with r, we obtain

r
d2F
dr2 +

dF
dr

+ λ
(

r + rF +
r
2

F2 +
r
6

F3 +
r

24
F4
)
= 0 (36)

From (36) and the main theorems in Table 1, we obtain

d 2F
dr2 →

(k + 2)!
k!

G(k + 2)

But
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r
d 2F
dr2 →

k

∑
s=0

(s + 2)(s + 1) f (s + 2)δ(k− s− 1) (36a)

dF
dr
→ (k + 1) f (k + 1) (36b)

rF4 = r(F)(F)(F)(F)→
k

∑
n=0

n

∑
m=0

m

∑
s=0

s

∑
l=0

f (l) f (s− l) f (m− s) f (n−m)δ(k− n− 1) (36c)

By the same method, we can obtain the other terms r(F), r(F2), r(F3) and r.
Applying DTM on (36) and substituting it with (36a)–(36c) and the other terms that

were mentioned above, we obtain

F(r) =
∞

∑
k=0

f (k)rk = f (0) + f (1)r + f (2)r2 + · · · · · · · · · · · · (37)

such that f (k) satisfies the relation

k
∑

s= 0
(s + 2)(s + 1) f (s + 2)δ(k− s− 1) + (k + 1) f (k + 1) + λδ(k− 1) + λ

k
∑

s= 0
f (s)δ(k− s− 1)+

+ λ
2

k
∑

s=0

s
∑

l=0
f (l) f (s− l)δ(k− s− 1) + λ

6

k
∑

m=0

m
∑

s=0

s
∑

l=0
f (l) f (s− l) f (m− s)δ(k−m− 1)

+ λ
24

k
∑

n=0

n
∑

m=0

m
∑

s=0

s
∑

l=0
f (l) f (s− l) f (m− s) f (n−m)δ(k− n− 1) = 0

(38)

Equation (38) represents the transformation of (36) after applying the differential
transformation method.

By setting F(0) = a, hence, by applying the differential transform method on (2),

therefore, f (1) = 0 and F(1) =
∞
∑

k=0
f (k) = 0. We summarized the relation between k and

f (k) in Table 2.

F(r) = a− λ

96

(
24 + 24a + 12a2 + 4a3 + a4

)
r2 +

λ2

12, 288

(
24 + 24a + 12a2 + 4a3 + a4

)(
a2 + 2a + 4

)
(a + 2)r4 + . . . (39)

Table 2. Represents the relation between k and f (k).

k f (k)

1 f (2) = − λ

96

(
24 + 24a + 12 a2 + 4a3 + a4

)
2 f (3) = 0

3 f (4) =
λ2

12, 288

(
24 + 24a + 12a2 + 4a3 + a4

)
(a + 2)

(
a2 + 2a + 4

)
4 f (5) = 0

5 f (6) =
− 7 λ3

10, 616, 832

(
24 + 24a + 12a2 + 4a3 + a4

)
(a + 2)2

(
a4 + 4a3 + 12a2 +

144
7

a +
144
7

)
6 f (7) = 0

7 f (8) =
λ4

5, 435, 817, 984

(
24 + 24a + 12a2 + 4a3 + a4

)
(a + 2)2

(
76, 032a + 101, 760a2 + 87, 680a3 + 53, 952a4

+24, 624a5 + 8392a6 + 2088a7 + 348a8 + 29a9

)

For the convergence of the power series, we require |r| ≤ 1. The relation between λ

and a satisfy the equation F(1) =
∞
∑

k=0
f (k) = 0.
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Table 3 shows that the absolute error when λ = 0.5 is less than 0.008%, while when
λ = 1.0 is less than 0.007% and finally when λ = 2.0 is less than 0.3%. Hence, it is evident
that the values of the absolute error increase when the parameter λ increases.

Table 3. Represents the absolute error between the exact solution and our approximate solution.

Absolute error =
∣∣ uexact − uapproximate

∣∣
λ = 2.0 λ = 1.0 λ = 0.5 r

0.0 0.0 8× 10−5 0.0
3× 10−4 0.0 3× 10−5 0.1
9× 10−4 4× 10−5 5× 10−5 0.2
2× 10−3 2× 10−5 8× 10−5 0.3
3× 10−3 3× 10−5 3× 10−5 0.4
3× 10−3 1× 10−5 4× 10−5 0.5
3× 10−3 4× 10−5 4× 10−5 0.6
3× 10−3 5× 10−5 3× 10−5 0.7
2× 10−3 1× 10−5 2× 10−6 0.8
2× 10−3 3× 10−5 7× 10−5 0.9
1× 10−3 7× 10−6 8× 10−6 1.0

In Figure 5, we present the exact and the analytical approximate solutions in (39) for
λ = 0.5, 1, 2.
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Figure 5. Represents the exact and the analytical approximate solutions in (39) for λ = 0.5, 1, 2.

In this case, we found perfect match of our approximate solution with the exact
solution for all values of λ.

By substituting (39) with (32), we obtain

u(x, y) = a− λ

96

(
24 + 24a + 12a2 + 4a3 + a4

)(
x2 + y2

)
+

λ2

12, 288

(
24 + 24a + 12a2 + 4a3 + a4

)(
a2 + 2a + 4

)
(a + 2)

(
x2 + y2

)2
+ . . . (40)

Figure 6 illustrate the behavior of the function u(x, y) that depends on the location of
(x) and the location of (y).
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Sub Case (2.2): By setting c4 = 0 and c5, c6 6= 0 in (30) we obtain

dx
c5

=
dy
c6

=
du
0

(41)

By solving (41), we obtain
r = x− cy,
u = F(r),

}
(42)

by substituting (42) with (27), we obtain

d2F
dr2 +

λ

1 + c2

(
1 + F +

1
2

F2 +
1
6

F3 +
1
24

F4
)
= 0 (43)

The numerical solution of (43) has been obtained for λ = 0.5, 1, 2 using fourth and
fifth order Runge Kutta method. The values of the parameter c in (43) have been chosen to
adjust the value of F(0) to be close to the exact value in [6,9,21].

In Figure 7, we present exact solution and numerical solution in (43) for λ = 0.5, 1, 2
and the corresponding value of the parameter c are 1.012, 1.028, 1.125135, respectively.
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Figure 7. Represents exact solution and numerical solution in (43) for λ = 0.5, 1, 2 and the corre-
sponding value of the parameter c are 1.012, 1.028, 1.125135, respectively.

The numerical solution in this case is asymmetric about the origin point. Moreover, in
the case of λ > 1 we could not find a value for c so that the numerical solution matches the
analytical solution at the origin point.

In Figure 8, we present exact solution and our approximate analytical solutions in (26)
and (39) for λ = 2.
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Figure 8. Represents exact solution and our approximate analytical solutions in (26) and (39) for
λ = 2.

Form Figure 8. Clearly, the exact solution and our approximate solutions of Bratu
equations are symmetric about the origin. By comparing our approximate analytical solu-
tions with the analytical solution in [25], we noticed that the cylindrical invariant solution
of the modified Bratu equation in nonlinear form perfectly matches the exact solution.
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3. Conclusions

The nonlinear Bratu equation has been solved using the Lie group approach, demon-
strating the method’s efficiency in producing invariant solutions for partial differential
equations with two independent variables. The approach reduces the nonlinear ordinary
differential equation to the partial differential equation. The Lie group method proved that
the modified Bratu equations in linear and nonlinear forms have two types of invariant
solutions; the cylindrical solution and the travelling wave solution. It is evident that the
values of u(x, y) and the absolute error increase when the parameter λ increases in all
cases studied.

In the modified Bratu equation in linear form, the cylindrical solution was obtained in
terms of Bessel function and depends on the value of λ, while the travelling wave solution
was found in terms of cosine function and depends on λ and c. The cylindrical solution
of the modified Bratu equation in nonlinear form was obtained in series form using the
differential transform method and depends on λ. It is evident that we obtained the best
results with the series solution of the modified Bratu equation in nonlinear from for all
values of λ, while all obtained solutions could be used only in case of λ between 0 and 1.
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