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Abstract: In this research, some new and efficient quadrature rules are proposed involving the
combination of function and its first derivative evaluations at equally spaced data points with the
main focus on their computational efficiency in terms of cost and time usage. The methods are
theoretically derived, and theorems on the order of accuracy, degree of precision and error terms are
proved. The proposed methods are semi-open-type rules with derivatives. The order of accuracy and
degree of precision of the proposed methods are higher than the classical rules for which a systematic
and symmetrical ascendancy has been proved. Various numerical tests are performed to compare
the performance of the proposed methods with the existing methods in terms of accuracy, precision,
leading local and global truncation errors, numerical convergence rates and computational cost
with average CPU usage. In addition to the classical semi-open rules, the proposed methods have
also been compared with some Gauss–Legendre methods for performance evaluation on various
integrals involving some oscillatory, periodic and integrals with derivative singularities. The analysis
of the results proves that the devised techniques are more efficient than the classical semi-open
Newton–Cotes rules from theoretical and numerical perspectives because of promisingly reduced
functional cost and lesser execution times. The proposed methods compete well with the spectral
Gauss–Legendre rules, and in some cases outperform. Symmetric error distributions have been
observed in regular cases of integrands, whereas asymmetrical behavior is evidenced in oscillatory
and highly nonlinear cases.

Keywords: time efficiency; cost effectiveness; quadrature rules; derivative-based; precision; accuracy

1. Introduction

Numerical analysis has a rich store of methods to find the answer by purely arithmeti-
cal operations. Many practical problems in applied sciences and mathematical physics are
given in the form of integrals. Different analytical techniques are available to compute
such integrals; several numerical techniques have been developed to obtain approximate
solutions for various classes of integrals. The methods of numerical integration are some-
times referred to as quadrature rules because these are used to approximate the integrals
of the functions of one variable. As quadrature rules provide a very close estimate of the
actual integration in most critical problems, the numerical evaluation of integrals through
these techniques has been a key topic in mathematical research. These formulas are used
for calculating the area under the region defined by the integrand within a range, finite
or infinite, and when the integrand either cannot be integrated analytically or values are
given in a tabular form only without its explicit mathematical description then numerical
integration is the only option [1,2]. The worst cases consist of a definite integral whose
analytical evaluation is not possible especially when these are associated with singularities
and nonlinearities in solving differential and integral equations [2,3], for example:
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The efficiency of quadrature rules is usually categorized in terms of the degree of
precision and order of accuracy. Therefore, obtaining higher precision and accuracy in
numerical integration formulas becomes one of the challenges in the field of numerical
analysis. A numerical integration formula is generally given as:

∫ b

a
f (x)dx ≈

n

∑
i=0

ci f (xi) (2)

where the constant ci are the weights and x0, x1, . . . , xn are n + 1 equidistant nodes in
the interval [a, b]. The Formula (2) represents Newton–Cotes quadrature rules, in general,
form. In the semi-open Newton–Cotes formulae, the function evaluation at one of the
endpoints of the interval is excluded. In this paper, we excluded the endpoint, which is on
the right side of the interval, i.e., nodes at equally spaced points of [a, b) are considered.
We can rewrite (2) as:

∫ b

a
f (x)dx ≈

∫ xn

x0

f (x)dx ≈
n−1

∑
i=0

ci f (xi) (3)

where x0, x1, . . . , xn−1 are distinct n integration points and ci are n weights within the
interval [a, b) with xi = a ih, i = 0, 1, 2, . . . , n− 1, and h = (b− a)/ (n + 1).

The starting semi-open Newton–Cotes quadrature rule in basic form along with the
local error term is defined as:∫ b

a
f(x)dx = (b− a)f(a) +

(b− a)2

2
f′(ξ) (4)

where ξ ∈ (a, b) and is known as the one-point semi-open Newton–Cotes rule. The
composite form of this method with the global error term is defined as:

∫ xn

x0

f (x)dx = h

[
n−1

∑
i=0

f (xi)

]
+

h
2
(b− a) f ′(η) (5)

where η ∈ (a, b), h = b−a
n+1 , xi = a + ih and i = 0, 1, 2, . . . , n− 1.

The Newton–Cotes quadrature rules are interpolatory in nature. This means that the
rules are formed by assuming that the integrand is an interpolatory polynomial of a suitable
degree, and thus can be expressed exactly as a regular Taylor’s series approximation. The
formulation of Newton–Cotes rules are frequently based upon interpolating polynomials
due to Lagrange. Similarly, Hermite-type polynomials can also be focused as are based
on the exactness of the integrand as well as its first-order derivative. This new formation
of integration formulas is referred to as corrected Newton–Cotes quadrature rules. These
formulas are more accurate than the conventional rules since they have a higher order
of precision and accuracy [4]. Several new quadrature rules were discovered that were
termed to be optimal for different families of integrands [4], which have proven to be much
more significant. Various numerical techniques have been proposed as an improvement of
classical Newton–Cotes rules. A unified approach to solving systems of linear equations
with coefficient matrices of the Vandermonde type for closed and open Newton–Cotes
rules was given by El-Mikkawy in [5,6]. An improvement in Newton–Cotes formulas
with usual nodes along with nodes at both, none, and only one endpoint of the interval of
integration to raise the degree of precision and accuracy of the methods by changing the
endpoints from constants to variables [7–9]. The key idea of this research was to extend the
monomials of space that increase the number of equations and unknowns. Additionally,
the developments of first and second-kind Chebyshev quadrature rules of Newton–Cotes
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type were devised for open and semi-open rules in [10,11]. Burg proposed enhanced classes
of Newton–Cotes rules with both endpoints by using first-order derivatives [12] and also
using the derivatives at the midpoint [13] of the interval using the concept of precision
degree. In [14], a class of methods for closed Newton–Cotes formulas was proposed using
the midpoint derivative value and are proved to obtain an increase of two precision orders
over the classic closed Newton–Cotes formula. These authors in [15] presented a derivative-
based trapezoid rule for the Riemann–Stieltjes integral. In [3], a comparison was made
between the polynomial collocation and quadrature methods that are uniformly spaced for
the Fredholm integral equation of the second kind. Memon et al. [16] proposed derivative-
based schemes for Riemann–Stieltjes integration, the same authors [17], devised a new
technique for four-point Riemann–Stieltjes integrals. An error analysis of Newton–Cotes
cubature rules was focused on in detail by Malik et al. in [18].

Integration has wide applications in the many fields of science and engineering, for
instance in the field of probability theory [19,20], stochastic processes and oscillators [21–23],
and functional analysis [24], particularly in the spectral theorem for self-adjoint operators
in Hilbert space [25]. Some special types of integrals based on the oscillatory, periodic,
or singular nature of integrands were also highlighted in detail in the literature and the
consequent approximations using quadrature rules were encouraged [26–30]. In the recent
past, numerous new approaches have been devised to find the approximation of definite
integrals in which the derivatives of the function at different statistical means were used.
In [31] a Newton–Cotes rule was proposed using the derivative at the mid-point of the
interval for algebraic functions. Likewise, this work was extended where the derivatives of
the functions were assessed by geometric mean and harmonic mean at the endpoints of
the interval in [32]. On the other hand, the comparison between the three techniques using
the arithmetic mean, geometric mean, and harmonic mean was made in [33]. Additionally,
several other approaches for closed and open Newton–Cotes rules were invented where
the derivatives of the integrand were employed utilizing the centroidal Mean [34], contra-
harmonic mean [35], and heronian mean [36]. Two efficient derivative-based schemes
were introduced by Rike and Imran in [37] where the arithmetic mean was used in the
mid-point rule. These new derivative-based schemes were proved to be more effective
than the original Newton–Cotes formulas, in terms of error terms and approximate integral
values. The literature tailors to the fact that semi-open Newton–Cotes has been less focused
on the perspectives of derivative-based end-point corrections to improve the accuracy and
precision of the conventional rules. Such improvements can prove to be more efficient in
dealing with integrals having an end-point singularity instantly than other closed methods.
Consequently, the derivative-based refinements in basic semi-open Newton–Cotes will
give rise to more studies on their application for the numerical approximation of higher
dimensional integrals, Riemann–Stieltjes integrals, and complex line integrals on one
hand. On the other hand, more appropriate numerical techniques can be devised for
numerical solutions of differential equations in one or more independent variables, and
one-dimensional and boundary integral equations [15–18].

In this research, some new quadrature formulas which are utilized derivatives to
compute integrals are proposed and are proven to be time-efficient and cost-effective. This
is conducted by attempting to modify the classical semi-open Newton–Cotes rule, i.e.,
SONC by introducing first-order derivatives at all nodes, excluding the upper endpoint
of the interval [a, b]. The proposed methods are proved to be more efficient in terms of
order of accuracy and degree of precision than the classical SONC rules. However, to
increase the accuracy of the new methods, the weights of the first-order derivatives of
the function are used, which work as additional parameters and are computed by using
the concept of precision through associated systems of linear equations. The theoretical
development of the new methods, error analysis and exhaustive numerical experiments
are used to demonstrate the performance of proposed rules against the conventional
Newton–Cotes rules of semi-open type. In parallel, the proposed modifications are also
tested against the Gauss–Legendre (GL) rules [29] of similar orders of accuracy on varying
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nature integrands including periodic, oscillatory and derivative singularities. The proposed
formulas guarantee a substantial reduction in computational cost and execution time for a
fixed predefined error tolerance against SONC without derivatives and compete well with
the GL methods.

2. Derivation of Proposed Quadrature Formulas Using Derivatives

Let f ∈ C2n+1[a, b] be a real-valued function. Let the interval [a, b] be subdivided into
n sub-intervals with x0, x1, . . . , xn with n + 1 nodes.

The proposed formulas are based on the conventional semi-open Newton–Cotes
rule but with additional derivatives as perturbation terms to reduce the truncation errors
without compromising the efficiency of the existing formulas. In fact, the new formulas
add up to the order of accuracies and degrees of precision with promising reductions in
execution time and computational overhead. The modifications are conducted in four ways,
as explained now with adopted notations.

2.1. Modified Semi-Open Newton–Cotes Rule-1 with Derivatives (MSONC1)

MSONC1 uses function values and first derivatives at all interior points of [a, b]
including the left endpoint. The derivation of MSONC1 is discussed first, and then its
degree of precision is proved in Theorem 1. We attempt to propose a rule with greater
precision than the classical semi-open Newton–Cotes rule by using the first-order derivative
of the integrand at all points, excluding the one endpoint of the interval [a, b], within the
quadrature rule, whilst maintaining the enhancement of the order of accuracy. The basic
form of the first proposed method (MSONC1) is:

∫ b

a
f (x)dx ≈ MSONC1 = (b− a) f (a) +

(b− a)
2

2
f ′(a) (6)

As the number of function evaluations in (6) is two, which is an even number; there-
fore, the precision of (6) is at most 1, i.e., the precision is at most n− 1 when n is even
and is n for odd n. This leads to the condition on (6) that for all the monomials xk of
degree k = 0,1 it will be exact. Therefore, a system of 2 by 2 equations is formed using
first-order polynomials,

f (x) = a0 + a1x (7)

The general form of this scheme is:

∫ b

a
f (x)dx ≈ MSONC1 = c0 f (a) + c1 f ′(a) (8)

The two equations formed by this approach are:{
For f (x)= 1;

∫ b
a dx = (b− a) = c0

For f (x) = x;
∫ b

a xdx = b2−a2

2 = c0a + c1

}
(9)

We determined the weight coefficients by solving the system (9) simultaneously, we

obtain, c0 = (b− a) and c1 = (b−a)
2

2
. Hence the following quadrature rule is obtained:

∫ b

a
f (x)dx ≈ MSONC1 = (b− a) f (a) +

(b− a)
2

2
f ′(a) (10)

Theorem 1. The degree of precision of one-point MSONC1 is one.
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Proof. To prove this theorem, we verify that the new method (8) is exact for f (x) = 1, x.
The exact values are: ∫ b

a
1dx = (b− a) and

∫ b

a
xdx =

b2 − a2

2

Moreover, the approximate results using MSONC1 are:

For f (x) = 1, MSONC1 = (b− a) and for f (x) = x, MSONC1 =
b2 − a2

2

However, the approximate value using MSONC1 for f (x) = x2 is not exact, i.e.,

∫ b

a
x2dx ≈ MSONC1 =

ab(b− a)
2

(11)

∫ b

a
x2dx =

(
b3 − a3

3

)
6= MSONC1 (12)

which shows that the degree of precision of the proposed method MSONC1 is one. �

2.2. Modified Semi-Open Newton–Cotes Rule-2 with Derivatives (MSONC2)

MSONC2 uses function values along with derivatives at each point xi ∈ [a, b). MSONC2
is a new rule with greater precision than the classical semi-open Newton–Cotes rule, and it
is proposed by using the first-order derivatives only at interior points of the interval [a, b],
within the quadrature rule, whilst maintaining the enhancement of order of accuracy. The
basic form of the proposed method MSONC2 is:

∫ b

a
f (x)dx ≈ MSONC2 = (b− a) f (a) +

(b− a)2

2
f ′
(

a + b
2

)
(13)

As the number of function evaluations in (13) is two, which is an even number; the
precision of (13) is at most 1. This leads to the condition in (13) that for all the monomials
xk of degree k = 0, 1 it will be exact. Therefore, a system of 2 by 2 equations is formed using
first-order polynomials,

f (x) = a0 + a1x (14)

The general form of this scheme is:

∫ b

a
f (x)dx ≈ MSONC2 = c0 f (a) + c1 f ′

(
a + b

2

)
(15)

The two equations formed by this approach are:{
For f (x)= 1;

∫ b
a dx = (b− a)= c0

For f (x)= 1;
∫ b

a xdx = b2−a2

2 = c0a + c1

}
(16)

We determined the weight coefficients by solving Equation (16) simultaneously,
we obtain,

c0 = (b− a), c1 =
(b− a)

2

2

Hence, the following quadrature rule MSONC2 is obtained:

∫ b

a
f (x)dx ≈ MSONC2 = (b− a) f (a) +

(b− a)
2

2[
f ′
(

a + b
2

)]
(17)

Theorem 2 discusses the degree of precision of MSONC2.
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Theorem 2. The degree of precision one-point MSONC2 is one.

Proof. To prove this theorem, we verify that the new method MSONC2 is exact for
f (x) = 1, x. The exact values are:

∫ b

a
1dx = (b− a) and

∫ b

a
xdx =

b2 − a2

2

Moreover, the approximate results using MSONC2 are:

For f (x) = 1, MSONC2 = (b− a) and for f (x) = x, MSONC2 =
b2 − a2

2

However, the approximate value using MSONC2 for f (x) = x2 is not exact, i.e.,

MSONC2
(

x2; a, b
)
=

(b− a)
(
b2 + a2)

2
(18)

∫ b

a
x2dx =

(
b3 − a3

3

)
6= MSONC2

(
x2; a, b

)
(19)

which shows that the degree of precision of the proposed method MSONC2 is one. �

2.3. Modified Semi-Open Newton–Cotes Rule-3 with Derivatives (MSONC3)

MSONC3 uses function values over [a, b) and the first derivatives at the endpoints
of the interval [a, b] only. The theoretical development of MSONC3 is detailed here, and
results on the degree of precision are proved in Theorem 3.

MSONC3 is a new rule with greater precision than the classical semi-open Newton–
Cotes rule. In this method, the evaluation of first-order derivatives is restricted to the
endpoints of the interval [a, b] only, whilst maintaining the enhancement of order of accu-
racy. The basic form of the proposed method MSONC3 is

∫ b

a
f (x)dx ≈ MSONC3 = (b− a) f (a) +

(b− a)2

6
[
2 f ′(a) + f ′(b)

]
(20)

As we know that the number of function evaluations in (20) is three, which is an odd
number; therefore, the precision of (20) is at most 2. This leads to the exactness condition
on (20) for all the monomials xk of degree k = 0,1,2. Therefore, a system of 3 by 3 equations
is formed using second-order polynomials,

f (x) = a0 + a1x + a2x2 (21)

The general form of this scheme is:

∫ b

a
f (x)dx ≈ MSONC3 = c0 f (a) + c1 f ′(a) + c2 f ′(b) (22)

The three equations formed by this approach are:
For f (x) = 1,

∫ b
a dx = b− a = c0

For f (x) = x,
∫ b

a xdx = b2−a2

2 = c0a + c1 + c2

For f (x) = x2,
∫ b

a x2dx = b3−a3

3 = c0a2 + 2ac1 + 2bc2

 (23)

We determined the weight coefficients by solving system (23) simultaneously, hence,

c0 = (b− a), c1 =
(b− a)

3

2
and c2 =

(b− a)
6

2
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The following quadrature rule MSONC3 is obtained:

∫ b

a
f (x)dx ≈ MSONC3 = (b− a) f (a) +

(b− a)2

6
[
2 f ′(a) + f ′(b)

]
(24)

Theorem 3. The degree of precision of one-point MSONC3 is two.

Proof. To prove this theorem, we verify that the new method (24) is exact for f (x) = 1, x,
x2. The exact values are:∫ b

a
1dx = (b− a),

∫ b

a
xdx =

b2 − a2

2
and

∫ b

a
x2dx =

b3 − a3

3

Moreover, the approximate results using MSONC3 are:
For f (x) = 1, MSONC3 = (b− a), for f (x) = x, MSONC3 = b2−a2

2 and for f (x)= x2,
MSONC3 = b3−a3

3 .
However, the approximate value using MSONC3 for f (x) = x3 is not exact. i.e.,

∫ b

a
x3dx ≈ MSONC3 =

1
2

[
b4 + 2b2a2 − a4

]
(25)

Moreover
∫ b

a
x3dx =

b4 − a4

4
6= MSONC3 (26)

which shows that the degree of precision of the proposed method MSONC3 is two. �

2.4. Modified Semi-Open Newton–Cotes Rule-4 with Derivatives (MSONC4)

MSONC4 uses function values over [a, b) and the first derivatives at all points of the
interval [a, b]. The construction is explained first followed by the degree of precision of the
proposed MSONC4 in Theorem 4.

A rule with greater precision than the classical semi-open Newton–Cotes rule is
proposed by using the first-order derivative of the integrand at all interior points including
the endpoints of the interval [a, b], whilst maintaining the enhancement of order of accuracy.
The basic form of the proposed method MSONC4 is

∫ b

a
f (x)dx ≈ MSONC4 = (b− a) f (a) +

(b− a)2

6

[
2 f ′(a) + 2 f ′

(
a + b

2

)
+ 0× f ′(b)

]
(27)

As we know that the number of function evaluations in (27) is four, which is an even
number; therefore, the precision of (27) is at most 3. This leads to the condition on (27)
that for all monomials xk of degree k = 0, 1, 2, 3 it will be exact. Therefore, a system of 4 by
4 equations is formed using a third-order polynomial,

f (x) = a0 + a1x + a2x2 + a3x3 (28)

The general form of this scheme is:

∫ b

a
f (x)dx ≈ MSONC4 = c0 f (a) + c1 f ′(a) + c2 f ′

(
a + b

2

)
+ c3 f ′(b) (29)

The four equations formed by this approach are:

For f (x) = 1;
∫ b

a dx = b− a = c0

For f (x) = x;
∫ b

a xdx = b2−a2

2 = c0a + c1 + c2 + c3

For f (x) = x2;
∫ b

a x2dx = b3−a3

3 = c0a2 + 2ac1 ++2c2

(
a+b

2

)
+ 2bc3

For f (x) = x3;
∫ b

a x3dx = b4−a4

4 = c0a3 + 3a2c1 + 3c2

(
a+b

2

)2
+ 3b2c3


(30)
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We determined the weight coefficients by solving the system (30) simultaneously, we

obtain, c0 = (b− a), c1 = (b−a)
6

2
, c2 = (b−a)

3
2

and c3 = 0.
Hence, the following numerical quadrature rule: MSONC4 is obtained:

∫ b

a
f (x)dx = (b− a) f (a) +

(b− a)2

6

[
f ′(a) + 2 f ′

(
a + b

2

)
+ 0× f ′(b)

]
(31)

Theorem 4. The degree of precision of one-point MSONC4 is three.

Proof. To prove this theorem, we will verify that the new method (31) is exact for
f (x) = 1, x, x2, x3. The exact values are:

∫ b

a
1dx = (b− a)

∫ b

a
xdx =

b2 − a2

2
,
∫ b

a
x2dx =

b3 − a3

3
and

∫ b

a
x3dx =

b4 − a4

4

Moreover, the approximate results using MSONC4 are:
For f (x) = 1, MSONC4 = (b− a) for f (x) = x, MSONC4 = b2−a2

2 , for f (x)= x2,

MSONC4 = b3−a3

3 , and MSONC4
(

x3; a, b
)
= b4−a4

4 .
However, the approximate value using MSONC4 for f (x) = x4 is not exact, i.e.,

MSONC4
(

x4; a, b
)
= 8

(
a + b

2

)3
+ 4a3 (a− b)

6

2
− a4(a− b) (32)

Moreover, ∫ b

a
x4dx =

b5 − a5

5
6= MSONC4

(
x4; a, b

)
(33)

which shows that the degree of precision of the proposed method MSONC4 is three. �

3. Error Analysis of Proposed Quadrature Formulas

In this section, we derive the local and global error terms of all the proposed methods
using the remainder of the modified quadrature rule for the monomial xp+1

(p+1)! and the exact

answer of 1
(p+1)!

∫ b
a xp+1dx, where p is the precision of the method [12]. In the forthcoming

theorems, the error terms have been derived and the order of accuracy of the proposed
rules has also been established in basic forms. Theorems 5–8 discuss the errors and accuracy
of MSONC1–4 in basic form.

Theorem 5. The local error term of MSONC1 is:

EMSONC1 =
(b− a)

6

3
f ′′ (ξ) (34)

where ξ ∈ (a, b), and the local order of accuracy is three.

Proof. As the proposed method MSONC1 is exact for all the monomials of order 0 and 1,
the second-order term of Taylor’s series of f (x) about x = x0 is:

f (x) =
1
2!
(x− x0)

2 f ′′ (x0) (35)

Using (35) the error term of MSONC1 can be represented as:

EMSONC1 =

[
Exact

(
x2

2!
; a, b

)
−MSONC1

(
x2

2!
; a, b

)]
f ′′ (ξ) (36)
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The exact integral value is:

Exact
(

x2

2!
; a, b

)
=

b3 − a3

6
(37)

And the approximate value of integral by MSONC1 is:

MSONC1
(

x2

2!
; a, b

)
=

ab(b− a)
4

(38)

Using exact and approximate evaluations in (36), we have,

EMSONC1 = − (b− a)3

6
f ′′ (ξ) (39)

For h =(b− a). Hence (39) will be:

EMSONC1 = −h3

6
f ′′ (ξ) (40)

where ξ ∈ (a, b), and the order of accuracy of this method is three. �

Theorem 6. The local error term of MSONC2 is:

EMSONC2 = − (b− a)
12

3
f ′′ (ξ) (41)

where ξ ∈ (a, b), and order of accuracy is three.

Proof. As the proposed method MSONC2 is exact for the monomials of degrees 0 and 1,
the second-order term of Taylor’s series of f (x) about x = x0 is:

f (x) =
1
2!
(x− x0)

2 f ′′ (x0) (42)

Using (42) the error term of MSONC2 can be represented as:

E MSONC2 =

[
Exact

(
x2

2!
; a, b

)
−MSONC2

(
x2

2!
; a, b

)]
f ′′ (ξ) (43)

The exact integral value is:

Exact
(

x2

2!
; a, b

)
=

b3 − a3

6
(44)

The approximate value of integral by MSONC2 is:

MSONC2
(

x2

2!
; a, b

)
=

(b− a)
(
a2 + b2)

4
(45)

Using exact and approximate evaluations in (43)

E MSONC2 = − (b− a)3

12
f ′′ (ξ) (46)

For (b− a) = h, we have,

E MSONC2 = − h3

12
f ′′ (ξ) (47)
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where ξ ∈ (a, b) and the order of accuracy of this method is three. �

Theorem 7. The local error term of MSONC3 is:

EMSONC3 = − 1
24

(b− a)4 f (3)(ξ) (48)

where ξ ∈ (a, b), and order of accuracy for MSONC3 is four.

Proof. As the proposed method MSONC3 is exact for the monomials of degrees 0, 1 and 2,
the third-order term of Taylor’s series of f (x) about x = x0 is:

f (x) =
1
3!
(x− x0)

3 f (3)(x0) (49)

Using (49) the error term of MSONC3 can be represented as:

EMSONC3 =

[
Exact

(
x3

3!
; a, b

)
−MSONC3

(
x3

3!
; a, b

)]
f (3)(ξ) (50)

The exact integral value is:

Exact
(

x3

3!
; a, b

)
=

1
3!

(
b4 − a4

4

)
(51)

The approximate value of integral by MSONC3 is:

MSONC3
(

x3

3!
; a, b

)
=

1
3!

(
−a3b +

3
2

a2b2 − ab3 +
1
2

b4
)

(52)

Using exact and approximate evaluations in (50)

EMSONC3 = − 1
24

(b− a)4 f (3)(ξ) (53)

For h = (b− a), we have,

EMSONC3 = − 1
24

h4 f (3)(ξ) (54)

where ξ ∈ (a, b), hence from (54), we conclude that the order of accuracy of MSONC3 is
four. �

Theorem 8. The local error term of MSONC4 is:

EMSONC4 =
1

720
(b− a)5 f (4)(ξ) (55)

where ξ ∈ (a, b), and the order of accuracy for MSONC4 is five.

Proof. As MSONC4 is exact for the monomials of degrees 0, 1, 2 and 3, the fourth order
term of Taylor’s series of f (x) about x = x0 is:

f (x) =
1
4!
(x− x0)

4 f 4(x0) (56)

Using (56), the error term of MSONC4 can be represented as:

EMSONC4 =

[
Exact

(
x4

4!
; a, b

)
−MSONC4

(
x4

4!
; a, b

)]
f 4(ξ) (57)
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The exact integral value is:

Exact
(

x4

4!
; a, b

)
=

1
4!

(
b5 − a5

5

)
(58)

The approximate value of integral by MSONC4 is:

MSONC4
(

x4

4!
; a, b

)
=

1
4!

(
8
(

a + b
2

)3
+ 4a3 (a− b)

6

2
− a4(a− b)

)
(59)

Using exact and approximate evaluations in (57)

EMSONC4 =
1

720
(b− a)5 f (4)(ξ) (60)

For h = (b− a), we have,

EMSONC4 =
1

720
h5 f (4)(ξ) (61)

where ξ ∈ (a, b), and the order of accuracy of this method is five. �

4. Results and Discussion

Here, various numerical tests have been conducted on proposed quadrature formu-
las MSONC1–4 with derivatives against the existing conventional rules SONC without
derivatives as well as one-point and two-point Gauss–Legendre rules (GL1 and GL2), which
confirm the validity of the theoretical results. While all the proposed methods are modifica-
tions of the one-point derivative free SONC rule only, we have also included the GL2 rule
in comparison for analysis of improvement in the accuracy of the proposed rules. The GL
methods have been programmed in composite form like the other methods, to compare the
efficiency in similar situations.

Ten numerical problems have been solved for each scheme, as taken from [4,7] with
motivations on special integrands [22,23,26–30,38], whose exact values were determined
using MATLAB (R2014b) software in double precision arithmetic. All the results are noted
in Intel (R) Core i5 Laptop with RAM of 8.00 GB and a processing speed of 1.8 GHz. Addi-
tionally, the computational order of accuracy (COC) and the absolute errors are computed
for all the integrals. The following integrals are analyzed to prove our results. The exact
integral values with 15 decimal places are shown against each example. Examples 1–5
represent regular integrands involving polynomial, rational, exponential, logarithmic and
trigonometric integrands. Example 6 represents an integrand with derivative singularity,
Examples 7 and 8 are periodic integrals defined in the range of periodic intervals, and Ex-
amples 9 and 10 are more challenging situations concerning the evaluations of complicated
and highly oscillatory integrals. These ten examples have been added in the comparison
to comment on the performance of proposed and existing methods exhaustively from
viewpoint of computational efficiency in different situations.

Example 1.
∫ 1

0 xe−xdx = 0.264241117657115

Example 2.
∫ π

4
0 cos2(x)dx = 0.642699081698724

Example 3.
∫ 1

0
1

1+x dx = 0.693147180559945

Example 4.
∫ π

4
0 ecos (x)dx = 1.939734850623649

Example 5.
∫ 1

0
x ln(1+x)

1+x2 dx = 0.162865005917789

Example 6.
∫ 1

0

√
1− x2dx = 0.785398153397448
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Example 7.
∫ 2π

0 ecos(x)dx = 7.954926521012844

Example 8.
∫ 2π

0

[
1.1 + 2.3 cos x + 3.6 cos 2x− 4.32 cos 3x
+1.6 sin x− 2.35 sin 2x + 8.6 sin 3x

]
dx = 6.91150387897544

Example 9.
∫ 1
−1 e(x+sin(e(e

(x+ 1
3 ))))dx = −1.281138806443303788097

Example 10.
∫ 2π

0 x cos 20x sin 50xdx = −0.149599650170943

We compute and discuss the results of the comparative analysis of the methods in
several ways here to show the distinct roles of the performance of the proposed methods.
After the derivation and theoretical error analysis of the proposed approaches in the
previous section, where we observed the rapidly decreasing error patterns and distributions
of the methods, ascendance in precision degrees and orders of accuracy, here we begin with
the computational order of accuracy (COC) being analyzed using the following formula,
defined in [4].

COC =
ln(|N(2h)− N(0)|/|N(h)− N(0)|)

ln 2
(62)

whereas N(0) means the exact result, and N(h) and N(2h) are the numerical results of the
definite integrals with step size h and 2h, respectively.

Tables 1–10 show the computational order of accuracy COC of all the methods for
examples 1–10, respectively, against the number of strips (m), which also confirms the
theoretical order of accuracy of the proposed methods. The columns below each heading
of SONC signify the computational order of accuracy of classical SONC quadrature rules,
while the columns below the heading of MSONC1, MSONC2, MSONC3 and MSONC4
represent the computational order of accuracy of proposed derivative-based semi-open
Newton–Cotes rules. The COC indices for the GL1 and GL2 rules are also worked out in
these tables. In the case of Examples 1–5, the order of accuracy of the modified derivative-
based schemes MSONC1, MSONC2, MSONC3 and MSONC4 are observed as 2, 2, 3 and 4,
respectively; the order of accuracy of the classical method SONC is 1 and of the GL1 and
GL2 rules is 2 and 4, which shows that the proposed methods MSONC-1,2 are efficient in
comparison to the conventional SONC and compete well the GL1 rule, whereas MSONC-3
is higher-order accurate than SONC and GL1 rules; MSONC4 shows enhanced accuracy
than all others and competes well with the GL2 rule. While the proposed rules are one-point
methods, the obvious enhancement in the approximation is observed due to the fact that
derivatives have been used as additional information. For Example 6, where the integrand
has a derivative singularity, not only for the proposed derivative-based rules but also the
derivative-free SONC, GL1 and GL2 rules, they could not meet with the expected order
of accuracy, which is seen as 1 for SONC and 1.5 by all others instead of 2, 3 or 4. This is
because even the derivative-free methods contain the derivatives passively in the error
terms; thus, singularities have an effect on the convergence of the methods. Example 6
highlights the fact that the derivative-based methods can behave similarly to the derivative-
free methods in such situations, whereas for cases without singularities, the former show
accelerated convergence. Examples 7 and 8 represent the periodic integrals defined in their
periodic interval length. It can be seen that the proposed derivative-based MSONC1–4 and
conventional derivative-free SONC methods show much-accelerated convergence than the
usual theoretical ones, whereas the GL1-2 methods in comparison take a bit more effort
to achieve accuracy. Finally, in the case of highly nonlinear and oscillatory integrands in
Examples 9 and 10, all methods show oscillatory error distributions. This is because the
integrand is subject to many oscillations throughout the interval of integration, thus adding
more strips, or equivalently, increasing the number of sub-intervals in the composite forms
the consequent errors are moderated due to oscillations. In these examples, the proposed
methods do show enhanced convergence alternatively and more frequently for increased
strips as compared to the GL1 and GL2 rules.
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Table 1. Comparison of COC for example 1.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 1.1376 2.1302 2.1168 3.0083 4.0442 1.9821 3.9866
4 1.0750 2.0692 2.0657 3.0062 4.0254 1.9955 3.9966
8 1.0391 2.0357 2.0347 3.0036 4.0135 1.9988 3.9991

16 1.0199 2.0181 2.0178 3.0019 4.0069 1.9997 3.9997
32 1.0101 2.0091 2.0090 3.0010 4.0035 1.9999 3.9999
64 1.0050 2.0045 2.0045 3.0005 4.0017 1.9999 4.0000

Table 2. Comparison of COC for example 2.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 0.8932 2.1210 2.1363 2.9918 4.0824 2.0196 4.0213
4 0.9501 2.0650 2.0689 2.9932 4.0381 2.0048 4.0053
8 0.9757 2.0338 2.0348 2.9959 4.0183 2.0012 4.0013

16 0.9880 2.0173 2.0175 2.9978 4.0090 2.0003 4.0003
32 0.9940 2.0087 2.0088 2.9988 4.0044 2.0000 4.0000
64 0.9970 2.0044 2.0044 2.9994 4.0022 2.0000 3.9994

Table 3. Comparison of COC for example 3.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 1.0785 2.1706 2.1274 2.9824 4.0256 1.9473 3.8512
4 1.0425 2.0962 2.0842 3.0041 4.0496 1.9856 3.9574
8 1.0219 2.0505 2.0474 3.0058 4.0356 1.9963 3.9888

16 1.0111 2.0258 2.0250 3.0038 4.0205 1.9990 3.9971
32 1.0056 2.0130 2.0128 3.0022 4.0109 1.9997 3.9992
64 1.0028 2.0065 2.0064 3.0011 4.0056 1.9999 3.9998

Table 4. Comparison of COC for example 4.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 0.8893 2.1012 2.1127 3.0021 4.1402 2.0129 4.0219
4 0. 9481 2.0531 2.0559 2.9965 4.0676 2.0032 4.0054
8 0.97481 2.0273 2.0280 2.9972 4.0335 2.0007 4.0013

16 0. 9875 2.0139 2.0141 2.9983 4.0167 2.0001 4.0003
32 0. 9938 2.0070 2.0070 2.9991 4.0083 2.0000 4.0000
64 0. 9969 2.0035 2.0035 2.9995 4.0042 2.0000 3.9987

Table 5. Comparison of COC for example 5.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 0.9598 2.5059 2.4841 3.0613 3.7301 1.8611 4.2112
4 0.9783 2.3138 2.3031 3.0168 3.8789 1.9718 4.0288
8 0.9891 2.1831 2.1792 3.0061 3.9424 1.9931 4.0067

16 0.9945 2.1003 2.0992 3.0025 3.9713 1.9983 4.0016
32 0.9972 2.0527 2.0524 3.0011 3.9856 1.9995 4.0004
64 0.9986 2.0271 2.0270 3.0005 3.9928 1.9998 4.0000
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Table 6. Comparison of COC for example 6.

m SONC MSONC1 MSONC2 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA
2 0.7376 1.4833 1.4667 1.5227 1.4760 1.5144
4 0.8370 1.4834 1.4720 1.5114 1.4879 1.2175
8 0.8941 1.4887 1.4818 1.5058 1.4939 1.7940

16 0.9292 1.4932 1.4894 1.5029 1.4969 1.5019
32 0.9519 1.4962 1.4942 1.5015 1.4984 1.5010
64 0.9668 1.4979 1.4969 1.5007 1.4992 1.5005

Table 7. Comparison of COC for example 7.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 5.6611 5.6611 5.66110 5.66110 5.6611 5.6030 5.5205
4 14.7461 14.7461 14.7461 14.7461 14.7461 14.7460 14.7458
8 29.3923 Exact Exact Exact Exact 25.9918 26.7521

16 Exact Exact Exact Exact Exact 29.1521 Exact
32 Exact Exact Exact Exact Exact Exact Exact
64 Exact Exact Exact Exact Exact Exact Exact

Table 8. Comparison of COC for example 8.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 8.79849 8.8762 10.4098 8.8762 9.5513 2.2230 1.0256
4 Exact Exact Exact Exact Exact 1.3561 2.5331
8 Exact Exact Exact Exact Exact Exact 1.4084

16 Exact Exact Exact Exact Exact Exact Exact
32 Exact Exact Exact Exact Exact Exact Exact
64 Exact Exact Exact Exact Exact Exact Exact

Table 9. Comparison of COC for example 9.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 0.4242 1.0814 0.9198 2.1786 0.6852 3.3588 0.7325
4 1.0956 0.2941 2.6744 1.0871 4.1346 3.3569 3.2343
8 2.3054 2.7365 1.1266 2.24420 0.1062 0.2746 0.7258

16 1.2447 0.3174 5.4726 4.59556 2.3525 0.3515 1.8474
32 1.15493 2.08493 0.6634 1.2380 1.4605 2.2956 2.6009
64 0.1039 0.51701 2.7859 1.0265 1.1917 0.0181 0.1329

Table 10. Comparison of COC for example 10.

m SONC MSONC1 MSONC2 MSONC3 MSONC4 GL−1 GL−2

1 NA NA NA NA NA NA NA
2 8.4× 10−14 2.0140 11.0010 4.3575 3.6161 2.0991 0.9050
4 1.4022 2.1120 1.4022 2.3730 2.3730 2.0999 0.1044
8 0.5370 2.2459 0.5370 3.2258 3.2258 0.7037 1.1193

16 7.8× 10−2 4.4224 0.0784 0.2806 0.2806 1.9470 1.0007
32 1.4051 0.9833 1.40518 1.1234 1.12346 1.5658 0.8118
64 0.5459 2.4857 0.5459 0.9111 0.9111 0.5207 0.1913
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We compare the absolute error distributions versus the number of strips between the
new and conventional approaches. The following formula is used to examine the absolute
errors [1].

Absolute Error = | f ∗(x)− f (x)| (63)

where, f ∗(x) and f (x) represents the exact and approximate values (obtained by proposed
methods) of the integrand. Figures 1–5 represent the absolute errors that are calculated to
examine and compare the results of the classical SONC, GL1, GL2, and modified derivative-
based SONC methods and MSONC1–4 versus the number of strips for the first five integrals
mentioned above. Hence, these figures show the decreasing absolute error distributions for
all the integrals and the trends depict the faster convergence of the proposed methods, and
the order of accuracy is consistent with the derived error terms. The outcomes generated by
the new methods confirm that these possess lower errors than the original ones. Particularly,
the MSONC4 behaves best of all, even the accompanying GL2 rule with similar order of
accuracy (4). Whereas the MSONC2 and 3 are better than SONC and GL1 rules. For
Example 6 through Figure 6, which is with a derivative singularity of the integrand,
all applicable proposed methods continue the similar improvement and exhibit lower
absolute errors as strips increase against respective derivative-free SONC, GL1 and GL2
rules. For the periodic integrals of Examples 7 and 8, the error drops from Figures 7 and 8
confirm that the proposed MSONC1–4 and the conventional SONC rules show much-
accelerated convergence than what is theoretically expected and achieve double precision
accuracy quickly in fewer strips as compared to the GL1 and GL2 rules. This is due to
the fact that Newton–Cotes rules and consequent improvements are more suitable for
the periodic integrals than other methods utilizing zeros of orthogonal polynomials as
nodes. Figures 9 and 10 show an oscillatory pattern of error drops for approximating
integrals in Examples 9 and 10 by all methods as expected. However, the higher order
methods, without any specification that they use derivatives or not, try to hit lower errors
alternatively. The MSONC4 and GL2 behave in this way better than other methods in
Examples 9 and 10, respectively. These last two examples highlight the fact that when
integrands are highly nonlinear and oscillatory, the decreasing error patterns are not that
smooth and stable; however, all interpolatory quadrature methods have to compromise on
accuracy regardless of the use of derivatives.
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Finally, the total computational cost per integration step is observed to achieve the
pre-specified error tolerance, i.e., 1× 10−7 mostly in regular examples, whereas bit lower
in complicated integrals, and the average C.P.U time (in seconds) is also computed. Due
to the higher number of function evaluations at each integration step, a quadrature rule
might provide reasonable accuracy in fewer steps but could also be computationally more
expensive and less effective than other approaches. First, the computational costs are
determined for the methods generally in Table 11 as the total evaluations required per strip
summarized for the modified and existing methods, by which we found the computational
costs of each test problem. In Tables 12 and 13, we list the total computational cost for the
integrals mentioned in Examples 1–6 and Examples 7–10, respectively. It is analyzed from
the numerical results that the computational cost of the proposed MSONC1–4 methods
is lesser than the conventional SONC and GL-1 methods for examples 1–5, whereas the
MSONC-4 and GL-2 methods are computationally closer in performance with GL-2 taking
a slight edge over the MSONC4. It should be noted that the error drops of the MSONC4
over shown to be smaller than those of GL-2 in similar examples through Figures 1–5.
Thus, the proposed methods are cost-effective as compared to the conventional ones and
MSONC4 competes well with the GL-2 rule which is a two-point method and the MSONC4
is a one-point method. For Example 6, the MSONC1,2,4 exhibit cost-efficient behavior
from Table 12 against all derivative-free methods SONC and GL-1,2. Here, MSONC4 is
best of all computationally for the integral with derivative singularity. All the SONC
versions, existing derivative-free as well as the proposed derivative-based MSONC1–4
out-perform in comparison to the GL-1,2 rules for periodic integrals in Examples 7 and
8 from the viewpoint of achieving the double precision accuracy in lesser cost as shown
in Table 13. For the oscillatory integrals of Examples 9 and 10 through Table 13, one can
see that the SONC, GL-2 and the MSONC1–4 show similar performance with the GL-2 and
MSONC4 taking the edge over others to achieve one decimal place accuracy. However,
for higher accuracy, all methods continue showing oscillatory error drops as shown in
Figures 9 and 10 already.

Table 11. Computational costs for m− strips of all methods.

Methods Total

SONC m
MSONC1 2m
MSONC2 2m
MSONC3 2m + 1
MSONC4 3m

GL-1 m
GL-2 2m

Table 12. Computational costs comparison to achieve 1× 10−7 absolute error for Examples 1–6.

Methods Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

SONC 919,698 981,747 1,250,000 1,360,000 3,465,800 500,000
MSONC1 1290 1014 1118 1214 646 8516
MSONC2 912 718 792 860 456 4313
MSONC3 87 75 93 79 101 NA
MSONC4 18 21 27 18 21 1748

GL-1 1292 1016 1120 1216 648 18,104
GL-2 16 14 20 14 18 4380

After computational ascendance in terms of computational costs to achieve a preset
error of at most 1× 10−7 in regular examples and slightly lower in some, we now explore
the execution times as CPU times (in seconds), which are used to determine the runtime of
the processor in MATLAB software for each code of the method separately to meet up the
preset accuracy level. The execution times account for all evaluations: derivative as well as
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functional ones to finally determine the time efficiency of the methods. A salient feature to
examine the execution times is to explore the concern of whether the proposed rules with
derivatives add much more burden on the processor based on the fact that derivatives may
sometimes be more complex in computation than the functions alone. We noted already
that the proposed quadrature formulas use a lower total number of evaluations (functional
as well as derivative) compared to the SONC and some other conventional rules without
derivatives in form of computational costs. The execution time helps us in proving that the
amount of processing power required for functional, as well as some derivative evaluations
in the proposed quadrature formulas, is not a big compromise as that required by the
conventional rules with only a lot of functional evaluations. Tables 14 and 15 list the CPU
times (in seconds) for all methods in the case of Examples 1–6 and 7–10, respectively. We
observe that in this sense as well, the proposed formulas take ascendancy over the existing
derivative-free one-point methods: SONC and GL-1. For the two-point GL-2 method, the
results by the proposed MSONC1–4 compare well and are mostly lower in some instances.
Additionally, the average CPU time achieved by the new techniques is smaller than the
average CPU time of the original SONC method and comparable with the GL-1,2 rules,
which utilize special nodes at the zeros of Legendre polynomials, to achieve the same error.
Thus, the proposed methods are time efficient as well and the numerical evidence suggests
that the execution times for the derivatives are not as high as for the usual nodes.

Table 13. Computational costs comparison to achieve 1× 10−15 (Examples 7 and 8) and 1× 10−1

(Examples 9 and 10).

Methods Example 7 Example 8 Example 9 Example 10

SONC 7 3 7 7
MSONC1 7 3 8 16
MSONC2 7 3 10 11
MSONC3 7 3 9 9
MSONC4 7 3 4 9

GL-1 15 6 4 14
GL-2 14 18 4 4

Table 14. Average CPU time (in seconds) comparison to achieve 1× 10−7 absolute error for Examples 1–6.

Methods Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

SONC 1.0190 1.0238 0.8856 1.0461 20.5804 140.08610
MSONC1 0.1623 0.1619 0.1074 0.1561 0.2571 3.07367
MSONC2 0.4316 0.4432 0.2968 0.4175 0.5388 1.8850
MSONC3 0.4229 0.4184 0.2976 0.4215 0.5191 NA
MSONC4 0.4360 0.4371 0.3180 0.4162 0.5442 1.3438

GL-1 0.5945 0.5055 0.5897 0.5470 0.7102 1.7778
GL-2 0.4524 0.4299 0.4288 0.4176 0.5424 1.7599

Table 15. Average CPU time (in seconds) comparison to achieve 1× 10−2 absolute error for Examples 7–10.

Methods Example 7 Example 8 Example 9 Example 10

SONC 1.1232 2.4760 1.7046 1.9635
MSONC1 1.0804 2.5746 1.7105 1.5916
MSONC2 1.2569 2.5071 1.7613 1.9557
MSONC3 1.1261 2.4570 1.5616 1.8320
MSONC4 1.2377 2.4157 1.6502 1.8456

GL-1 1.2034 2.6656 1.8347 1.9282
GL-2 1.1181 2.0629 1.6647 1.8177

5. Conclusions

In this research, four efficient quadrature formulas using derivatives to compute
integrals have been proposed, which were computationally efficient, cost-effective and
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time-efficient modifications of the conventional semi-open Newton–Cotes quadrature
rule. The theoretical development of the methods along with theorems with proofs on
the order of accuracy, degree of precision and error terms for all the proposed methods
were discussed. An exhaustive comparison was carried out on several integrals from the
literature involving regular, periodic and derivative-singular and oscillatory integrands.
In addition to this, computational results in terms of computational cost, observed orders
of accuracy, average C.P.U times (in seconds), as well as absolute error drops, were also
determined for ten test integrals from literature to compare all proposed methods with
derivatives MSONC1, MSONC2, MSONC3, and MSONC4 with classical derivative-free
SONC and GL-1, GL-2 rules. The analysis of the results depicts the efficiency of the modified
methods over the conventional methods. The main features have been the cost-effectiveness
and time efficiency of the proposed methods with derivatives with enhanced theoretical
properties over the existing derivative-free methods not only in regular integrals but also
in the case of some special integrals.
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