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Abstract: The polar code has become one of the most popular and important forward error correction
(FEC) coding schemes due to its symmetric characteristics of channel polarization. This paper reviews
various decoding schemes for polar codes and discusses their advantages and disadvantages. After
reviewing the existing performance-enhancing techniques such as belief propagation decoding with
list, a new method is proposed to further improve the performance. In addition, a new complexity
reduction technique based on the constituent codes is proposed, and a new scheduling scheme is
introduced to reduce the decoding latency. Due to the recent development of neural networks, their
applications to decoding schemes are also reviewed and evaluated. Finally, the proposed complexity-
reduced technique is integrated with a neural network-based belief propagation decoding, which
demonstrates performance enhancement as well as computational complexity reduction.

Keywords: polar codes; belief propagation decoding; factor graph; iterative decoding; neural
networks

1. Introduction

The polar code was invented by using symmetric channel polarization properties,
and it has been widely studied because of its ability to achieve channel capacity under
infinite code length [1]. Since it has been specified as one of the forward error correction
(FEC) schemes for the 5G system [2], efficient implementation of the polar code with low
latency has become a hot issue to achieve a 5G vision of ultra-reliable and low latency
communications (URLLC). The successive cancellation decoding (SCD) algorithm was
introduced as an effective means of reaching the performance approximating the channel
capacity with low complexity [3]. Even though there was an effort to speed up the decoding
time of the successive cancellation (SC) decoder [4], the decoding time, i.e., the delay of
the SC decoder is relatively high because of its serial processing characteristics, and it was
considered to be unsuitable for high-speed computing.

For practical hardware implementation, belief propagation decoding (BPD) for polar
codes has been widely studied, due to its high throughput [1]. Even though a BPD method
accelerates the decoding time by taking advantage of its parallel processing characteristics,
it should sacrifice the performance gain compared to the SCD method. Research on efficient
BPD algorithms has been carried out from various aspects since BPD is a realistic option
for hardware implementation. This paper reviews various research on BPD methods for
polar codes and analyzes their pros and cons by evaluating their performances.

This study first reviews and analyzes a means to improve the performance of BPD,
which is called BPD with list (BPDL) [5–13]. The BPDL operates on multiple permuted
factor graphs to select the best decoding result, and eventually to improve the decoding
performance. After reviewing the basics of BPDL, a simple and compact method is newly
proposed to further improve the performance, compared to the existing BPDL.
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Although BPDL can improve the performance of BPD, its computational complexity
increases linearly with the number of list size. Therefore, the second technique analyzed in
this paper is about computational complexity-reducing methods. It was considered that
specific parts of the factor graph did not require full computations during the decoding
process, and these parts were called constituent codes [14]. These constituent codes could
be removed from the factor graph in the BPD process, thereby reducing the decoding
complexity. Because a BPD algorithm works iteratively, this removal of constituent codes
from the BPD process played an important role in reducing the decoding latency and
computational complexity.

As deep learning has become one of the current research hotspots, efforts have been
made to combine BPD with deep learning [15–19]. Therefore, the third technique to review
is to apply machine learning to BPD. Various network structures were proposed for BPD to
improve the error rate performance. This paper details the above-mentioned research on
BPD, and newly proposes combining one of the deep learning techniques with complexity-
reduced BPD, analyzing the error performance and latency characteristics.

As far as the hardware implementation is concerned, the scheduling scheme is one
of the most important techniques to determine convergence speed and decoding latency.
Therefore, the fourth technique to review is about the scheduling scheme of BPD. In the
early BPD study, a one-way scheduling scheme was used [20]. Later, a scheduling scheme
called round-trip scheduling (RTS) was proposed to speed up the convergence speed of
decoding [21]. Even though segmented scheduling (SS) methods with symmetric structures
were proposed to further accelerate the decoding speed at the expense of computations [22],
they degraded the decoding performance, because of the uneven distribution of information.
As an effective means of taking advantage of the existing methods, this paper proposes a
new hybrid method to combine RTS and SS to improve the decoding speed, as well as not
to degrade the performance.

The contribution of this paper is therefore summarized as follows: (1) Providing
surveys and reviews on various aspects of BPD for polar codes; (2) Proposing a new BPDL
method to improve the performance of the existing BPDL; (3) Proposing the application of
a neural network-based BPD for polar codes in combination with a complexity-reduced
mechanism; (4) Proposing a hybrid scheduling method; (5) Presenting extensive simulation
results on various BPD algorithms, and analysis of the comparison results; (6) Presenting a
comparison of computational complexity and computing time for various BPD algorithms.

The remaining part of the paper is structured as follows. Section 2 describes the basics
of polar codes, including the concept of the polar code and its symmetric encoding prin-
ciple. Furthermore, the principles of the SCD and BPD methods are explained. Section 3
investigates various techniques for BP decoders, including BPDL, complexity-reducing
methods, application of deep learning to BP decoders, and finally, scheduling methods for
implementation. Section 4 provides extensive simulation results of the investigated tech-
niques and analyzes the computational complexities, as well as the latency characteristics.
Finally, Section 5 concludes the paper.

2. Polar Codes
2.1. The Concept and Encoding

Symmetric channel polarization is the theoretical basis of the polar code, which is
composed of channel union and channel splitting [3]. Figure 1 shows the Tanner graph,
also known as the factor graph of a polar code with length, N = 8, where uj, xj, and yj
are the jth input to the encoder, output of the encoder, and received information after
passing through the channel W, respectively. Assuming a binary erasure channel W with
an erasure probability of 0.5, the channel capacity of each input path (channel) will be 0.5
before encoding. On the other hand, the channel capacity of each channel is becoming
symmetrically polarized after a few stages of unions and splits, as shown in Figure 1, where
I(W(8)) denotes the capacity of each channel polarized by the polar code with N = 8.
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Figure 1. Tanner graph of a polar code with N = 8, R = 1/2.

As the number of channels tends to be infinite, the polarization becomes more evident,
i.e., all channels are divided into two types: no-noise channels and all-noise channels. The
coding principle of the polar code takes advantage of the characteristics of this phenomenon.
The information required by the receiving end is transmitted through the reliable channels
with higher capacity, and the agreed information or no information is transmitted through
the unreliable channels with lower capacity. In other words, we load information onto K
input bits with higher capacity, while we freeze the values of the remaining N−K input bits
with lower capacity. This makes the code rate, R of K/N. The example in Figure 1 shows the
case when K = 4 and R = 1/2. The encoding is performed by recursive exclusive-or (XOR)
operations of the frozen and information bits as shown in Figure 1, where the information
and frozen bits are denoted with white and black symbols, respectively.

The XOR operations of the encoding process to produce the codeword x with the input
u can be generalized using the generator matrix, as follows:

x = u ·GN , (1)

where GN is the N × N generator matrix, which can be recursively obtained from the
Kronecker matrix operations from the kernel matrix F, i.e.,

GN = F⊗m, F =

[
1 0
1 1

]
, (2)

and m = log2 N.

2.2. Decoding Methods
2.2.1. Successive Cancellation Decoding

When decoding the polar codes, different decoding strategies should be adopted,
whether it is a frozen or information bit. For the frozen bits, the estimated bit value, ûj can
be directly set to ûj = uj. On the other hand, the bit decision is made with the aid of the
soft information propagation and bit decision on the frozen bits [3].

The decoder is first fed with the soft information of x in the form of log-likelihood
ratio (LLR), by the demodulator. Then, the LLR values, Li,js are propagated from right
to left, where Li,j denotes the LLR value at the jth node of the ith stage, 1 ≤ i ≤ m and
1 ≤ j ≤ N. The initial LLR value provided by the demodulator at the (m + 1)th stage is
expressed as follows:

Lm+1,j = ln

(
P(yj|0)
P(yj|1)

)
, (3)

where P(yj|0) and P(yj|0) are the probabilities of yj being 0 and 1, respectively.
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Afterwards, the LLR message passing is performed using the following formula:

Li,j =

 2 tanh−1
(

tanh
Li+1,j

2 tanh
Li+1,j+2i−1

2

)
, if b j−1

2i−1 c mod 2 = 0,(
1− 2si,j−2i−1

)
Li+1,j+2i−1 + Li+1,j, otherwise,

(4)

where si,j is the hard (binary) information at the jth node of stage i, which is supposed to be
propagated from left to right upon receiving the LLR values at the first stage, and making
the bit decision on the information. To pass the hard message, the bit decision of the ith bit,
ûj is required at the leftmost end, and it can be estimated as follows:

ûj =

{
uj, if uj is frozen bit,
1−sign(L1,j)

2 , otherwise.
(5)

The hard message at the first stage s1,j = ûj, and those of the following stages can be
estimated as follows:

si+1,j =

{
si,j ⊕ si,j+2i−1 , if b j−1

2i−1 c mod 2 = 0,

si,j, otherwise.
(6)

Using the rate 1/2 code shown in Figure 1, here we detail the process of SCD. Figure 2
shows the propagation of soft and hard messages that proceed back and forth sequentially.
First, the decoder receives eight soft inputs from the demodulator, L4,j, 1 ≤ j ≤ 8. Second,
L3,j, 1 ≤ j ≤ 4 and L2,j, 1 ≤ j ≤ 2 are estimated at stages three and two, respectively, by
using (4). Then, reaching the first stage, the bit decision on u1 and its hard message s1,1
are estimated by using (5) and (6), respectively. Next, with the available value of s1,1, L2,1
is estimated using (4). After that, hard messages s2,1 and s2,2 can be estimated using (6).
With this procedure, soft and hard messages can be alternatively estimated, until all the bit
decisions are made.

Figure 2. Message flow of SCD for the polar code with N = 8, R = 1/2.

2.2.2. Belief Propagation Decoding

The BPD is an algorithm transferring information on a factor graph, and the perfor-
mance can be enhanced by iteratively exchanging the soft information between input and
output nodes. The BPD has been conventionally used to decode low-density parity-check
(LDPC) codes, and it was applied to the polar codes [1].

For each node of the factor graph, there are two directions of soft information in the
form of LLR. The LLR propagated from right to left is denoted as Li,j, while that from left to
right is denoted as Ri,j. The decoder employs the so-called processing element (PE), which
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performs the following LLR estimations with the Min-Sum approximation, so that LLRs
are traversed through the factor graph.

L(t)
i,j = g(L(t−1)

i+1,j , L(t−1)
i+1,j+N/2i + R(t)

i,j+N/2i ),

L(t)
i,j+N/2i = g(L(t−1)

i+1,j , R(t)
i,j ) + L(t−1)

i+1,j+N/2i ,

R(t)
i+1,j = g(R(t)

i,j , L(t−1)
i+1,j+N/2i + R(t)

i,j+N/2i ),

R(t)
i+1,j+N/2i = g(L(t−1)

i+1,j , R(t)
i,j ) + R(t)

i,j+N/2i ,

(7)

where g(x, y)=sign(x)sign(y)min(|x|,|y|). In addition, the superscript of (t) denotes the
iteration index, because the BPD works iteratively. The LLR value in the rightmost column
of the factor graph, Lm+1,j is fed by the soft demodulator as in (3). On the other hand, the
LLR value in the leftmost column, R1,j is the pre-decoded LLR of the information sequence
u, and ∞ and 0 are assigned to the frozen and the information bits, respectively, at the
beginning of decoding.

Figure 3 shows an example of LLR exchange with PE over the factor graph of the
same polar code as in the previous example. BPD is performed on the factor graph by
operating the PE from left to right, and from right to left to update L and R, respectively.
The final decision on û and x̂ are, respectively, estimated after the completion of T iterations,
as follows:

ûj =

{
0, if L(T)

1,j ≥ 0,

1, otherwise,
(8)

x̂j =

{
0, if L(T)

1+m,j + R(T)
1+m,j ≥ 0,

1, otherwise.
(9)

Figure 3. BPD with PE for the polar code with N = 8, R = 1/2.
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3. Variations of Belief Propagation Decoders and Implementation Issues
3.1. Belief Propagation Decoding with List, BPDL
3.1.1. Review of the Previous Works on BPDL

Since the critical disadvantage of BPD compared to SCD is performance degradation,
efforts have been made to improve the performance by employing multiple permuted
factor graphs, referred to as BPD with list (BPDL). BPDL could effectively improve the
decoding performance at the expense of decoding complexity.

There exist m! different permutations of the factor graph for a polar code of length N.
In the BPDL, P permutations of the factor graph, P << m!, are used for decoding, and the
permutation that satisfies the early stopping criterion is used as the final decoding result.
A random permutation method was adopted in [5], where the nodes from stages 1 to m
are randomly exchanged. This led to a very large number of permutations and increased
the decoding complexity. To solve this problem, cyclic shift permutation methods were
proposed [6]. For example, the order of the original stage {1, 2, ..., m} in the factor graph is
changed to {m, 1, ..., m− 1} if the cyclic left shift permutation is used. Figure 4 shows an
example of a cyclic left shift of permutation of the factor graph for the polar code in the pre-
vious example with N = 8, R = 1/2. This cyclic shift permutation could efficiently reduce
the number of permutations, and eventually, lead to reducing the decoding complexity
of BPDL.

In addition, various permutation methods were introduced to find better factor graphs
with which the BP decoder converged faster [7–12]. Each factor graph requires the corre-
sponding decoder structure, and thus the complexity and the memory requirement of the
BPDL hinder practical implementation. A method to map each permuted factor graph to
the permuted codeword was proposed; thereby, a single decoder can be used [13].

Figure 4. Example of cyclic left shift permutation for the polar code with N = 8, R = 1/2.

3.1.2. A New Proposed BPDL

Additionally, we propose a simple new BPDL scheme, which multiplies a scaling
coefficient to L and R. We call this method the scalable BPDL (S-BPDL), and the update
formula of L and R in the S-BPDL is as follows:

L(t)
i,j = ρp · g(L(t−1)

i+1,j , L(t−1)
i+1,j+N/2i + R(t)

i,j+N/2i ),

L(t)
i,j+N/2i = ρp · g(L(t−1)

i+1,j , R(t)
i,j ) + ρp · L(t−1)

i+1,j+N/2i ,

R(t)
i+1,j = ρp · g(R(t)

i,j , L(t−1)
i+1,j+N/2i + R(t)

i,j+N/2i ),

R(t)
i+1,j+N/2i = ρp · g(L(t−1)

i+1,j , R(t)
i,j ) + ρp · R(t)

i,j+N/2i ,

(10)

where −0.5 ≤ ρp ≤ 0.5, 1 ≤ p ≤ P, is a scaling factor that is applied to the pth BPD. The
S-BPDL applies P different scaling factors to the BPD with the same factor graph, instead
of utilizing different permutations of the factor graph; thereby, the result satisfying the
early stopping criterion is used as the final decoding result. Since this method uses the
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same factor graph, it requires much less memory requirement, which is almost the same
as the conventional BPD. In addition, this method provides better error rate performance
compared to the existing BPDL, which is demonstrated in Section 4.

3.2. Belief Propagation Decoding with Reduced Factor Graph

It was discovered that a part of the factor graph for the entire codeword did not require
certain computations during the decoding process, and this part was called the constituent
code [14]. The following four constituent codes were found, where computing R(t)

i,j can be

simplified to the following R′(t)i,j , due to the removal of the computations for the constituent
code. In the following, l is the length of the constituent code, and e is the stage index where
the constituent code ends at the factor graph, and can be estimated as e = log2l, 0 < e ≤ m.

N0 code: All the leaf nodes of this constituent code are frozen bits, whose LLR, R0,j is set
to ∞, this leads to:

R′(t)e,j = ∞. (11)

N1 code: This is the opposite case of N0; all leaf nodes are information bits, so R0,j is set to
0, and during the decoding process, it is always maintained as 0. This leads to:

R′(t)e,j = 0. (12)

NREP code: This constituent code has a single information bit on the last leaf node. Since
each node is a duplication of others, they share the belief messages with others in the
factor graph. This leads to:

R′(t)e,j = ∑
k 6=j

L(t)
e,k . (13)

NSPC code: This has a single frozen bit on the first leaf node. In this case, R update can be
simplified as follows:

R′(t)e,j = ∏
k 6=j

sign(L(t)
e,k ) ·min

k 6=j
|L(t)

e,k |. (14)

The above simplifications of LLR computations enhance the computational efficiency
without degrading error performance. In particular, this kind of reduction in LLR compu-
tation is highly effective for BPD, since it works iteratively. This idea was called express-
journey (XJ) BPD [14], and it is demonstrated in Section 4 that XJ-BPD produces exactly the
same performance as the conventional BPD, with much lower decoding complexity.

3.3. Belief Propagation Decoding with Neural Network
3.3.1. Review of the Previous Works on BPD with Neural Network

With the widespread use of machine learning in various applications, efforts have
been made to apply deep learning to BPD. A deep neural network (DNN) was used for
BPD by unfolding the iterative structure into the layered structure of the neural network,
resulting in BPD with DNN [15,16]. This DNN-based BPD imitates the performance of the
classical BPD with trained weight multiplications across the graphs. Although this BPD
with DNN improved the performance by virtue of the well-trained weight multiplications
across a large number of hidden layers, the complexity of decoding increases sharply, and a
large amount of memory is occupied by the storage of the weights. These problems hinder
its practical implementation.

To solve this problem, recurrent neural network (RNN)-based decoders were proposed
for polar codes [17–19], which assign the same weights across the iterations, and thus
require almost the same memory size as the conventional BPD. Figure 5 compares the
structure of the DNN-based BPD to that of the RNN-based BPD. The biggest difference
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between the RNN-based BPD compared to the DNN-based BPD is that it converts the
feed-forward structure into a recurrent network, which forces the decoder to reuse weights
in different iterations, leading to completely different optimization problems. In other
words, the RNN-based BPD can be regarded as a constrained version of the DNN-based
BPD. The RNN-based BPD can effectively reduce a large number of parameters, without
significant performance degradation.

Figure 5. Structures of the RNN and DNN-based BPDs.

For example, a residual neural network-based belief propagation (ResNet-BP) al-
gorithm was proposed by reducing the number of variables in the network, and the
computational complexity [17]. The simulation results showed that this could achieve the
same performance as the conventional BPD with a lower number of iterations. In addition,
a practical implementation method of the RNN-based BPD was presented by adopting
a weight quantization mechanism [19]. It was shown that the storage overhead could be
further reduced by using the codebook-based weighting method.

3.3.2. The Proposed Complexity Reduced BPD with a Neural Network; RNN XJ-BPD

In this study, we combine the XJ-BPD introduced in Section 3.2, with the RNN-based
BPD. In this way, XJ-BPD contributes to reducing the complexity of the decoder, while
RNN contributes to enhancing the decoding performance. In the proposed RNN XJ-BPD,
the weight factors are trained using the conventional BPD, so that it can best approximate
the maximum performance. Next, the XJ-BPD is applied with the trained weights. The
performance simulation results in Section 4 demonstrate that the performance can be
further improved with the aid of RNN.

3.4. Implementation of Belief Propagation Decoding with Segmented Scheduling
3.4.1. Review of the Previous Works on Scheduling for BPD

For the BP decoder, scheduling refers to the method of information dissemination and
update from one end of the factor graph to the other end. This has a significant impact on
the convergence speed of BPD. The simplest way is the one-way scheduling scheme that
activates the phases from left to right to update the L and R information at the same time,
and completes an iteration when the activation reaches the rightmost phase [20], as shown
in Figure 6.
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In this way, the information on the left of the factor graph completes the traversal of
the entire factor graph, while the information on the right is actually only updated at stage
m, which leads to uneven information transmission. Therefore, it requires more iterations
to reach saturation. On the other hand, round-trip scheduling (RTS) is a method that makes
the information on the right traverse to the left, and then the information on the left traverse
to the right [14], as shown in Figure 6. Because the message is spread and updated more
uniformly, fewer iterations are required for convergence, so the overall delay is smaller.

Figure 6. Comparison of one-way and round-trip scheduling.

To accelerate the computing time, new scheduling schemes were proposed by segment-
ing the factor graph into multiple sub-graphs and performing scheduling in parallel [22].
Figure 7 shows the concept of segmented scheduling (SS) in various forms. For example,
the information on the right and left ends of the factor graph is simultaneously propagated
to the middle of the factor graph, with halfway scheduling as in (a) of Figure 7. Infor-
mation exchange occurs in the middle of the factor graph. After that, the newly updated
information traverses to the right and left ends of the factor graph, respectively. In other
words, the main cycle of information propagation in RTS is divided into two sub-cycles of
information flow.

Although this method can reduce the time to traverse the factor graph, the soft
information transmission is not as uniform as RTS, resulting in a decrease in performance.
This is because the transmission and update of the L and R information are performed
at the same time. The factor graph can be further segmented and results in quarter-way
scheduling, and finally, a fully segmented structure, as in (b) of Figure 7.

Figure 7. Concept of segmented scheduling.

3.4.2. The Proposed Hybrid Scheduling Scheme

The RTS requires a longer time to update LLR values, and produces LLR values with
higher reliability, compared to a segmented scheduling scheme. On the other hand, SS
can speed up the decoding time, but it may lead to performance degradation, because
of the production of less reliable LLR values. By considering that the reliability of LLR
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values will be increased as the number of iterations is increased, a new hybrid scheduling
scheme is proposed. This scheme utilizes RTS at the earlier stages of the iteration to prevent
performance degradation, while it utilizes a fully segmented scheduling scheme to speed
up the decoding time. We compare the performance and decoding time of this idea in
Section 4.

4. Performance Evaluation

We conducted BER performance simulations by using the polar codes over an addi-
tive white Gaussian noise (AWGN) channel. Since our purpose here is to compare the
BER performance and decoding complexity, we utilize simple binary phase shift keying
(BPSK) as a modulation scheme. We first analyze the error rate performance of various
BPD algorithms, including our new proposals, and then analyze their decoding time and
complexity. In addition, we implement RNN and apply it to various existing BPD, as
well as our proposed S-BPDL introduced in this paper, and evaluate the performance in
comparison with existing methods.

4.1. Error Rate Performance

We first compare the BER performance of various BPD algorithms with that of the
SCD. Figure 8 compares the performance of BPDL with SCD, the conventional BPD, and the
proposed S-BPDL using the (1024, 512) and (128, 64) polar codes, respectively. In the figure,
nt denotes the number of iterations in the BPD. It is clearly shown that as the codeword
length increases, the conventional BPD requires an increasing number of iterations to
achieve the same performance as the SCD. The performance of the BPDL is better than that
of the traditional BPD, regardless of the codeword length, with list size L. In addition, it is
not difficult to see that the decoding performance of the proposed S-BPDL is better than
that of the traditional BPDL with the same list size.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10-5

10-4

10-3

10-2

10-1

BE
R

Eb/N0 (dB)

            (128, 64)
SCD        
BPD          nt=20
BPDL        nt=20, L=15
S-BPDL     nt=20, L=15

          (1024, 512)
SCD        
BPD         nt=60 
BPDL       nt=60, L=15
S-BPDL    nt=60, L=15

Figure 8. Comparison of the BER performances of BPDL for the (1024, 512) and (128, 64) polar codes.

Next, Figure 9 shows the BER performance comparisons of XJ-BPD according to the
number of iterations, nt, using the (1024, 512) and (128, 64) polar codes. It shows that the
performance of XJ-BPD is the same as the conventional BPD, regardless of the number of
iterations, proving that it can contribute to reducing the complexity without degrading the
performance. Complexity comparison is discussed in the next section.
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10-5

10-4

10-3

10-2

10-1

BE
R

Eb/N0 (dB)

              (1024, 512)
           BPD      XJ-BPD
nt=1           
nt=20         
nt=40         
nt=60         

              (128, 64) 
          BPD   XJ-BPD  
nt=1       
nt=5       
nt=8       
nt=20     

Figure 9. BER performance comparisons of XJ-BPD for the (1024, 512) and (128, 64) polar codes.

We apply RNN to XJ-BPD, and Figure 10 compares the BER performance of the RNN
XJ-BPD with those of the conventional BPD, for the (128, 64) polar code. The simulation
results show that the RNN-based XJ-BPD does not degrade the performance of the con-
ventional RNN-BPD. Moreover, the RNN-based decoders substantially reduce the number
of iterations needed to achieve the saturated decoding performances and outperform the
conventional BPD with the same nt. Specifically, the RNN-BPD only requires eight iter-
ations to achieve the saturated BER performance, which is only 40% of the number of
iterations required for the conventional BPD. Although the results in Figure 10 are only for
the (128, 64) code, because of the time limitation of the long training process, it is expected
that as the codeword length is increased, the gain we can obtain can be further increased.
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Eb/N0 (dB)

             BPD     RNN-BPD     RNN XJ-BPD
nt=1                               
nt=5                                
nt=8                                 
nt=20     

Figure 10. BER performance comparison of RNN-based XJ-BPD for the (128, 64) code.

Finally, Figure 11 compares the BER performance of the three different scheduling
methods applied to the (128, 64) polar code. It is evident that the SS shows much worse
performance, compared to the RTS. In the proposed hybrid method, the decoder uses RTS
at the first two iterations, while it uses SS during the remaining iterations. As can be seen
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from the figure, the proposed hybrid method shows much better performance than the SS
and it approximates the RTS. Although the number of iterations required by the proposed
hybrid method is certainly larger than that by the RTS, the decoding latency of the proposed
hybrid method is less than that of the RTS at the same BER performance, as shown in the
next section.
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Eb/N0 (dB)

 RTS, nt=20
 SS, nt=20
 SS, nt=60
 Proposed hybrid method, nt=20
 Proposed hybrid method, nt=60

Figure 11. BER performance comparison for the (128, 64) polar code according to the scheduling
method.

4.2. Complexity and Latency Performance

We first compare the computational complexities of various decoders in terms of the
number of floating point operations (FLOP), n f , and Table 1 shows the comparison. In the
estimation, we assume the Min-Sum algorithms for the BPD and SCD and ignore the sign
multiplications. Although the types and numbers of constituent codes are different for each
polar code, which makes it impossible for us to specify the exact values, it is evident that
the complexities of XJ-BP decoders are much less than those of conventional BP decoders.

Table 1. Complexity comparisons in terms of n f .

Method Addition Multiplication Comparison

BPD 2N log2 N - 2N log2 N
RNN-BPD 2N log2 N 2N log2 N 2N log2 N

SCD (N/2) log2 N - (N/2) log2 N
BPDL 2N log2 N · P - 2N log2 N · P

S-BPDL 2N log2 N · P 3N log2 N · P 2N log2 N · P
XJ-BPD « 2N log2 N - «2N log2 N

RNN XJ-BPD «2N log2 N «2N log2 N «2N log2 N

Figure 12 shows a comparison of n f , required at the first iteration and required to
achieve the saturated BER performance; i.e., the same performance as the SCD. At the first
iteration, the RNN XJ-BPD shows worse computational efficiency compared to the XJ-BPD,
because of the additional weight multiplications. It is evident that by effectively eliminating
unnecessary computations, the RNN XJ-BPD eventually requires fewer computations than
both the conventional BPD and the conventional RNN-BPD.

We compare the decoding latency in terms of the time required to update a node of
the information, and we refer to a unit of this time as Tn. Although SCD does not require
iterations, its latency is non-negligible, because it operates in a sequential manner. The soft
and hard information at the same node cannot be simultaneously updated, and even the
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soft information of the upper and the lower branches at the same node cannot be updated in
parallel. Therefore, the latency of SCD is (2N− 2) times of Tn. On the other hand, a decoder
with BPD estimates all N nodes of LLR information in parallel at each stage, and LLR
information in two directions, i.e., L and R need to be estimated. Therefore, the required
latency for the BPD with the conventional RTS is (2 log2 N · nt) times of Tn. When using SS,
the decoder can update the information in both directions at the same time, so the latency
of the decoder can be reduced to nt times of Tn. In addition, the latency of the proposed
hybrid method is (2log2N · 2 + (nt − 2)) times of Tn.
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SCD                                                
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XJ-BPD                                                
RNN-BPD                                              
RNN XJ-BPD                                        
S-BPL, L=30                                         
BPL, L=30                                            

Figure 12. Complexity comparisons in terms of n f according the codeword length.

Figure 13 shows a comparison of decoding latency according to the scheduling method.
The proposed hybrid method offers a faster decoding speed even with higher nt, and it
produces exactly the same performance as the conventional RTS method, as confirmed
in Figure 7. As the codeword length increases, SCD requires exponentially increasing
decoding latency, while BPD requires almost constant decoding time, showing a strong
advantage when implementing it into hardware.
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Figure 13. Comparison of decoding latency.
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5. Conclusions and Discussion on Future Works

This paper reviewed state-of-the-art decoding methods for polar codes, especially
focusing on BPD. We suggested various methods to improve the performance of BPD and
speed up the decoding, including efficient BPDL, a complexity reduction method, and
neural network-assisted BP decoding algorithms. The performance results found that both
BPDL and neural network-assisted BP decoding algorithms could effectively improve the
decoding performance. In addition, this paper also investigated the reduction in decoding
complexity by removing unnecessary constituent codes, and the use of different scheduling
schemes to speed up decoding.
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Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
BER Bit error rate
BPD Belief propagation decoding
BPDL Belief propagation decoding with list
BPSK Binary phase shift keying
DNN Deep neural network
FEC Forward error correction
FLOP Floating point operations
LDPC Low-density parity-check
LLR Log-likelihood ratio
PE Processing element
ResNet-BP Residual neural network-based belief propagation
RNN Recurrent neural network
RNN-BPD RNN-based belief propagation decoding
RNN XJ-BPD RNN based express-journey belief propagation decoding
RTS Round-trip scheduling
S-BPDL Scalable belief propagation decoding with list
SC Successive cancellation
SCD Successive cancellation decoding
SS Segmented scheduling
URLLC Ultra reliable and low latency communications
XJ-BPD Express-journey belief propagation decoding
XOR Exclusive-or
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