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Abstract: We propose a new “superpotential” and find that neither the supersymmetric energy
conditions nor the associated shape invariance conditions remain valid. On the other hand, a
new energy condition E+

n − E(−)
n = 2λ between the two partner Hamiltonians H(±) emerges. A

mathematical proof supports the present findings, with examples being presented. It is observed that
when the superpotential is associated with discontinuity or distortion, the SUSY energy conditions
and the shape invariance conditions will no longer hold well. The above formalism is also valid in
complex space for models involving PT-symmetry.
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1. Introduction

In physics, symmetry plays a major role in understanding different aspects of physical
phenomena. Sometimes the symmetry is either visible or invisible (hidden). Similarly,
sometimes symmetry is either broken or unbroken. In fact, Bose-Fermi symmetry or su-
persymmetry that relates bosons (particles with spin 0 or integer) and fermions (particles
with half odd integral spin) were originally used to construct theories for the possible
unification of internal symmetry with ordinary space–time symmetry. In 1981, Witten [1]
considered a model supersymmetry that remains unbroken at the free level, but broken by
small corrections [2]. This promoted many authors at the front level to propose a model
to visualize “breaking in supersymmetry (SUSY) [3–9]”. Some of the interesting analyses
on SUSY are: supersymmetry breaking in low-dimensional models [3], supersymmetry
breaking in a quantum phase transition [4], dynamical supersymmetry breaking on quan-
tum moduli spaces [5], breaking scale in atomic clocks [6], some experimental evidence
of supersymmetry breaking [7], and metastable supersymmetry breaking [8]. Despite
this analysis, Feldstein and Yanagida [9] discussed a general method, asking why is the
supersymmetry breaking scale unnaturally high, considering CP violation, Peccei–Quinn
(PQ) symmetry violation, and the non-conservation of R-parity, etc. However, in a very
recent paper by Cai et al. [10], they observed supersymmetry breaking in a trapped ion
quantum simulator. Similar papers on SUSY breaking have been discussed using the
Rabi model [11,12]. In this context, we would like to point out that Cai et al.’s [10] work
explains breaking using the Rabi type of model. On the other hand, supersymmetry in
the quantum mechanics (SUSYQM) took a new turn in introducing the “shape invariance”
property by Gendeshtein [13] (where the Schroedinger equation need not be solved in
finding the supersymmetric energy condition). This novel idea triggers many interest-
ing models [14–35] such as: harmonic oscillator, Morse oscillator, Rosen–Morse, Eckrat,
Poshi-teller, etc., justifying the validity of “shape-invariance” (SI) in nature. However, these
model potentials are only confined to real space but not in complex space. In complex
space, the operators need to satisfy the PT-symmetry condition, ([H, PT] = 0). It should
be remembered that PT-invariant systems are mainly non-self-adjoint operators [36–44]
(H 6= H†). Here, we highlight the basic features of PT-invariant systems as follows, saying
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that P stands for a parity invariant operator having the following properties: PxP−1 = −x
and PpP−1 = −p. Similarly, T stands for the time-reversal operator and has the properties
TxT−1 = x, TpT−1T−1 = −p, and TiT−1 = −i. In this case, the commutation relation
between coordinate (x) and momentum (p) remains invariant, i.e., [x, p] = i. In fact, in
this paper, we formulate a new model of superpotential and a new symmetry that remains
valid in real as well as complex space. Further, we study the limitations of supersymmetric
energy conditions (SUSYEC) and shape invariance (SI). Below, we first highlight a few
important features of supersymmetric energy conditions (SUSYEC), as follows.

2. Supersymmetric Energy Conditions (SUSYEC) and Shape Invariance (SI) Relations

Let us consider an annihilation operator

A =
d

dx
+ W(x) (1)

satisfying the condition
Aφ−0 = 0 (2)

Now, we select another operator B as

B = − d
dx

+ W(x) (3)

Now, using the above two operators (A, B), we have

H(−) = BA = p2 + W2 − dW
dx

(4)

and
H(+) = AB = p2 + W2 +

dW
dx

(5)

Here, H±, A.B are related as per the algebraic structure as

H =

[
H(−) 0

0 H(+)

]
(6)

with

Q =

[
0 0
A 0

]
(7)

and

Q† =

[
0 B
0 0

]
(8)

satisfying the following relations as: [H, Q] = 0, [H, Q†] = 0, and {Q, Q†} = H; and
{Q, Q} = 0 and {Q†, Q†} = 0.

From the assumed relation Aφ0 = 0, we can write

BAφ−0 = H(−)φ−0 = 0 (9)

This implies
E(−)

0 = 0 (10)

Further, let
H(−)φ−n = E(−)

n φ−n (11)

and
H(+)φ+

n = E(+)
n φ+

n (12)
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then
H(+)(Aφ−n ) = AB(Aφ−n ) = AH(−)φn− = E(−)

n (Aφ−n ) (13)

This means that (Aφ−n ) is an eigenfunction of H(+) having eigenvalue E(−)
n . Similarly,

we can write
H(−)(Bφ+

n ) = BA(Bφ+
n ) = BH(+)φn+ = E(+)

n (Bφ+
n ) (14)

In other words, the eigenvalues and eigenfunctions of two Hamiltonians are interre-
lated, i.e.,

E(−)
n+1 = E(+)

n (15)

Bφ+
n = φ−n+1 (16)

and
Aφ−n+1 = φ+

n (17)

The above energy relations are known as supersymmetric energy conditions (SUSYEC).

Shape Invariance Condition

Let
V+(x, λ) = W2(x, λ) + W

′
(x, λ)

= W2((x, β)−W
′
(x, β) + R(β)

= V−(x, β) + R(β)

(18)

Here, R(β) = f (λ) and is independent of x [13]. Here, we present the previous
analysis [13] and consider that λ is a set of parameters, then one can construct a hierarchy
of Hamiltonians as

Hs = p2 + V−(x, βs) + ∑s
k=1 R(βk)

= p2 + V−(x, βs−1) +
s−1
∑

k=1
R(βk)

(19)

and considering H1 = H(+) and H0 = H(−), then

E(−)
n =

n

∑
k=1

R(βk) (20)

or simply
E(−)

n = ∑ R(β) (21)

To justify this, we consider an exactly solvable model as the simple harmonic oscillator.
Here, we chose superpotential W(x, λ) as

W1 = λx (22)

In Figure 1, we plot the superpotential and reflect its behavior as

W1 = x
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Figure 1. Superpotential: SUSY and SI valid.
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Here, superpotential W1 is linear in nature and the above plot is for λ = 1. For this,
we have

V+(x, λ) = V−(x,−λ) + 2λ (23)

Hence,
E(−)

n (SI) = ∑ 2λ = 2nλ (24)

Now, we write the Hamiltonian

H(−) = p2 + λ2x2 − λ (25)

hence,
E(−)

n = (2n + 1)λ− λ = 2nλ (26)

Hence, we find E(−)
n (SI) = E(−)

n . Here, we would like to say that superpotential W
need not be linear to justify SUSYEC and SI; however, its nonlinear nature can also be
suitable to justify SUSYEC and SI [13,15–17]. Below, we reflect on one such behavior of the
superpotential W2 = tanh(x) in Figure 2.

W2 = tanh(x)
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Figure 2. Superpotential: SUSY and SI are valid.

Let us discuss a few different natures of the superpotential, as given below.

3. A Few Deviated Superpotentials with SUSYEC Being Valid and SI Being Invalid

Here, we consider two different model superpotentials where only SUSYEC remains
valid. In this case, we consider the model proposed by Bogie, Gangopadhya, and Mal-
low [20] as

W3 = wx− a
x
+ [

2wx
(wx2 + 2a− 1)

− 2wx
(wx2 + 2a + 1)

] (27)

and claim a few interesting natures connecting to the Euler equation. However, neglecting
the extra term, we have

W3 ∼ wx− a
x
= x− 1

x
; w = a = 1 (28)

Here, SUSY remains valid [27] but the shape invariance is no longer useful in releasing
energy E(−)

n because it is practically impossible to visualize the relation

V(+)
2 = V(−)

2 + f (β) (29)

This simple superpotential nature has been reflected in Figure 3 as
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Apart from the above, a similar feature is also seen in the model superpotential
proposed by Marques, Negreni, and Da Silva [8] as

W4 = λx|x| = x|x|; λ = 1 (30)

The nature of W4 is reflected in Figure 4.

W3 = x− 1
x
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Figure 3. Superpotential: SUSY is valid.

W4 = x|x|
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Figure 4. Superpotential: SUSY is valid but SI is not valid.

From W3 and W4, we get

W5 = x|x| − λ
|x|
x

= x|x| − |x|
x

(31)

Here, neither SUSY nor the shape-invariance remain valid. Below, we present the
nature of W5 in Figure 5 as



Symmetry 2022, 14, 2632 6 of 13

W5 = x|x| − |x|x
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Figure 5. Superpotential: no SUSY and no SI.

Below, we cite the first few energy levels of

H(−) = p2 + W2
5 −

dW5

dx
(32)

in Table 1.
SUSY and SI failure model W5.

Table 1. Energy levels E(−)
n .

E(−)
n

−0.333 8
0.553 1
3.821 7
6.961 7

3.1. New Superpotential for Novel Symmetry in Real Space

Here, we suggest a new model on superpotential as

W6 = x± λ
|x|
x

(33)

whose nature is reflected in Figure 6 as

W6 = x + |x|
x W61 = x− |x|x
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Figure 6. Superpotential: no SUSY and no SI valid.
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Further, the Hamiltonians generated from the above new model are

H± = p2 + x2 + λ2 ± 2λ|x| ± 1 (34)

The corresponding SUSY potentials satisfy the relation

V+(x,±λ) = V−(x,∓λ) + 2 (35)

Hence, using the shape invariance condition, one can easily verify that

E(−)
n 6= 2n (36)

Further, the two potentials are different in nature (one is a single well and the other
corresponds to a double well potential see Figure 7).

V− = x2 + 2|x| V− = x2 − 2|x|
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Figure 7. Superpotential: no SUSY and no SI being valid.

Further, both the cases have different natures of the phase-portrait; see Figure 8.

H− = p2 + x2 + 2|x| H− = p2 + x2 − 2|x|

x :Phase−portrait of  H
−
 = p
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Figure 8. Phase-portrait nature.

In other words, the shape invariance method fails to address the correct energy levels
of

H(−) = p2 + x2 ± 2|x| (37)

and are reflected in Table 2.
Novel symmetry Hamiltonians: superpotential model W6.
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Table 2. Novel symmetry: H(−).

H(−) = p2 + x2 + 2|x| H(−) = p2 + x2− 2|x|
2.001 1 −0.381 5
5.074 3 0.468 4
7.659 0 1.999 5

10.207 6 3.394 9

Similarly, we consider another superpotential

W7 = x + e−|x|/x (38)

In this case, the nature of the superpotential is reflected in Figure 9 as

W7 = x + e−|x|/x
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Figure 9. Superpotential: no SUSY and no SI.

Here, we present the corresponding SUSY Hamiltonians as

H± = p2 + x2 + e−2|x|/x + 2xe−|x|/x ± 1 (39)

In this case, we find the shape-invariance approach is also not valid

E(−)
n 6= 2n (40)

Below, we present few energy levels of H(−) corresponding to W7(x), as given in
Table 3.

Novel symmetry model W7.

Table 3. Energy levels E(−)
n .

E(−)
n

−0.001 5
1.721 9
2.103 4
4.012 6

3.2. Mathematical Proof of Novel Symmetry

Here, we present the proof of the relation E(+)
n − E(−)

n = 2λ as follows. Let En be the
energy of Hamiltonian

H = p2 + W2 (41)
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and
dW
dx

= λ (42)

then, the energy of

H(+) = p2 + W2 +
dW
dx

(43)

becomes
E(+)

n = En + λ (44)

Similarly,

H(−) = p2 + W2 − dW
dx

(45)

becomes
E(−)

n = En − λ (46)

Similarly,
E(+)

n = En + λ (47)

Hence, it is easy to equate and to see that

E(+)
n − E(−)

n = 2λ (48)

For λ = 1, we have
E(+)

n − E(−)
n = 2 (49)

4. New Superpotential in Complex Space: PT-Symmetry

Here, we extend the above formalism to complex Hamiltonians satisfying the condition

[H, PT] = 0 (50)

In complex, the following conditions must be satisfied

[W, PT] = 0 (51)

and
H± = p2 −W2 ∓ i

dW
dx

(52)

Now, we define the superpotentials as

4.1. First Model in Complex Space Having PT-Symmetry Condition

W8 = λix− iβ
|x|
x

(53)

The corresponding SUSY Hamiltonians [16] become

H± = p2 + λ2x2 + β2 − 2λβ|x| ± λ (54)

For λ = β = 1, it is the same as discussed above in the real case.

4.2. Second Exponential Model in Complex Space Having a PT-Symmetry Condition

Let us consider the second model’s superpotential as

W9 = λix− i
|x|
x

e−iβ|x|/x (55)
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The corresponding Hamiltonians are

H± = p2 + λ2x2 + e−2iβ|x|/x − 2λ|x|e−iβ|x|/x ± λ (56)

Below, we compute the energy levels for H(−), considering λ = 1andβ = 5, as given
in Table 4:

Exponential model H(−); λ = 1; β = 5.

Table 4. Exponential model, few energy levels.

H(−)
λ=1;β=5

0.072 5
2.173 3
4.826 1
7.488 2

Below, we present its unbroken spectral in PT-symmetry, as in Figure 10.

H(−): λ = 1, β = 5
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 a
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Real axis: Energy levels of novel potential λ=1 ;β=5  

Figure 10. Unbroken spectra in PT-symmetry.

4.3. Third Fractional Model in Complex Space Having PT-Symmetry Condition

Similarly, we construct a new fractional model of superpotential satisfying the PT-
invariant condition as

W10 = ix− i(|x|/x)
1 + i|x|/x)

(57)

The corresponding Hamiltonians are

H± = p2 + x2 +
1

(1 + i|x|/x)2 − 2
|x|

(1 + i|x|/x)
± 1 (58)

In Table 5, we reflect on the first four energy levels and the spectral nature in Figure 5.
Fractional model H(−).

Table 5. Few energy levels of fractional model: H(−).

E(−)
n

−0.490 0
1.087 9
2.683 4
4.562 1
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Below, we present its unbroken spectral nature, as in Figure 11.

H(−)
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Real axis: Energy levels of novel  fractional potential  

Figure 11. Unbroken spectra.

5. Method of Calculation

Here, we solve the eigenvalue relation [42,44]

H|Φ >= E|Φ > (59)

where
|Φ >= ∑ Am|m > (60)

in which |m > satisfies the eigenvalue relation

[p2 + x2]|m >= (2m + 1)|m > (61)

with m = 0, 1, 2, 3, 4, . . . . . .

6. Conclusions

In conclusion, the new symmetry operator has no relation with the shape invariance
and the traditional supersymmetric energy conditions: E(+)

n = E(−)
n with E(−)

− = 0 in either

real or complex space. On the other hand, a new relation has evolved as E(+)
n − E(−)

n = 2λ.
This relation remains valid in real and complex space. It should be borne in mind that
R(β) in V+(λ, x) = V−(β, x) + R(β) is independent of x. In spite of this, the SUSYEC or
SI conditions will no longer be valid. Similarly, many new models can be generated or
fabricated using this “novel symmetry”. Interested readers can find many such similar
cases as follows:

W = x± tanh(|x|/x) (62)

W = x± sinh(|x|/x) (63)

and
W = tanh(x)± λ|x|/x (64)

Further, the tabulated results presented above are the convergent results from the
matrix diagonalization approach used in the MATLAB codes. At this point, the author
would like to say that if one selects a superpotential as

W = x
< |x| >√
(< x2 >)

− |x|
x

(65)

then the new symmetry will be lost, i.e., E(+)
n − E(−)

n 6= 2.
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