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Abstract: This paper provides several illustrations of the numerous remarkable properties of the
lambda extensions of the two-point correlation functions of the Ising model, shedding some light on
the non-linear ODEs of the Painlevé type they satisfy. We first show that this concept also exists for
the factors of the two-point correlation functions focusing, for pedagogical reasons, on two examples,
namely C(0, 5) and C(2, 5) at ν = −k. We then display, in a learn-by-example approach, some of
the puzzling properties and structures of these lambda extensions: for an infinite set of (algebraic)
values of λ these power series become algebraic functions, and for a finite set of (rational) values
of lambda they become D-finite functions, more precisely polynomials (of different degrees) in the
complete elliptic integrals of the first and second kind K and E. For generic values of λ these power
series are not D-finite, they are differentially algebraic. For an infinite number of other (rational)
values of λ these power series are globally bounded series, thus providing an example of an infinite
number of globally bounded differentially algebraic series. Finally, taking the example of a product
of two diagonal two-point correlation functions, we suggest that many more families of non-linear
ODEs of the Painlevé type remain to be discovered on the two-dimensional Ising model, as well as
their structures, and in particular their associated lambda extensions. The question of their possible
reduction, after complicated transformations, to Okamoto sigma forms of Painlevé VI remains an
extremely difficult challenge.

Keywords: Ising two-point correlation functions; lambda extension of correlation functions; sigma
form of Painlevé VI; D-finite functions; differentially algebraic functions; globally bounded series
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1. Introduction: Linear versus Non-Linear Symmetry Representations

It is not necessary to underline the fundamental role played by the concept of symme-
try in physics [1], or in applied mathematics, and in the foundations for the fundamental
theories of modern physics. Symmetries can correspond to continuous or discrete trans-
formations, and are frequently amenable to mathematical formulations such as group
representations, with invariant or covariant properties, non-trivial identities, conservation
laws, etc.

Integrable models (in dynamical systems, lattice statistical mechanics, quantum field
theory, solid state physics, enumerative combinatorics, etc.) play a selected role, since
they correspond to situations where one has “enough” (possibly an infinite number of)
conserved quantities to solve the problem. We are not going to recall the techniques
and tools introduced to achieve that goal (Yang–Baxter equations, Bethe Ansatz, Lax
pairs, Schlesinger systems [2], etc.) but we will rather focus on the linear and non-linear
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differential equations emerging naturally in these problems, and on the corresponding
symmetries of these ordinary differential equations. To address that problem we focus, for
pedagogical reasons, on the analysis of the two-point correlation functions of a fundamental
integrable model, the two-dimensional Ising model [3]. The non-linear ODEs emerging in
such an “integrable” framework are highly selected: they have the (fixed critical) Painlevé
property, they have algebraic function solutions, etc. This is in (strong) contrast with the
generic non-linear ODEs for which more numerical analysis (investigation of the qualitative
behavior of non linear ODEs, stability and boundness, etc.) must be performed (see for
instance [4–6]).

Some two-point correlation functions C(M, N) of the two-dimensional Ising model
can be seen as solutions of linear differential equations and, at the same time, also as so-
lutions of non-linear differential equations, namely Okamoto sigma-forms of Painlevé VI
equations. The solutions of these last non-linear ODEs naturally introduce one-parameter
families of power series solutions, that are called lambda extensions of the two-point
correlation functions.

The two-point correlation functions C(M, N) we consider [7,8] for the special case
ν = −k (or in the isotropic case ν = 1), are polynomial expressions of the complete elliptic
integrals of the first and second kind K and E: they are solutions of linear differential
operators with polynomial coefficients, in other words they are D-finite; however, when
introducing some well-suited log-derivative of these two-point correlation functions (see (4)
below), they are also solutions of highly selected non-linear differential equations having
the Painlevé property [9], namely Okamoto sigma-forms [10] of Painlevé VI (see (5) below).
In other words, they are differentially algebraic. A differentially algebraic function [11,12] is
a function f (t) solution of a polynomial relation P(t, f (t), f ′(t), · · · f (n)(t)) = 0, where
f (n)(t) denotes the n-th derivative of f (t) with respect to t. The two-point correlation
functions C(M, N) have at the same time, a linear (D-finite) description and a non-linear
(differentially algebraic) description! The question of the analysis of the symmetries of
these two linear and non-linear ordinary differential equations, and of the symmetries of their
solutions naturally pops out. The symmetries of a differential equation and the symmetries
of the solutions of the differential equation are two different concepts. It is crucial to note
that the non-linear ordinary differential equations for the two-point correlation functions
C(M, N) correspond to one closed equation (see (5) below) where the two integers M and N
are parameters in the equation. In contrast, the linear differential equations for the C(M, N)
correspond to an infinite number of linear differential equations of order (and degree and
size) growing with the two integers M and N. Each description (linear versus non-linear)
has its own advantages and disadvantages: an infinite number of differential operators
to be discovered but they are simply linear, versus one (M, N-dependent) equation en-
capsulating everything, but it is non-linear. The analysis of the symmetries of the linear
differential operators associated with the two-point correlation functions C(M, N) can, for
instance, be performed considering the corresponding differential Galois group. Actually,
we have seen in previous papers [13] that the linear differential operators emerging in the
integrable models are systematically associated with selected differential Galois groups
and the operators being homomorphic [13] to their adjoint associated operators. We even
have this remarkable property with most of the linear differential operators annihilating
diagonals of rational functions [13]. In this Ising case, the linear differential operators
are homomorphic [14] to the symmetric N-th power of the order-two linear differential
operator annihilating the complete elliptic integrals of the first or second kind K and
E. Along this line, some mathematicians could argue that, if a differential Galois group
approach of integrability is probably natural, an extension of the concept of differential
Galois group for non-linear ODEs is certainly hopeless in general [15]. They may even argue
(see [15] in Section 6.2) that, even if most of the people that work in integrability consider
the families of Painlevé transcendents [16,17] as integrable, their opinion is that, in general,
they are non-integrable (at least in the (narrow) Liouville sense [18,19]). Let us recall that the
sigma-form of Painlevé VI equations (such as (5) below), are highly selected non-linear ODEs:
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they have the fixed critical point property [20–22] (Painlevé property) and can be obtained
from isomonodromic deformations of linear differential equations [23,24], which allows
us to see these non-linear ODEs as compatibility conditions of a linear Schlesinger system
of PDEs. In that case, one could imagine to consider a differential Galois Theory for the
underlying Schlesinger system. The purpose of this paper is not to build a differential
Galois Theory of Painlevé equations in order to discuss, from a very general mathematical
viewpoint the “symmetries” of the non-linear ODEs (such as (5) below) emerging for the
C(M, N) Ising two-point correlation functions. On the contrary, in a very pedagogical,
learn-by-examples approach, we display a large set of the properties (symmetries, etc.) of
the C(M, N) two-point correlation functions, with a focus on the remarkable properties
of the lambda-extensions solutions of the sigma-form of Painlevé VI non-linear ODEs (such
as (5) below). We must also mention the fact that the lambda extensions of the two-point
correlation functions C(M, N) also verify quadratic discrete recursions [25–27] (lattice recur-
sions in the two integers M and N), that can be seen as integrable lattice recursions. For
pedagogical reasons, we restrict to C(0, 5) and C(2, 5). Then, taking an example of product
of two diagonal two-point correlation functions, we suggest that many more families of
non-linear ODEs of the Painlevé type remain to be discovered on the two-dimensional
Ising model, as well as their structures, and in particular their associated lambda exten-
sions. Finally, we give additional comments and results providing an illustration of a set
of remarkable, and sometimes puzzling, properties of the lambda extensions of the Ising
two-point correlation functions.

2. Recalls

We revisit, with a pedagogical heuristic motivation, the lambda extensions [14] of
some two-point correlation functions C(M, N) of the two-dimensional Ising model. For
simplicity, we examine in detail the lambda extensions of a particular low-temperature
diagonal correlation function, namely C(0, 5) and C(2, 5), in order to make crystal clear
some structures and subtleties. Note however, that similar structures and results can also
be obtained on other two-point correlation functions C(M, N) for the special case ν = −k
studied in [7] where Okamoto sigma-forms of Painlevé VI equations also emerge.

In a previous paper [7], we considered the two-point correlation C(M, N) of spins at
sites (0, 0) and (M, N), of the anisotropic Ising model defined by the interaction energy

E = −∑
j,k
{Evσj,kσj+1,k + Ehσj,kσj,k+1}, (1)

where σj,k = ± 1 is the spin at row j and column k, and where the sum is over all lattice
sites. Defining

k = (sinh 2Ev/kBT sinh 2Eh/kBT)−1 and ν =
sinh 2Eh/kBT
sinh 2Ev/kBT

, (2)

we found [7] that in the special case

ν = −k, (3)

the correlation C(M, N) (which is the same as the Toeplitz determinants [28] of Forrester–
Witte [29] as given in [30]) satisfies an Okamoto sigma-form of the Painlevé VI equation.
The condition ν = −k (as well as the isotropic case ν = 1) is special because it is such
that the complete elliptic integrals of the third kind (EllipticPi in Maple), appearing in the
anisotropic case, reduce to complete elliptic integrals of the second kind (see Equation (30)
in [7]).

For T < Tc, M ≤ N and ν = −k, with t = k2, introducing

σ = t · (t− 1) · d ln C(M, N)

dt
− t

4
, (4)
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we have, when M + N is odd, the following Okamoto sigma-form of the Painlevé VI
equation [7]:

t2 · (t− 1)2 · σ′′2 + 4 · σ′ · (t σ′ − σ) ·
(
(t− 1) · σ′ − σ

)
−M2 · (t σ′ − σ)2 − N2 · σ′2 + (M2 + N2) · σ′ · (t σ′ − σ) = 0. (5)

2.1. Two Factors

In this M + N odd, M ≤ N, M 6= 0, ν = −k case, the correlation functions factor
into two factors. Note that what is written here in Section 2.1 is also true when M = 0, with
the caveat that g+ and g− in (6) factor into two factors (see Section 2.2 below). We write
the factorizations of these C(M, N)’s as

(1 − t)−1/4 · C(M, N; t) = g+(M, N; t) · g−(M, N; t), (6)

where the two factors g± are homogeneous polynomials of the complete elliptic integrals of
the first and second kind:

K̃(k) =
2
π
· K(k) = 2F1

(
[
1
2

,
1
2
], [1], k2

)
,

Ẽ(k) =
2
π
· E(k) = 2F1

(
[
1
2

,−1
2
], [1], k2

)
. (7)

We consider the following logarithmic derivatives of the previous two factors:

σ±(M, N; t) = t · (t− 1) · d ln g±(M, N; t)
dt

. (8)

The sigma functions have additive decompositions, which follow from the multiplica-
tive decompositions (6):

σ(M, N; t) = σ+(M, N; t) + σ−(M, N; t). (9)

Here we begin with the factorizations (6) of the C(M, N)’s with M+ N odd, M ≤ N,
for miscellaneous values of M and N, and, by use of the methods described in [7] and of
the program guessfunc of Jay Pantone [31], we find that both σ+(M, N; t) and σ−(M, N; t)
in (9) satisfy the same second-order non-linear differential equation

32 t3 · (t − 1)2 · σ′′2 + 4 t2 · (t− 1) ·
(

8 · σ − 8 · (t + 1) · σ′ + M2 − N2
)
· σ′′

−
(

8 σ − 16 · t σ′ + M2 t − N2 + 1 − t
)
·
(

8 · t · (t− 1) · σ′2 − 16 t · σ · σ′

+8 · σ2 + (M2 − N2) · σ
)

= 0, (10)

where the prime indicates a derivative with respect to t, and where σ is one of the two
log-derivatives (8). Note that this second-order non-linear ODE, which is actually of the
Painlevé type, is not of the Okamoto sigma-form of Painlevé VI form, but it can be reduced
to such a form using non-trivial transformations (Equations (26), (28) in Section 2 of [8]).

The two solutions (8) of (10), σ+(M, N; t) and σ−(M, N; t), have different boundary
conditions. Note that σ± = 0 is a selected solution of (10).

2.2. Four Factors

In [7], we discovered that C(0, N) with N odd and k = −ν, in the low-temperature
regime, factors into four terms instead of two. The four factors for C(0, N) were presented as

C(0, N) = constant · (1− t)1/2 · t(1−N2)/4 · f1 f2 f3 f4, (11)
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where the factors f j all vanish at t = 0 in such a way to cancel the factor t(1−N2)/4. We
normalize the factors fi in (11) in such a way to extract a factor of (1− t)1/4 which is the
limiting behavior of C(0, N) as N → ∞, and we impose the condition that the four new
factors satisfy the same non-linear differential equation. The previous factorization (11) in four
factors (examples of gi(0, N)’s for C(0, 5) and C(0, 7) are given in [8]) now reads [8]:

(1 − t)−1/4 · C(0, N) = g1(0, N) · g2(0, N) · g3(0, N) · g4(0, N). (12)

If one defines

σj = t · (t− 1) ·
d ln gj(t)

dt
, (13)

the previous factorization (12) in four factors becomes an additivity property of the corre-
sponding σi’s:

σ(0, N) = σ1(0, N) + σ2(0, N) + σ3(0, N) + σ4(0, N). (14)

These σi’s are solutions of the same non-linear differential equation of the Painlevé
type, which reads:

t2 · (t − 1)2 · σ′′2 + 4 σ′ · (t · σ′ − σ) ·
(
(t− 1) · σ′ − σ

)
+

1
4
·
(
(N2 + 1) · (t− 1) − t2

)
· σ′2 − 1

26 ·
(

16 · (N2 + 1 − 2 t) · σ + N2 · t
)
· σ′

−1
4
· σ2 +

N2

26 · σ − N2 · (N2 − 3)
210 = 0. (15)

3. α-Extension of the Four Factors f1, f2, f3, f4 for C(0, 5)

We underlined that the (low-temperature) row correlation functions C(0, N) factor,
when is N odd, into four factors (11). These four factors fi’s are each a homogeneous
polynomial of the complete elliptic functions E and K. Furthermore, one can see that each of
these four factors is a Toeplitz determinant (see, for instance, Section G.4 of appendix G in [8]).

More specifically, let us revisit the N = 5 case detailed in [7] and also [8], where the
two-point correlation C(0, 5) factors as follows

C(0, 5) =
256
81
· (1 − t)1/2

t6 · f1 · f2 · f3 · f4, (16)

where:

f1 = (2t − 1) · Ẽ + (1 − t) · K̃, f2 = (1 + t) · Ẽ − (1 − t) · K̃, (17)

f3 = (t − 2) · Ẽ + 2 · (1 − t) · K̃, (18)

f4 = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2. (19)

These exact polynomial expressions in terms of complete elliptic integrals of the first
and second kind K̃ and Ẽ, actually have some lambda-extensions. Considering the non-linear
ODE’s verified by these fn’s one can, by a down-to-earth, order by order expansion of the
analytic at t = 0 solution, find the series expansion of a one parameter family of solution of
the non-linear ODE’s (we will denote α this parameter), such that α = 0 corresponds to the
previous exact expressions (17)–(19). The first terms of these α-dependent solutions read:
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f1(α) =
3
2

t − 9 t2

16
− 15 t3

128
−

(
105

2048
+

15
1024

α

)
· t4 −

(
945

32, 768
+

135
8192

α

)
· t5

−
(

4851
262, 144

+
513

32, 768
α

)
· t6 −

(
27027

2, 097, 152
+

7497
524, 288

α

)
· t7 (20)

−
(

637, 065
67, 108, 864

+
434, 295

33, 554, 432
α

)
· t8

−
(

15, 643, 485
2, 147, 483, 648

+
6, 292, 455

536, 870, 912
α − 105

536, 870, 912
α2
)
· t9 + · · ·

f2(α) =
3
2

t − 3 t2

16
− 3 t3

128
−

(
15

2048
− 15

1024
α

)
· t4 −

(
105

32, 768
− 165

8192
α

)
· t5

−
(

441
262, 144

− 723
32, 768

α

)
· t6 −

(
2079

2, 097, 152
− 11, 799

524, 288
α

)
· t7 (21)

−
(

42, 471
67, 108, 864

− 747, 927
33, 554, 432

α

)
· t8

−
(

920, 205
2, 147, 483, 648

− 11, 692, 785
536, 870, 912

α − 105
536, 870, 912

α2
)
· t9 + · · ·

f3(α) = −3
8

t2 − 3 t3

32
− 45 t4

1024
− 105 t5

4096
−

(
2205

131, 072
− 15

131, 072
α

)
· t6

−
(

6237
524, 288

− 135
524, 288

α

)
· t7 −

(
297, 297

33, 554, 432
− 3285

8, 388, 608
α

)
· t8

−
(

920, 205
134, 217, 728

− 16965
33, 554, 432

α

)
· t9 + · · · (22)

f4(α) = −3
8

t2 − 3
16

t3 − 129 t4

1024
− 195 t5

2048
−

(
5025

65, 536
+

15
131, 072

α

)
· t6

−
(

8421
131, 072

+
75

262, 144
α

)
· t7 −

(
1, 856, 253

33, 554, 432
+

3975
8, 388, 608

α

)
· t8

−
(

3, 260, 907
67, 108, 864

+
11, 025

16, 777, 216

)
· t9 + · · · (23)

Furthermore one sees, on the series expansions of the α-extensions (20)–(23), the
following remarkable identities

(1 − t)1/4 · f2(α) = f1(1 − α), (1 − t)1/4 · f2(1 − α) = f1(α),

(1 − t)1/4 · f4(α) = f3(1 − α), (1 − t)1/4 · f4(1 − α) = f3(α), (24)

and thus:

(1 − t)1/2 · f2(α) · f4(α) = f1(1 − α) · f3(1 − α),

(1 − t)1/2 · f2(1 − α) · f4(1 − α) = f1(α) · f3(α), (25)

f4(α) · f1(1 − α) = f2(α) · f3(1 − α),

f4(1 − α) · f1(α) = f2(1 − α) · f3(α). (26)
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In particular one has:

f1(0) = (2t − 1) · Ẽ + (1 − t) · K̃, (27)

f1(1) = (1 − t)1/4 ·
(
(1 + t) · Ẽ − (1 − t) · K̃

)
, (28)

f2(0) = (1 + t) · Ẽ − (1 − t) · K̃, (29)

f2(1) = (1 − t)−1/4 ·
(
(2t − 1) · Ẽ + (1 − t) · K̃

)
, (30)

f3(0) = (t − 2) · Ẽ + 2 · (1 − t) · K̃, (31)

f3(1) = (1 − t)−1/4 ·
(

3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2
)

, (32)

f4(0) = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2, (33)

f4(1) = (1 − t)1/4 ·
(
(t − 2) · Ẽ + 2 · (1 − t) · K̃

)
. (34)

It is worth noticing that (in contrast with the λ-extension C(0, 5; λ) see (35) below),
the fn(α)’s have two different values of the parameter α for which these α-extensions are
D-finite, being (homogeneous) polynomials in Ẽ and K̃. One remarks with (31) and (32)
(or (33) and (34)), that the corresponding polynomials in Ẽ and K̃ are not necessarily of the
same degree in Ẽ and K̃.

The λ-extension C(0, 5; λ) solution of the same non-linear ODE verified by C(0, 5)
(namely (5) for N = 5) corresponds to the form-factor expansion [14,32], which amounts to
seeing this one-parameter family of solutions as a deformation of the (1 − t)1/4 algebraic
solution of the previous non-linear ODE (5) verified by C(0, 5):

C(0, 5; λ) = (1 − t)1/4 ·
(

1 + λ2 n ·
∞

∑
n=1

f 2 n
0,5

)
(35)

= 1 − t
4
− 3 t2

32
− 7 t3

128
− 77 t4

2048
− 231 t5

8192
−

(
1463

65, 536
+

25
1, 048, 576

· λ2
)
· t6

−
(

4807
262, 144

+
275

4, 194, 304
· λ2

)
· t7 −

(
129, 789

8, 388, 608
+

123, 475
1, 073, 741, 824

· λ2
)
· t8 + · · ·

3.1. Deformation around a D-Finite Solution

The λ-extension of the correlation function C(0, 5; λ) can also be seen as a µ-deformation
of the series of the correlation C(0, 5), whose exact expression is given by (16) (with (17)–
(19)) in terms of polynomials in Ẽ and K̃. This one-parameter µ-family of series expansion
which verifies the same non-linear ODE (5) as C(0, 5), reads:

C(0, 5; λ) = C(0, 5) + µ · G1(t) + µ2 · G2(t) + µ3 · G3(t) + · · ·

= 1 − t
4
− 3 t2

32
− 7 t3

128
− 77 t4

2048
− 231 t5

8192
−

(
23, 433

1, 048, 576
− 25

1, 048, 576
µ

)
· t6

−
(

77, 187
4, 194, 304

− 275
4, 194, 304

µ

)
· t7 −

(
16, 736, 467

1, 073, 741, 824
− 123, 475

1, 073, 741, 824
µ

)
· t8

−
(

57, 930, 653
4, 294, 967, 296

− 708, 125
4, 294, 967, 296

µ

)
· t9 + · · · (36)

The identification of these two power series (35) and (36) corresponds to the simple
relation between λ and µ:

λ2 = 1 − µ or: µ = 1 − λ2. (37)

This one-parameter series (35), or (36), is in agreement with a α-extension of the four
products formula (16)

C(0, 5; λ) =
256
81
· (1 − t)1/2

t6 · f1(α) · f2(α) · f3(α) · f4(α), (38)
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if

µ = 4 · α · (1 − α) or: λ2 =
(

2 α − 1
)2

, (39)

or:

α =
1 ± λ

2
. (40)

Thus, one sees that the α ↔ 1 − α involutive symmetry in the identities (24) amounts
to changing the sign of λ: λ ↔ −λ. The value λ = 1 (associated with the “physical”
correlation functions) corresponds to the two values α = 0 and α = 1 for which the
four factors fn become polynomials of Ẽ and K̃ (not necessarily of the same degree;
see, for instance (33), (34)). The value λ = 0 (associated with the algebraic function
C(0, 5; 0) = (1 − t)1/4) corresponds to the value α = 1/2.

Recalling the usual parametrization [8,14] of the parameter λ, namely λ = cos(u),
and the trigonometric identity

cos(u) = 2 cos(u/2)2 − 1, (41)

we see that the parameter α is naturally parameterized as

α = cos(u/2)2, (42)

the α ↔ 1 − α involutive symmetry in the identities (24) corresponding to the parametrization

1 − α = 1 − cos(u/2)2 = sin(u/2)2, (43)

which amounts to changing u into u → u + π in (42), a transformation that does not
change λ2 = cos(u)2.

3.2. The Algebraic α = 1/2 Case

One thus sees that the (involutive) symmetry α ↔ 1 − α singles out α = 1/2. Along
this line, note that, for α = 1/2, these α-extensions (20), (21) become algebraic functions.
One actually has:

f1

(1
2

)
=

3
2
· t · (1− t)1/16 ·

(1 + (1− t)1/2

2

)5/4
(44)

=
3
2

t − 9
16

t2 − 15
128

t3 − 15
256

t4 − 1215
32, 768

t5 − 6903
262, 144

t6 + · · ·

f2

(1
2

)
=

3
2
· t · (1− t)1/16 · (1− t)−1/4 ·

(1 + (1− t)1/2

2

)5/4
(45)

=
3
2

t − 3
16

t2 − 3
128

t3 +
225

32, 768
t5 +

2451
262, 144

t6 + · · ·

The α-extensions (22), (23) for f3(α) and f4(α) also become algebraic functions:

f3

(1
2

)
= −3

8
t2 − 3

32
t3 − 45

1024
t4 − 105

4096
t5 − 4395

262, 144
t6 + · · ·

= −3
8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4
·
( (1 + t1/2)1/2 − (1 − t1/2)1/2

t1/2

)
= −3

8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4
·
(

2 · (1 − (1 − t)1/2)

t

)1/2
, (46)
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f4

(1
2

)
= −3

8
t2 − 3

16
t3 − 129

1024
t4 − 195

2048
t5 − 20, 115

262, 144
t6 + · · ·

= −3
8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
( (1 + t1/2)1/2 − (1 − t1/2)1/2

t1/2

)
= −3

8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
(

2 · (1 − (1 − t)1/2)

t

)1/2
. (47)

One verifies easily that

f1

(1
2

)
· f3

(1
2

)
= (1 − t)1/2 · f2

(1
2

)
· f4

(1
2

)
= − 9

16
· t3 · (1 − t)1/8, (48)

f1

(1
2

)
· f4

(1
2

)
= f2

(1
2

)
· f3

(1
2

)
= − 9

16
· t3 · (1 − t)−1/8, (49)

in agreement with the identities (25) and (26).
Do note that f1(α) and (1 − t)1/4 · f2(α), but also t1/4 · f3(α) and also t1/4 · (1 −

t)1/4 · f4(α), verify the same Okamoto sigma-form of Painlevé VI (independently of α). Note
that the previous algebraic function solutions (44) and (45) are actually such that f1(

1
2 )

and (1 − t)1/4 · f2(
1
2 ) are not only solutions of the same non-linear ODE but are actually

the same algebraic function f1(
1
2 ) = (1 − t)1/4 · f2(

1
2 ) . Similarly (46) and (47) are actually

such that f3(
1
2 ) and (1 − t)1/4 · f4(

1
2 ) are not only solutions of the same non-linear ODE

but are actually the same algebraic function f3(
1
2 ) = (1 − t)1/4 · f4(

1
2 ) . For α = 1/2 the

corresponding λ deduced from (39) is λ = 0 and the four product formula (38) becomes,
with the previous exact algebraic expressions (44)–(47) (and after simplifications):

C(0, 5; 0) =
256
81
· (1 − t)1/2

t6 · f1

(1
2

)
· f2

(1
2

)
· f3

(1
2

)
· f4

(1
2

)
= (1 − t)1/4

= 1 − 1
4

t − 3
32

t2 − 7
128

t3 − 77
2048

t4 − 231
8192

t5 − 1463
65536

t6 + · · · (50)

in agreement with the λ = 0 evaluation of the form factor expansion (35). Note that,
conversely, the identity (50) can be used to find the exact expressions of the products f1 f4
and f1 f3 evaluated at α = 1/2 (see (48) and (49)), when the exact expressions on the fn’s,
n = 1, 2, 3, 4, are much more involved (see (44)–(47)).

Remark 1. All these calculations are not specific of N = 5. Similar calculations can be
performed for other values of N. Since these calculations become more and more involved,
they are not detailed here. Let us just give the expressions of f1 for different (odd) values
of N, in terms of the complete elliptic integrals of the first and second kind K̃ and Ẽ. These
expressions can be compared with expressions (E.2) and (E.13) in Appendix E of [8] but
with a different normalization (E.1).

For N = 5, 7, 9 the f1(N) solutions read, respectively:

f1(N = 5) = (2 t − 1) · Ẽ + (1 − t) · K̃, (51)

f1(N = 7) = −(3 t + 4) · (t− 1)2 · K̃2 + 2 (t − 1) · (3 t2 − 7 t− 4) · Ẽ K̃

+(11 t2 − 11 t− 4) · Ẽ2, (52)
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f1(N = 9) = (8 t2 − 47 t + 12) · (t− 1)2 · K̃2

−2 · (t− 1) · (16 t3 − 63 t2 + 83 t− 12) · Ẽ K̃

+(32 t4 − 64 t3 + 151 t2 − 119 t + 12) · Ẽ2, (53)

We can verify for N = 5, 9, 13, · · · that the factor f1(N) expands as

f1(N) = λN · t(N−1)2/16 + · · · , (54)

when, for N = 7, 11, 15, · · · the factor f1(N) has the expansion:

f1(N) = µN · t(N+1)2/16 + · · · (55)

3.3. Form-Factor Deformation around the Algebraic Function f1(1/2)

Introducing a form-factor β-deformation around the algebraic function (44) (β is the
deformation parameter around α = 1/2)

f1

(1
2
+ β

)
=

3
2
· t · (1 − t)1/16 ·

(1 + (1 − t)1/2

2

)5/4
+ β · G(t) + · · · (56)

and inserting (56) in the non-linear ODE verified by (56), one obtains an order-three linear
differential operator for the first coefficient G(t).

This order-three linear differential operator has the following solution:

G(t) =
t2

64
· (1 − t)1/16 ·

(1 + (1 − t)1/2

2

)1/4
· PE,K (57)

= − 15
1024

· t4 − 135
8192

· t5 − 513
32, 768

· t6 − 7497
524, 288

· t7 − 434, 295
33, 554, 432

· t8 + · · ·

where PE,K is a polynomial in Ẽ and K̃:
PE,K = (58)(

t− 4 + 12 · (1− t)1/2
)
· 2F1

(
[
3
2

,
3
2
], [3], t

)
− 8 · 2F1

(
[
1
2

,
1
2
], [2], t

)
=

−8 · 12 · (t − 2) · (1 − t)1/2 + 3 t2 − 8 t + 8
t2 · K̃ − 32 · t− 2 + 6 · (1 − t)1/2

t2 · Ẽ.

As far as the log-derivative with respect to t is concerned, one obtains

t · (t − 1) · d
dt

ln
(

f1

(1
2
+ β

))
=

10 · (1 − t)1/2 + 27 t − 26
16

(59)

− β

96
·
(

t · (1 − t)1/2 · PE,K + 2 · t · (1 − t) · (1 − (1 − t)1/2) · dPE,K

dt

)
+ · · ·

where the first deformation term is also a polynomial in Ẽ and K̃.

4. α-Extensions of the Two Factors F1, F2 for C(2, 5)

The low-temperature correlation functions C(M, N), at ν = −k, with M < N,
M + N odd, M even but different from 0, factor into the product of, not four terms, but
only two terms

C(M, N) = ρ · (1 − t)1/2 · t−(N2−1)/4 · F1(M, N) · F2(M, N). (60)

For instance for M = 2 and N = 5 one has

C(2, 5) =
256

2025
· (1 − t)1/2

t6 · F1(2, 5) · F2(2, 5), (61)



Symmetry 2022, 14, 2622 11 of 22

where

F1(2, 5) = 2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+(2 t2 + 13 t + 2) · Ẽ2, (62)

and:

F2(2, 5) = 5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+(t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3. (63)

The λ-extension C(2, 5; λ) corresponds to a form-factor expansion around the alge-
braic solution (1 − t)1/4:

C(2, 5; λ) = (1 − t)1/4 ·
(

1 + λ2 n ·
∞

∑
n=1

f 2 n
0,5

)
(64)

= 1 − t
4
− 3 t2

32
− 7 t3

128
− 77 t4

2048
− 231 t5

8192
−

(
1463

65, 536
+

49
1, 048, 576

· λ2
)
· t6

−
(

4807
262, 144

+
491

4, 194, 304
· λ2

)
· t7 −

(
129, 789

8, 388, 608
+

205, 491
1, 073, 741, 824

· λ2
)
· t8 + · · ·

The λ-extension of (61) can also be seen as a µ-deformation of the correlation function
C(2, 5), given by the exact expression (61) with (62) and (63), as a polynomial expression in
Ẽ and K̃:

C(2, 5; λ) = 1 − t
4
− 3

32
t2 − 7

128
t3 − 77

2048
t4 − 231

8192
t5

−
( 23, 457

1, 048, 576
− 49

1, 048, 576
µ
)
· t6 −

( 7403
4, 194, 304

− 491
4, 194, 304

µ
)
· t7

−
( 16, 818, 483

1, 073, 741, 824
− 205, 491

1, 073, 741, 824
µ
)
· t8 (65)

−
( 58, 337, 917

4, 294, 967, 296
− 1, 115, 389

4, 294, 967, 296
µ
)
· t9 + · · ·

These two series can be seen to identify if one has the following relation between λ
and µ:

λ2 = 1 − µ or: µ = 1 − λ2. (66)

The α-extension of (62) reads

F1(2, 5; α) = −45
16

t3 − 135
128

t4 − 1485
2048

t5 −
(4545

8192
+

315
8192

α
)
· t6

−
( 58, 995

131, 072
+

17, 955
262, 144

α
)
· t7 −

( 794, 745
2, 097, 152

+
188, 055

2, 097, 152
α
)
· t8

−
(21, 971, 565

67, 108, 864
+

876, 645
8, 388, 608

α
)
· t9 + · · · (67)

and the α-extension of (63) reads:

F2(2, 5; α) = −45
16

t3 +
45

128
t4 +

315
2048

t5 +
( 315

4096
+

315
8192

α
)
· t6

+
( 11, 655

262, 144
+

12, 915
262, 144

α
)
· t7 +

( 14, 805
524, 288

+
106, 155

2, 097, 152
α
)
· t8

+
( 1, 285, 515

67, 108, 864
+

408, 555
8, 388, 608

α
)
· t9 + · · · (68)
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One thus verifies that relation (61) can be “lambda-extended”

C(2, 5; λ) =
256

2025
· (1 − t)1/2

t6 · F1(2, 5; α) · F2(2, 5; α), (69)

provided:

µ = 4 · α · (1 − α) or: λ2 =
(

2 α − 1
)2

. (70)

Again one verifies the remarkable identities:

F2(2, 5; α) = (1 − t)1/2 · F1(2, 5; 1 − α),

F2(2, 5; 1 − α) = (1 − t)1/2 · F1(2, 5; α). (71)

In particular one has:

F1(2, 5; 0) = 2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+(2 t2 + 13 t + 2) · Ẽ2, (72)

F1(2, 5; 1) = (1 − t)−1/2 ·
(

5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+(t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3
)

, (73)

F2(2, 5; 0) = 5 · (t− 1)3 · K̃3 − (11 t − 17) · (t − 1)2 · Ẽ K̃2

+(t − 1) · (2 t2 − 33 t + 19) · Ẽ2 K̃ + (7 t2 − 22 t + 7) · Ẽ3. (74)

F2(2, 5; 1) = (1 − t)1/2 ·
(

2 · (1 − t) · (2 t + 1) · K̃2 + (7 t2 − 15 t − 4) · Ẽ K̃

+(2 t2 + 13 t + 2) · Ẽ2
)

. (75)

The series expansions of the previous exact expressions read:

F1

(
2, 5; 0

)
= −45

16
t3 − 135

128
t4 − 1485

2048
t5 − 4545

8192
t6 − 58, 995

131, 072
t7 + · · ·

F1

(
2, 5; 1

)
= −45

16
t3 − 135

128
t4 − 1485

2048
t5 − 1215

2048
t6 − 135, 945

262, 144
t7 + · · · (76)

F2

(
2, 5; 0

)
= −45

16
t3 +

45
128

t4 +
315

2048
t5 +

315
4096

t6 +
11, 655

262, 144
t7 + · · ·

F2

(
2, 5; 1

)
= −45

16
t3 +

45
128

t4 +
315

2048
t5 +

945
8192

t6 +
12, 285

131, 072
t7 + · · · (77)

It is worth noticing that (in contrast with the λ-extension C(2, 5; λ)), the Fn(2, 5; α)’s
have two different values of the parameter α for which these α-extensions are D-finite,
being (homogeneous) polynomials in Ẽ and K̃. One remarks with that the corresponding
polynomials in Ẽ and K̃ are not necessarily of the same degree in Ẽ and K̃.

Remark 2. The α = 1/2 algebraic subcase. For α = 1/2 the corresponding λ deduced
from (70) is λ = 0 and the two product formula (69) becomes

C(2, 5; 0) =
256

2025
· (1 − t)1/2

t6 · F1

(
2, 5;

1
2

)
· F2

(
2, 5;

1
2

)
= (1 − t)1/4, (78)
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in agreement with the expansion (65) evaluated at λ = 0. Using the identity (71) one obtains

F2

(
2, 5;

1
2

)
= (1 − t)1/2 · F1

(
2, 5;

1
2

)
, (79)

which enables to write (78) as:

C(2, 5; 0) =
256
2025

· 1
t6 ·

(
F2

(
2, 5;

1
2

))2
= (1 − t)1/4, (80)

from which one deduces

F2

(
2, 5;

1
2

)
= − 45

16
· t3 · (1 − t)1/8

= −45
16

t3 +
45
128

t4 +
315

2048
t5 +

1575
16, 384

t6 +
36, 225
524, 288

t7 + · · · (81)

or:

F1

(
2, 5;

1
2

)
= − 45

16
· t3 · (1 − t)−3/8

= −45
16

t3 − 135
128

t4 − 1485
2048

t5 − 9405
16, 384

t6 − 253, 935
524, 288

t7 + · · · (82)

4.1. Form Factor Deformation around the Algebraic Function F1(2, 5; 1
2 )

Introducing a form-factor β-deformation around the algebraic function (82) (β is the
deformation parameter around α = 1/2)

F1

(
2, 5;

1
2
+ β

)
= − 45

16
· t3 · (1 − t)−3/8 + β · G(t) + · · · (83)

and inserting (83) in the non-linear ODE verified by (83), one obtains an order-three linear
differential operator, which is the direct sum of an order-one linear differential operator and
an order-two linear differential operator, yielding the following exact expression for G(t)
in (83):

G(t) = −45
16
· t3 · (1 − t)−3/8 − 9

16
· (1 − t)−3/8 · PE,K (84)

= − 315
8192

· t6 − 17, 955
262, 144

· t7 − 188, 055
2, 097, 152

· t8 − 876, 645
8, 388, 608

· t9 − 1, 929, 015
16, 777, 216

· t10 + · · ·

where PE,K is a polynomial in Ẽ and K̃:

PE,K = 4 · t2 · (t− 1) · (t2 − 6 t + 16) · dK̃
dt

+ t2 · (2 t2 − 13 t + 16) · K

= t · (t2 − 28 t + 32) · K̃ − 2 · (t2 − 6 t + 16) · Ẽ. (85)

As far as the log-derivative with respect to t is concerned, one obtains

t · (t − 1) · d
dt

ln
(

F1

(
2, 5;

1
2
+ β

))
= −3 +

21
8
· t

+ β · t − 1
5 t3 ·

(
t · dPE,K

dt
− 3 · PE,K

)
+ · · · (86)

where the first deformation term is also polynomial in Ẽ and K̃.
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5. Comments and Speculations on the Lambda-Extensions of the Two-Point
Correlation Functions

The previous sections provide an illustration of nice involutive symmetries of α-
extension solutions of Painlevé-like non-linear ODEs (see (24)). Furthermore, recalling (31),
(32), (46) and (33), (34), (47), namely

f3(0) = (t − 2) · Ẽ + 2 · (1 − t) · K̃,

f3(1) = (1 − t)−1/4 ·
(

3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2
)

, (87)

f3

(1
2

)
= −3

8
· t2 · (1 − t)1/16 ·

(1 + (1− t)1/2

2

)−3/4
·
(

2 · (1 − (1 − t)1/2)

t

)1/2
,

and

f4(0) = 3 Ẽ2 + 2 · (t − 2) · Ẽ K̃ + (1− t) · K̃2,

f4(1) = (1 − t)1/4 ·
(
(t − 2) · Ẽ + 2 · (1 − t) · K̃

)
, (88)

f4

(1
2

)
= −3

8
· t2 · (1 − t)1/16 · (1 − t)−1/4 ·

(1 + (1− t)1/2

2

)−3/4

×
(

2 · (1 − (1 − t)1/2)

t

)1/2
,

we see that the α-extension f3(α) (resp. f4(α)) has three different values of the parameter
α for which the corresponding α-extensions are D-finite being (homogeneous) polynomials
in Ẽ and K̃ of different degree in Ẽ and K̃. It is straightforward to see that f3(α) (resp. f4(α))
is not a linear interpolation of these three D-finite expressions. For generic values of α,
f3(α) (resp. f4(α)) is not D-finite, it is differentially algebraic [11,12,33], being solution of a
Painlevé-like non-linear ODE. In Section 4.1 of [32] we provide, not a proof, but arguments
strongly suggesting that such lambda-extensions are not generically D-finite. Let us now
display several remarkable properties of such lambda-extensions.

5.1. Other Remarkable Features of the Lambda-Extensions of the Two-Point Correlation Functions

In fact α = 1/2 is not the only value of α for which f3(α) (resp. f4(α)) becomes an
algebraic function. One has an infinite number of (algebraic) values of α for which f3(α)
(resp. f4(α)) becomes an algebraic function. This phenomenon is illustrated in detail in [32]
in the case of the lambda-extension of the diagonal correlation function C(1, 1), but one
has similar results for other non-diagonal two-point correlation functions (at ν = −k), or
for factors of the correlation functions such as the fi(α)’s. Recall that diagonal correlation
functions depend only on k =

√
t. They are independent of the anisotropic parameter ν.

For pedagogical reasons we restrict our analysis to the low-temperature two-point cor-
relation function C(1, 1) and its lambda extension. For instance, the form factor expansion
of the lambda extension of this low-temperature correlation function reads

C−(1, 1; λ) = (1 − t)1/4 ·
(

1 +
∞

∑
n=1

λ2 n · f (2 n)
1, 1

)
, (89)

where the first form factors read:

f (2)1, 1 =
1
2
·
(

1 − 3 E K − (t − 2) · K2
)

, (90)

f (4)1, 1 =
1

24
·
(

9 − 30 Ẽ K̃ − 10 · (t − 2) · K̃2

+(t2 − 6t + 6) · K̃4 + 15 Ẽ2 K̃2 + 10 · (t − 2) · Ẽ K̃3
)

. (91)
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For λ = 1 we must recover, from (89), the well-known expression of the low-
temperature two-point correlation function C(1, 1) = Ẽ:

C−(1, 1; 1) = E = 1 − 1
4
· t − 3

64
· t2 − 5

256
· t3 − 175

16384
· t4 + · · ·

= (1 − t)1/4 ·
(

1 +
∞

∑
n=1

f (2 n)
1, 1

)
, (92)

which corresponds to write the ratio Ẽ/(1 − t)1/4 as an infinite sum of polynomial expres-
sions of Ẽ and K̃, thus yielding a non-trivial infinite sum identity on the complete elliptic
integrals Ẽ and K̃.

Since all these lambda extensions are power series in t, we can also try to obtain,
order by order, the series expansion of C−(1, 1; λ) from the corresponding non-linear
ODE (see (104) below). Recalling [14] the form factor expansion (89), we can either see the
series expansion in t as a deformation of the simple algebraic function (1 − t)1/4, or more
naturally, see the series expansion of the lambda-extension of the low-temperature two-point
correlation function C−(1, 1; λ) as a deformation of the exact expression C−(1, 1) = Ẽ
(here M denotes a difference to λ2 = 1, namely M = 4 · (1 − λ2)):

C−(1, 1; λ) = CM(1, 1; M)

= Ẽ + M · g1(t) + M2 · g2(t) + M3 · g3(t) + · · · (93)

All the gn(t)’s in (93) are also [32] polynomials in Ẽ and K̃ (this cannot be deduced
straightforwardly from an identification of two representations (95) and (96) of the lambda
extension C−(1, 1; λ). This identification yields an infinite number of (infinite sum) non-
trivial identities on Ẽ and K̃). For instance g1(t) in (95) reads

g1(t) =
1

24
· Ẽ − 1

8
· K̃ Ẽ2 − t − 1

12
· K̃3. (94)

Using the sigma-form of Painlevé VI Equation (104) one can find that this expansion
(93) reads as a series expansion in the variable t:

CM(1, 1; M) = 1 − 1
4
· t −

( 3
64

+
3

256
· M

)
· t2 −

( 5
256

+
9

1024
· M

)
· t3

−
( 175

16, 384
+

441
65, 536

· M
)
· t4 −

( 441
65, 536

+
1407

262, 144
· M

)
· t5

−
( 4851

1, 048, 576
+

9281
2, 097, 152

· M − 5
16, 777, 216

· M2
)
· t6 + · · · (95)

Deformation around an Algebraic Subcase

Recalling that one finds [32] that (95) is actually, for M = 2, the series expansion of
an algebraic function (see (97) below), one can try to write the series (95) as a deformation of
this M = 2 algebraic function (97)

Cρ(1, 1; ρ) = G0(t) + ρ · G1(t) + ρ2 · G2(t) + · · · (96)

where

G0(t) = (1− t)1/16 ·
(1 + (1− t)1/2

2

)3/4
, (97)
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and where ρ = M − 2. Again one can ask whether the Gn(t)’s in (96) are D-finite, and,
again, polynomials in the complete elliptic integrals Ẽ and K̃. This is actually the case. One
finds that (96) can be written as

Cρ(1, 1; ρ)

G0(t)
= 1 + ρ ·

(1
4
· S2 −

1
4

)
+ ρ2 ·

( 1
32
· S3 −

1
16
· S2 +

3
32

)
+ρ3 ·

( 1
384
· S4 −

1
128
· S3 +

13
384
· S2 −

5
128

)
+ · · · (98)

where

S2 =
2
t
·
(

1 − (1 − t)1/2
)
· Ẽ − 1

2 t
·
(
(t − 4) · (1 − t)1/2 − (3 t − 4)

)
· K̃,

S3 =
1
4
·
(

6 · (1 − t)1/2 − (t − 2)
)
· K̃2 − 3 Ẽ K̃,

S4 =
3
t
·
(
(t − 4) · (1 − t)1/2 − (3 t − 4)

)
· Ẽ K̃2 − 6

t
· (1 − (1 − t)1/2) · Ẽ2 K̃

+
1

8 t
·
(
(t2 − 28 t + 48) · (1 − t)1/2 − (21 t2 − 68 t + 48)

)
· K̃3,

We thus see the same phenomenon as the one sketched in Section 3.3 for the α-
extension f1(α) and Section 4.1 for the α-extension F1(2, 5; α), seen as deformations of
algebraic function subcases.

Remark 3. All these gn(t)’s or Gn(t)’s are globally bounded series [34] (a series with rational
coefficients and non-zero radius of convergence is a globally bounded series [34] if it can be
recast into a series with integer coefficients with one rescaling t → N t where N is an
integer). This is a consequence of the fact that they are polynomial expressions in Ẽ and K̃:
they are not only D-finite, they can actually be seen to be diagonals of rational functions [34].
We have actually seen, so many times in physics, and in particular in the two-dimensional
Ising model, the emergence of globally bounded series as a consequence of the frequent
occurrence of diagonals of rational functions [34,35] (or n-fold integrals [36]). In contrast the
lambda extension C−(1, 1; λ) which is an infinite sum of globally bounded series is, at
first sight, a differentially algebraic function that has no reason to correspond to a globally
bounded series.

5.2. Arithmetic Properties of the Lambda-Extensions and Globally Bounded Series

Let us consider the series expansion (95) for values of the parameter M 6= 0 not
yielding the previous algebraic function series (i.e., M 6= 4 · sin2(πm/n) where m and n
are integers).

Let us change t into 16 t in the series expansion (95). One obtains the following
expansion:

1 − 4 t − (12 + 3 M) · t2 − (80 + 36 M) · t3 − (700 + 441 M) · t4

−(7056 + 5628 M) · t5 − (77, 616 + 74, 248 M− 5 M2) · t6

−(906, 048 + 1, 004, 960 M− 220 M2) · t7 − (11, 042, 460 + 13, 877, 397 M− 6255 M2) · t8

−(139, 053, 200 + 194, 712, 812 M− 146, 500 M2) · t9

−(1, 796, 567, 344 + 2, 767, 635, 832 M− 3, 079, 025 M2) · t10 + · · · (99)

For integer values of M one sees, very clearly, that the series (99) becomes a differentially
algebraic series with integer coefficients. They are solutions of a non-linear ODE, the sigma-
form of Painlevé VI. One thus has a first example of an infinite number of differentially algebraic
series with integer coefficients. As far as integer values of M are concerned we have seen [32]
that the lambda extension C−(1, 1; λ) is a simple algebraic function for M = 2, 4 and
slightly more involved algebraic functions for M = 1, 3, and corresponds to Ẽ for M = 0.
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These series (99) are, at first sight, differentially algebraic [11]: is it possible that such series
could become D-finite for selected values integer of M different from M = 0, 1, 2, 3, 4?

In Section 4.1 of [32] we give some strong argument to discard, at least for M = 5, the
possibility that the series expansion (95) (or the series expansion (99)) could be D-finite. It
is differentially algebraic.

More generally, one can see that the series expansion (95) (or the series expansion (99))
is a globally bounded series when M is any rational number. One thus generalizes the quite
puzzling result that an infinite number of (at first sight, etc.) differentially algebraic series can
be globally bounded series.

Remark 4. Quite often we see the emergence of globally bounded series [34] as solutions
of D-finite linear differential operators, and more specifically as diagonals of rational func-
tions [34,35] (this is related to the so-called Christol’s conjecture [37]). The emergence of
globally bounded series that are not D-finite (not diagonals of rational functions) is more
puzzling. It can be tempting to imagine that such differentially algebraic globally bounded
situations could correspond to particular ratios of D-finite functions (let us recall that ratios
of D-finite expressions are not (generically) D-finite: they are differentially algebraic [11]),
namely ratios of diagonals of rational functions (or even rational functions of diagonals),
or even composition of diagonal of rational functions. Our prejudice is that this is not the
case, but discarding these simple scenarios is extremely difficult.

6. More Non-Linear ODEs of the Painlevé Type and More λ-Extensions

In [38], V.V. Mangazeev and A. J. Guttmann derived the following Toda-type recur-
rence relation for the λ-extension C(N, N; λ) of the diagonal correlation functions of the
square Ising model (see Equation (6) in [38]):

t · d2

dt2 ln(CN) +
d
dt

ln(CN) +
N2

1 − t2 =
N2 − 1/4

1 − t2 · CN−1 · CN+1

C2
N

, (100)

where CN denotes the λ-extensions of the low (resp. high) diagonal correlation functions
CN = C(N, N). Introducing the ratio

RN =
CN−1 · CN+1

C2
N

or: PN =
N2 − 1/4

1 − t2 · CN−1 · CN+1

C2
N

, (101)

one can easily deduce from (100) (together with the same relation (100) where N is changed
into N − 1 and N + 1) other relations such as:

t · d
dt

(
t · d ln(RN)

dt

)
+

2
(1 − t)2 (102)

=
(N − 1)2 − 1/4

1 − t2 · RN−1 +
(N + 1)2 − 1/4

1 − t2 · RN+1 − 2 · N2 − 1/4
1 − t2 · RN ,

or: (
t · d

dt

)2
ln(PN) +

2
1 − t

= PN−1 + PN+1 − 2 PN , (103)

Let us now consider, for instance, the low-temperature T < Tc diagonal correlation
functions. One knows that they verify the sigma-form of Painlevé VI equation(
t · (t− 1) · d2σ

dt2

)2

(104)

= N2 ·
(
(t− 1) · dσ

dt
− σ

)2
− 4 · dσ

dt
·
(
(t− 1) · dσ

dt
− σ − 1

4

)
·
(

t
dσ

dt
− σ

)
.
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with
σ = t · (t− 1) · d

dt
ln C(N, N) − t

4
. (105)

We can rewrite (100) in terms of σ given by (105)

d
dt

ln CN =
σ + t

4
t · (t− 1)

. (106)

Relation (100) becomes L = R where

L = t · d
dt

( σ + t
4

t · (t− 1)

)
+

σ + t
4

t · (t− 1)
+

N2

1 − t2 ,

R =
N2 − 1/4

1 − t2 · CN−1 · CN+1

C2
N

. (107)

Let us introduce a new sigma corresponding to the product CN−1 · CN+1

Σ = t · (t− 1) · d
dt

ln
(

CN−1 · CN+1

)
. (108)

Taking a well-suited log-derivatives the previous relation L = R yields

t · (t− 1) · d
dt

lnL = t · (t− 1) · d
dt

lnR, (109)

where the RHS of (109) can be written using (105) and (108)

Σ − 2 σ − 5 t
2

. (110)

Relation (109) becomes
8 · t · (t− 1)2 · σ′′ + 4 · (t− 1) · (t + 4 σ) · σ′ − 16 · σ2 + 4 · (4 N2 − 1 − t) · σ

+(4 N2 − 1) · t − 2 ·
(

4 N2 − 1 + 4 · (t− 1) · σ′ − 4 σ
)
· Σ = 0. (111)

We can now use the non-linear ODE (104) to perform some differential algebra elimi-
nations to eliminate σ and its derivatives in order to obtain a non-linear ODE on Σ. One
first eliminates σ′′ between (104) and (111), obtaining a (non-linear) relation between σ,
σ′ and Σ. Performing a derivation of this relation, one obtains a relation between σ, σ′,
σ′′, Σ and Σ′. Again, one eliminates σ′′ between this last relation and (111), obtaining a
relation between σ, σ′, Σ and Σ′. The elimination of σ′ using a previous relation gives
a relation between σ, Σ and Σ′. A new derivation gives a relation between σ, Σ, Σ′ and
Σ′′. Finally eliminating σ, one obtains a non-linear ODE between Σ, Σ′ and Σ′′. In other
words one can obtain a second-order non-linear ODE on Σ, from the Toda-like relation
(100) and the sigma-form of Painlevé VI non-linear ODE (104). This non-linear ODE is too
large to be given here. It emerges from a resultant that factors in different spurious terms, a
polynomial in Σ, Σ′ and Σ′′ of degree six in Σ′′ and another polynomial in Σ, Σ′ and Σ′′

of degree twelve in Σ′′. However, it is worth noticing that, again, this non-linear ODE has
a one-parameter lambda-extension solution. One may conjecture that this new non-linear
ODE has again the (fixed critical point) Painlevé property. This (very large) second-order
non-linear ODE is not quadratic in the second derivative Σ′′, in contrast with Okamoto
sigma form of Painlevé VI equation. It is of a much higher degree (along this second order
but higher degree line let us recall [39]).

The question of the reduction of this quite large non-linear ODE to some Okamoto
sigma-form of Painlevé VI, or more generally to second-order non-linear ODE of the
Painlevé type [40], is a (challenging) open question. The transformations required to achieve
such reduction to the sigma-form of Painlevé VI will correspond to drastic generalizations
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of the concept of “folding transformations” [41–43]. In the simple case of the reduction of
a second-order non-Okamoto non linear ODE to an Okamoto sigma form of Painlevé VI
equation, Equations (26), (28) in Section 2 of [8], give some hint of the complexity of such
transformations.

Another Non-Linear ODE

If one tries to obtain, more directly, a non-linear ODE on the product of the two
diagonal correlation functions C(N, N) · C(N + 2, N + 2), one can also consider the sigma-
form of Painlevé VI Equation (104) together with the definition of sigma (105) and the same
equation and definition (104) and (105), but for N + 2, and obtain by differential algebra
eliminations a non-linear ODE on the sum

Σ = t · (t− 1) · d
dt

ln
(

CN · CN+2

)
= t · (t− 1) · d

dt
ln C(N, N) + t · (t− 1) · d

dt
ln C(N + 2, N + 2). (112)

which is essentially the sum of the two previous sigmas (Equation (105) for N and for
N + 2). Let us recall (see page 344 in [12,33]) the results on sums (but also products,
compositions, derivatives, integrals, inverses, etc.) of differentially algebraic functions,
showing that these sums are also differentially algebraic functions, and that one also has
(see Theorem 2.2 page 345 in [33]) that the order of the non-linear ODE for such sums is less
or equal to the sum of the order of the two non-linear ODEs. In our case (112), one expects
the order of the non-linear ODE on Σ to be less or equal to 4 = 2 + 2 with a prejudice for
the generic upper bound being four.

Comment: We thus have, at first sight, two non-linear ODEs on (112): a very large
but second-order non-linear ODE obtained by differential algebra eliminations between
(104) and (111), and another one, probably also very large but fourth order non-linear
ODE. Both equations probably have the fixed critical point Painlevé property. As far as
lambda extensions are concerned, we expect the first one to have one-parameter family
of power-series analytic at t = 0, when we expect two-parameters families of power-
series analytic at t = 0 (the two lambda parameters for σ(N) and σ(N + 2) are, now,
independent). Understanding these different non-linear ODEs occurring on products of
two-point correlation functions and their corresponding lambda extensions remains a
challenging work-in-progress task.

Remark 5. Quantum XY chain correlations. Along this line, it is worth recalling that the
emergence of the product CN−1 · CN+1, or C(N, N) · C(N + 2, N + 2), is reminiscent of
the product C(N, N) · C(N + 1, N + 1) which is actually the xx correlation functions of
the quantum XY chain in the absence of a magnetic field. Actually, for the xx correlations of
the quantum XY chain, one has (see (2.45a) and (2.45b) in the Lieb, Schultz and Mattis
paper [44]) the following relations only valid in the absence of a magnetic field H = 0 i.e.,
precisely ν = −k:

< σx
0 σx

2 N > = C(N, N)2, (113)

< σx
0 σx

2 N−1 > = C(N, N) · C(N − 1, N − 1). (114)

Again, from the previous results, we have a strong incentive to find the non-linear
ODEs for the quantum XY chain correlations (114). Note that the non-linear ODE for (113)
is obviously an Okamoto sigma-form of Painlevé VI equation similar to (105).

More generally, we have a strong incentive to find non-linear ODEs of the Painlevé type
for various families of two-point correlation functions such as the off-diagonal correlations
C(N, N + 1) for which N.Witte showed [45] the existence of a Garnier system for such
correlations, and, beyond, C(N, N + 2), C(N, N + 3), . . . correlations. The row correlation
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function C(0, N) is a tau-function of a Garnier system with five finite singularities, one
fixed at the origin: see Corollary 1, pg.7 and Eq.(36), pg. 6 of [46], when C(N, N + 1) is
more a component of a related isomonodromic system (at least in the description in [45]).
Preliminary studies for the row correlation functions C(0, N) seem to indicate that the
corresponding non-linear ODEs are drastically more complicated even if N.Witte showed
the existence of Garnier systems for these row correlation functions [46].

7. Conclusions

As underlined in the introduction the two-point correlation functions C(M, N) of the
2D Ising model, at ν = −k, can be seen as D-finite functions solutions of linear differential
equations, but also, at the same time, as solutions of non-linear differential equations of
the Painlevé type. Around t = 0, the other solutions of the linear differential equations
are formal series with logarithms (see [14,23]). In contrast, other solutions of the non-
linear differential equations of the Painlevé type are one-parameter families of power
series analytic at t = 0. Such solutions are called lambda-extensions [32]. This paper
has tried to provide an illustration of a set of the remarkable properties and structures of
such lambda-extensions (resp. α-extensions). The study of non-linear ODEs in the most
general framework may look hopeless for mathematicians; however, the square Ising model
provides a perfect example of the importance of a selected set of non-linear ODEs, namely
non-linear ODEs of the Painlevé type [47], and we tried to show that the analysis of some of
their solutions, the lambda-extensions, is clearly a powerful way to describe these selected
non-linear ODEs in a work-in-progress definition of what could be called the “symmetries”
of these non-linear ODEs of the Painlevé type.

Although Painlevé equations were introduced from purely mathematical considera-
tions their occurrence in so many domain of physics and theoretical physics is compelling.
Let us quote pele mele: particle physics, solid state physics, field theory, lattice statistical
mechanics, statistical physics [17], integrable PDE’s and their similarity solutions, enumer-
ative combinatorics, Random Matrix Theory [29,48], even Quantum Gravity [49]; the Ising
model being, of course, the perfect play ground for these remarkable non-linear ODEs.
Unfortunately the compelling evidence of the relevance of these selected non-linear ODEs
in physics, is not able to balance the mainstream opinion among pure mathematicians
that nothing interesting can be achieved on non-linear problems and that even the word
“non-linear” is meaningless [50].

We tried in this paper to show that interesting non-trivial results can be obtained on
selected non-linear ODEs.

The exact results sketched in this paper are a strong incentive to obtain more non-linear
ODEs, for instance on the correlation functions of XY quantum chain in the absence of
magnetic field (which corresponds to the product of two Ising two-point Ising correla-
tion functions C(N, N) · C(N + 1, N + 1), but also on many more two point off-diagonal
correlation functions of the 2D Ising such as C(N, N + 1), or C(N, N + 2), or C(N, N + 3).
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