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Abstract: The problem of overlapping peaks has been a challenge in microchip electrophoresis (ME)
signal analysis. However, traditional peak fitting algorithms have difficulty analyzing overlapping
peaks due to the high dependence on the starting point. In this study, we propose a symmetrical peak
fitting method named the tent-mapped whale optimization algorithm and Levenberg–Marquardt
(TWOALM), which combines a whale optimization algorithm (WOA) improved by one of the
most commonly used chaotic maps, the tent map and the Levenberg–Marquardt (LM) algorithm.
Specifically, we first derive the fitted model for the overlapping peaks, showing that it is separable
nonlinear least squares, significantly reducing the number of parameters to be optimized. Second,
we integrate the tent map into the WOA, which improves the convergence speed of the peak fitting
algorithm. Finally, we propose an efficient peak-fitting algorithm that combines the improved WOA
and LM. The advantage of the proposed algorithm is that it is significantly faster than WOA and
significantly more accurate than the LM algorithm. The results of fitting the synthetic peaks and
ME signals showed that the combination of the chaotic map-based WOA algorithm and the LM
algorithm can significantly improve the peak fitting performance and provide an effective solution
for the analysis of overlapping peaks.

Keywords: whale optimization algorithm; chaotic map; Levenberg–Marquardt algorithm; peak
fitting method; microchip electrophoresis; ion signal analysis

1. Introduction

Microchip electrophoresis (ME) has been widely applied in environmental analysis
due to its unique advantages [1]. However, similar to other separation techniques, the ME
system also has the problem of overlapping peaks [2,3], which becomes a challenge for
quantitative analysis.

For the overlapping peak problem, a variety of approaches have been proposed. These
commonly used methods include the Kalman filter [4], multiple linear regression [5], rein-
forcement learning [6], artificial neural networks [7], and continuous wavelet transform [8].
Recently, many methods for handling overlapping chromatographic peaks have been
proposed, including techniques suitable for processing single-channel data [9], such as iter-
ative curve fitting [10], power law [11], and derivative method [12]. Among these methods,
the iterative curve fitting method is more suitable for the extraction of overlapping peak
areas [9].
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Since the peaks are special curves, the peak fitting can be considered a nonlinear least
squares problem. The most common method for solving this problem is the Levenberg–
Marquardt (LM) algorithm [13], which takes the entire data as the fitting object and has the
characteristics of fast local convergence. However, since the LM algorithm is an iterative
local optimization algorithm, its optimization results are heavily dependent on the starting
point [14–16]. Therefore, a suitable starting point for LM needs to be calculated using an
algorithm with global optimization capability.

Recently, Li et al. [17] used the particle swarm optimization (PSO) algorithm for curve
fitting, which expanded the application of swarm intelligence optimization algorithms.
Among the many swarm intelligence optimization algorithms, the whale optimization
algorithm (WOA) [18] balances exploration and exploitation well and shows a strong global
optimization capability. To the knowledge of the authors, there is no related research on
applying the WOA algorithm to peak fitting.

In summary, we combine the improved WOA algorithm with the LM algorithm for the
fitting of overlapping peaks in this article. First, the fitted model of the Gaussian peak was
derived and specified as separable nonlinear least squares, which effectively reduced the
number of parameters to be optimized. Subsequently, the chaos map [19] was integrated
into the WOA to improve the peak fitting performance. The results of fitting to the synthetic
peaks showed that the convergence speed of WOA based on the tent map was significantly
improved. Finally, a peak fitting algorithm based on improved WOA and LM was proposed
and evaluated using synthetic peaks and ME signals.

The original contributions of this article are as follows:
First, to analyze the parameters to be optimized, we derived a Gaussian peak fitting

model, showing that it is a separable nonlinear least squares problem, which facilitates the
coding of individuals. Secondly, to improve the performance of the WOA, an improved
WOA algorithm based on tent mapping was proposed. The proposed algorithm improved
the convergence speed of the WOA without increasing the time complexity. Finally, aiming
at the quantitative analysis of overlapping peaks, a peak fitting algorithm combining the
improved WOA and the LM was proposed, which can effectively solve the problem that
the LM algorithm relies heavily on the starting point. The method can fit overlapping peaks
in microchip electrophoresis and has a high application value.

Compared with published methods for overlapping peak analysis (Refs. [4–8]), our
algorithm is more suitable for analyzing the overlapping microchip electrophoresis ion
peaks. In addition, the proposed algorithm is computationally efficient and has a broader
application prospect than the existing single-channel signal analysis methods (Refs. [11,12]).
Our algorithm has a higher fitting accuracy and shorter computation time than the LM
algorithm (Ref. [13]) and WOA algorithm (Ref. [18]), respectively.

The following sections are organized as follows: in Section 2, the derivation of the
fitting model, the theory of the WOA, LM, and chaotic maps, and the description of the
proposed algorithm, are introduced. In Section 3, the proposed method is introduced.
Section 4 describes the acquisition process of simulation data and electrophoresis data. In
Section 5, synthetic data and experimental data are used to verify the performance of the
proposed algorithm. Finally, the conclusion is given in Section 6.

2. Related Work
2.1. Derivation of Peak Fitting Model

In peak fitting, analysts generally consider that the detected signal is the superposition
of multiple independent components [20]. In other words, the fitting object is the addition
of multiple independent peaks. In addition, as one of the most commonly used peak shapes,
the Gaussian function has shown its powerful ability for the description of peak shape
data [21] and the analysis of signals, such as spectroscopy [22], chromatography [23], mass
spectrometry [24], magnetic eddy current [25], and voltammetry [26]. The structure of
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voltage signals obtained by ion sample detection using a microchip electrophoresis device
is assumed to be the superposition of Gaussians

y(t) = ∑N
i=1 hi × e−(

t−pi
wi

)
2
×ln16, (1)

where t is the time variable, N is the number of component peaks, i.e., the number of
separated peaks, while the hi, pi, and wi are the height, position, and width of the i-th
Gaussian peak, respectively.

Equation (1) shows that hi is a linear parameter, and both pi and wi are non-linear
parameters. Considering the Gaussian function as a special exponential function, then
Equation (1) is a linear combination of N exponential functions. In other words, Equation (1)
is a linear combination of multiple nonlinear functions with multiple parameters. Hence,
according to Reference [27], Equation (1) is a separable nonlinear least squares problem.
For convenience, we rewrite Equation (1) as

y(t; h, p, w) = h ∗XT, (2)

where ∗means the inner product, T is the matrix (vector) transpose, h is the linear parameter
vector, X is the function of nonlinear parameter vectors p and w. The descriptions of vectors
h, p, and w are

h = [h1, h2, . . . , hN ], (3)

p = [p1, p2, . . . , pN ], (4)

w = [w1, w2, . . . , wN ]. (5)

For the peak fitting problems, the k-th element of the fitting residual can be expressed as

rk(h, p, w) = y∗(tk)− y(tk; h, p, w), (6)

where y∗ is the measured signal.
The residual vector of peak fitting is

r(h, p, w) = [r1(h, p, w), . . . , rM(h, p, w)], (7)

where M is the number of data points in the measured signal.
According to the principle of least squares, the parameters h, p, and w are determined

by minimizing the Euclidean norm of the r vector

‖r(h, p, w)‖2 = ‖y∗ − h ∗ xT‖2. (8)

Assuming that the nonlinear parameters p and w in Equation (8) have been determined,
as discussed later, the parameter h can be obtained by solving linear least squares

h = y∗ ∗ inv
(

xT
)

, (9)

where inv is the inverse of the matrix.
In this article, the fitting error of the algorithm is the root mean square error (RMSE),

as follows:

RMSE =
‖r(h, p, w)‖2√

M
. (10)

The difficulty of this problem lies in the solution of nonlinear parameters. According
to Equation (8), the minimization of the peak fitting error can be regarded as a least
squares problem, including linear and nonlinear parts. To solve this problem, the nonlinear
parameters (p and w) should be determined before calculating the linear parameter (h).
Although the LM algorithm can determine p and w, the LM algorithm is an iterative
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gradient algorithm which is highly dependent on the starting point. To find a suitable
starting point for LM, the improved WOA algorithm is described in detail in Section 3.

2.2. Theory of WOA, LM, and Chaotic Map
2.2.1. WOA

The WOA algorithm has comprehensive advantages in terms of global optimization
capability and convergence and is therefore used to perform peak fitting. The optimization
process of the WOA algorithm includes two stages: exploration and exploitation.

In the exploration phase, to improve the global optimization ability, the position
updates with the randomly chosen individual and

P(k + 1) = P∗(k)− C1·|C2·P∗(k)− P(k)|, (11)

where P is the position vector, k means the current iteration, P∗ means the position vector
of the best individual, and C1 and C2 are coefficient vectors described later.

The descriptions of the coefficient vectors C1 and C2 are

C1 = 2d·r1 − d, (12)

C2 = 2r2, (13)

respectively, where d decreases linearly from 2 to 0 as the iteration increases, r1 and r2 are
vectors of random numbers between 0 and 1. It should be noted that Equation (11) is used
only when the absolute value of C1 is greater than or equal to 1.

During the exploitation phase, the position updates according to the target’s position
or in a spiral fashion with a probability of 50% each

P(k + 1) =
{

P∗(k)− C1·|C2·P∗(k)− P(k)|, if p < 0.5 (14)
|P∗(k)− P(k)|·ebl · cos(2πl) + P(k), if p ≥ 0.5 (15)

where P∗ is the position vector of the target (the best solution), the term |P∗(k)− P(k)|
means the distance between the current whale and the target, the constant b indicates the
shape of the spiral, l is a random number between −1 and 1, p is a uniformly distributed
random number in [0,1]. It should be noted that Equation (14) can only be used when the
absolute value of C1 is less than 1.

2.2.2. LM

Due to the optimization ability of the LM algorithm, it has been widely used for data
fitting, including mass spectrometry [28], voltammetry [29], chromatography [30], Raman
spectroscopy [31], laser-induced breakdown spectroscopy [32], and fiber Bragg grating
data [33]. The LM effectively combines the gradient descent method and the Gauss–Newton
iteration method and is one of the most widely used optimization algorithms. The key step
of the LM algorithm is

x(i + 1) = x(i)− (H + λdiag[H])−1∇ f (x(i)), (16)

where x = (x1, x2, . . . , xn) is a vector of the parameter to be optimized, is the Hessian matrix
evaluated at x(i), λ is the scale coefficient, diag is the diagonal of the matrix, ∇ f (x(i)) is
the gradient of the objective function f at x(i). It can be seen from Equation (16) that the
LM algorithm significantly depends on x(0), which is the starting point.

2.2.3. Chaotic Map

The complex behavior in nonlinear or deterministic systems can be represented by
chaotic maps. The randomness and ergodic nature of chaotic maps are widely used for the
improvement of swarm intelligence algorithms [19,34–37]. On the one hand, these studies
based on chaotic maps have significantly improved the performance of swarm intelligence
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algorithms. On the other hand, the convergence speed [38] of the WOA algorithm has
room for improvement. Therefore, we are motivated to apply chaotic maps to improve
the performance of the WOA algorithm. Tent map and Gauss/mouse map are used in this
article, as shown below:

ui+1 =

{
ui
0.7 , ui < 0.7

10(1−ui)
3 , ui ≥ 0.7

(17)

ui+1 =

{
1, ui = 0

1
mod(ui ,1)

, ui 6= 0 (18)

3. Proposed Method
3.1. Improved WOA

To further improve the performance of the WOA algorithm, we replaced the uni-
formly distributed p in the original WOA algorithm with a chaotic map, as shown in
Equations (19) and (20).

P(k + 1) =
{

P∗(k)− C1·|C2·P∗(k)− P(k)|, if cmp < 0.5 (19)
|P∗(k)− P(k)|·ebl · cos(2πl) + P(k), if cmp ≥ 0.5 (20)

where cmp is a chaotic mapped value calculated by Equation (17) or (18). The pseudo-code
of the tent map-based WOA algorithm is as Algorithm 1.

Algorithm 1. The pseudo-code of the TWOA

1. Begin
2. Initialize the position of each individual;
3. Calculate each fitness and find the best optimal individual (P*);
4. while t ≤MaxIter
5. for each individual
6. Return back the individuals that beyond the boundaries;
7. Update the iteration parameters (d, r1, r2, C1, C2, and l);
8. Update the tent map probability (cmp) by Equation (17);
9. if p < 0.5
10. if C1 < 1
11. Update the position of the individual by Equation (14);
12. else
13. Update the position of the individual by Equation (11);
14. end
15. else
16. Update the position of the individual by Equation (15);
17. end
18. end
19. Update P* and t;
20. end
21. return P*;
22. End

For synthetic peaks, Figure 1 depicts the convergence curves of the WOA fitting
algorithm with different chaotic maps. Figure 1 shows that the WOA with a tent map
converged faster than the original WOA. In contrast, it can be seen from Figure 1 that the
WOA with a Gauss/mouse map failed to effectively improve the convergence speed of
the original WOA. Furthermore, most of the tent-mapped WOAs converged around the
20th iteration. This indicates that for peak fitting problems, tent mapping techniques can
improve the performance of WOA.

For further comparison, the fitting results of the original WOA, Gauss/mouse-mapped
WOA, and tent-mapped WOA are shown in Figures A1–A8 in Appendix A. Figures A1a–A8a
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show that for all six sets of synthetic data, the fitting errors of the Gauss/mouse-mapped
WOA were larger than those of the other two algorithms. In addition, although the fitting
errors of tent-mapped WOA and original WOA were not significantly different for the
first three sets of data, the errors of the tent-mapped WOA were lower than those of the
original WOA on all six sets of data. Figures A1b–A8b compare the computation time of
these three algorithms for six sets of data. For each set of data, the tent-mapped WOA
had the fastest computation speed while the original WOA had the longest running time.
A comprehensive analysis of the convergence properties (Figure 1) and fitting results
(Figures A1–A8) shows that the chaotic mapping technique (tent map) can improve the
peak fitting performance of WOA. Therefore, the tent-mapped WOA (TWOA) was used in
this work.

To determine the nonlinear parameters in Equation (8), we used the improved WOA
algorithm to calculate the starting point for the LM algorithms. To use the TWOA, peak
fitting parameters such as h, p and w should be coded according to the position vector

Pos(k) = [h1, p1, w1, h2, p2, w2, . . . , hN , pN , wN ]. (21)

Then the optimal solution Pos is found at the end of the WOA iteration, as shown in
Equation (22)

Pos =
[

h1, p1, w1, h2, p2, w2, . . . , hN , pN , wN

]
, (22)

which can serve as the starting point of the LM algorithm.
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Figure 1. Convergence curves of the WOAs with different chaotic maps. Subfigures (a–h) are
the results of fitting the signals with signal-to-noise ratios of 10, 12, 14, 16, 18, 20, 22, and 24 dB,
respectively. The resolution of each pair of synthetic peaks is 0.65.

3.2. Proposed Peak Fitting Method

Figure 2 shows a simplified flowchart of the proposed TWOA-based LM algorithm
named TWOALM, and its brief description is as follows:

(1) Input stage, where the microchip electrophoresis signals are preprocessed to be
suitable for application in the peak fitting method;

(2) Baseline correction, aims to subtract background information from the signal to
facilitate subsequent processing;

(3) Initialization, setting the initial parameters of the TWOA algorithm to achieve
global optimization;

(4) TWOA calculation, update the cmp with Equation (17), fit the Gaussian functions
to the detected microchip electrophoresis ion signals, and then use the optimal solution as
the starting point of the LM algorithm; and,

(5) Based on the starting point obtained from the previous stage, the LM algorithm
performs further peak fitting. If the current iteration t is less than the maximum iteration
(MaxIter) and the best fitness (BF) is greater than the preset error (SetError), return to the
third stage, otherwise, output the result.
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4. Materials and Experiments
4.1. Synthetic Peaks

The synthetic data are the sum of two Gaussian peaks with different parameters

Syn1(t) = ∑2
i=1 hi × e−(

t−pi
wi

)
2
×ln16, (23)

where Syn1 means the synthetic data, t is the time variable vector, hi, pi, and wi are the
height, position, and width of i-th Gaussian peak, respectively.

Generally, the resolution of two Gaussian peaks [39] can be expressed as

RG =
(p2 − p1)

2(σ1 + σ2)
, (24)

where RG is the resolution, and σ1 and σ2 are the standard deviations of the two Gaussian
distributions. In addition, it is more practical to use the full width at half maximum
(FWHM) to describe the width of the peak. For Gaussian distribution [40], the relationship
between FWHM and standard deviation is

σi =
FWHMi

2
√

ln 4
, (25)
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where the subscript i represents the i-th Gaussian peak. Finally, Equation (24) can be
rewritten into a more practical form

RG =
(p2 − p1)

√
ln 4

(FWHM1 + FWHM2)
. (26)

To simulate the real ion signals, eight different levels of white noise were added to
the data. Here, the signal-to-noise ratio (SNR) increased by 2 dB from 10 dB to 24 dB. In
all these synthetic data, the height of the first peak was set to 1000, and the height of the
other peak was set to 500. The FWHM of the two peaks were 200 and 400, respectively. It
is important to note that under the same noise level, the value of p1 was fixed at 800, while
the value of p2 decreased by 30 from 1370 to 110. Therefore, according to Equation (26),
there are nine sets of overlapping peaks with different resolutions. The population size
of both WOA and TWOA is 500, and the maximum number of iterations is 200. Repeat
the calculation 100 times for each set of data, and then calculate the fitting error. The
configuration of the personal computer used to perform the simulation results is as follows:
the computer performing the calculations has an Intel(R) Xeon(R) Silver 4108 CPU with
eight cores (1.80 GHz) and 256 GB memory.

4.2. Reagents and Electrophoresis Experiment

Table 1 shows the details of the solutions used. All analytical-grade reagents were
purchased from Macklin (Shanghai, China).

Table 1. Description of the solutions used in this work.

Solution Property

NH+
4 &K+ 10 mM, stock solutions

Ca2+&Mg2+ 10 mM, stock solutions
L-histidine (His) 60 mM stock solution

2-(N-morpholino)-ethanesulfonic acid (MES) 60 mM stock solution
18-Crown-6 20 mM stock solution

Sodium hydroxide 100 mM stock solutions
Deionized water resistivity 18.2 MΩ·cm

The solutions were prepared using deionized water, which was processed through
Cascada I (PALL, Beijing, China). Stock solutions of NH+

4 , K+, Ca2+, and Mg2+ were
prepared from their corresponding chloride salts. The stock solutions of His, MES, and
18-Crown-6 (Table 1) were prepared daily. A mixture of these three solutions was the
running buffer, which was 20 mM His, 20 mM MES, and 2 mM 18-Crown-6 at pH 6.0. To
obtain samples, the sample (high concentration) solutions in Table 1 were diluted with the
running buffer. The other experimental conditions were consistent with the work in [41].
Electrophoresis signals were acquired using MAX194 (Maxim Integrated, San Jose, CA,
USA) and LABVIEW (National Instruments, Austin, TX, USA).

5. Results and Discussion
5.1. Fitting Results to Synthetic Peaks

Figure 3 shows the fitting errors of LM, TWOA, and TWOALM. It can be seen from
Figure 3 that the fitting error of LM was the largest and was significantly greater than that
of TWOALM and TWOA. In each case of Figure 3, the fitting error of TWOALM was very
close to that of TWOA (the differences were not more than ±10−12). In addition, the errors
of TWOALM (and TWOA) decreased with the increase in SNR. In contrast, the errors of
LM did not strictly show this trend in Figure 3d,e,g,h.
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Corresponding to Figure 3, Table 2 shows the calculation time of TWOALM, LM, and
TWOA. It can be seen from Table 2 that the calculation time of TWOA was significantly
longer than that of LM and TWOALM. For each resolution, the calculation time of TWOA
was around 13 s, which is three orders of magnitude larger than that of TWOALM and LM.
It is worth noting that the calculation time of TWOALM was the same order of magnitude
as that of LM. In most cases, the computer time of TWOALM was greater than that of LM
when the resolution was higher than R5. In contrast, when the resolution was below R5, the
computer time of TWOALM was smaller than that of LM in most cases. Taking resolution
R9 (0.65) as an example, the fitting results in Figure 4 also reflect the excellent performance
of the proposed fitting algorithm. Table 3 shows the peak position errors of TWOALM
and LM. It can be seen from Table 3 that for each combined peak, the peak position errors
(Error1 and Error2) of TWOALM were significantly smaller than those of LM, respectively.
For most cases of TWOALM or LM, the position error of peak 1 was less than that of peak
2. More specifically, for the LM algorithm, the position errors of peak 2 were significantly
greater than those of peak 1 under the resolutions from R3 to R9. In contrast, the TWOALM
algorithm showed this trend only in the resolutions of R1 and R7. Table 3 indicates that the
fitting accuracy of TWOALM was higher than that of LM.

To sum up, taking into account the fitting errors (Figures 3 and 4), position errors
(Table 3), and calculation time (Table 2), the proposed TWOALM algorithm has the ad-
vantages of both TWOA and LM, that is, higher fitting accuracy and faster calculation
speed. Furthermore, when the resolution of overlapping peaks is lower than 0.88 (R5), the
excellent performance of the proposed algorithm can be better reflected.
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Table 2. Calculation time of different algorithms for synthesized peaks. R1 to R9 correspond to peaks
of resolutions 1.12, 1.06, 1.00, 0.94, 0.88, 0.82, 0.77, 0.71, and 0.65, respectively. The calculation time is
the average of the calculation time of 100 fittings.

Resolution Algorithm 10 dB 12 dB 14 dB 16 dB 18 dB 20 dB 22 dB 24 dB

R1
TWOALM 0.091 0.074 0.073 0.068 0.065 0.060 0.059 0.057

LM 0.048 0.069 0.062 0.059 0.055 0.053 0.054 0.058
TWOA 13.83 13.60 13.61 13.49 13.32 13.54 14.52 13.52

R2
TWOALM 0.077 0.075 0.071 0.068 0.059 0.059 0.056 0.058

LM 0.048 0.066 0.060 0.052 0.080 0.069 0.056 0.051
TWOA 13.15 13.09 13.09 13.23 13.19 13.20 13.40 13.23

R3
TWOALM 0.094 0.078 0.070 0.061 0.056 0.055 0.052 0.052

LM 0.054 0.066 0.056 0.055 0.048 0.046 0.063 0.051
TWOA 14.49 14.04 13.28 13.18 12.83 13.05 12.89 12.86

R4
TWOALM 0.071 0.062 0.070 0.055 0.052 0.052 0.050 0.047

LM 0.050 0.054 0.054 0.047 0.048 0.064 0.049 0.054
TWOA 12.79 12.91 12.89 12.91 12.85 12.95 12.94 12.94

R5
TWOALM 0.070 0.066 0.064 0.056 0.054 0.049 0.044 0.047

LM 0.065 0.071 0.056 0.058 0.055 0.054 0.062 0.062
TWOA 12.88 12.92 12.87 12.92 12.83 12.88 12.84 12.94

R6
TWOALM 0.063 0.057 0.058 0.052 0.050 0.050 0.045 0.045

LM 0.058 0.055 0.054 0.070 0.059 0.061 0.060 0.055
TWOA 0.077 0.075 0.071 0.068 0.059 0.059 0.056 0.058

R7
TWOALM 0.061 0.052 0.054 0.049 0.048 0.044 0.040 0.040

LM 0.064 0.069 0.072 0.051 0.061 0.070 0.061 0.092
TWOA 13.08 12.96 12.90 12.97 12.85 13.02 12.92 12.86

R8
TWOALM 0.056 0.048 0.056 0.046 0.042 0.042 0.042 0.040

LM 0.069 0.088 0.075 0.065 0.058 0.073 0.067 0.083
TWOA 12.86 12.88 12.81 12.85 12.77 12.91 12.87 12.84

R9
TWOALM 0.056 0.049 0.050 0.043 0.040 0.039 0.037 0.039

LM 0.075 0.058 0.065 0.062 0.070 0.055 0.070 0.067
TWOA 12.80 12.84 12.79 12.79 12.80 12.87 12.78 12.78
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Figure 4. Fitting results of the proposed method to the synthetic peaks with different noise levels.
The resolution of each pair of synthetic peaks is 0.65; (a–h) correspond to eight SNRs, which are 10 dB,
12 dB, 14 dB, 16 dB, 18 dB, 20 dB, 22 dB, and 24 dB, respectively. Gray circles represent the synthetic
data; the black solid line is the fitted peak; the two single peaks are plotted with cyan and magenta
dashed lines, respectively.

Table 3. Peak position errors of TWOALM and LM for the synthetic peaks with eight signal-to-noise
ratios, including position errors of peak 1 (Error1) and peak 2 (Error2). Each error is the absolute
value of the mean value of the peak position residuals of 100 fittings. R1 to R9 correspond to peaks of
resolutions 1.12, 1.06, 1.00, 0.94, 0.88, 0.82, 0.77, 0.71, and 0.65, respectively.

Resolution Algorithm 10 dB 12 dB 14 dB 16 dB 18 dB 20 dB 22 dB 24 dB

R1
TWOALM

Error1 0.37 1.13 0.93 0.19 0.03 0.04 0.35 0.02
Error2 2.38 1.14 2.00 1.78 0.93 1.29 1.14 0.09

LM
Error1 25.26 14.00 2.29 7.87 1.26 21.97 6.71 14.72
Error2 95.43 57.97 32.34 40.95 1.18 78.60 45.21 49.18

R2
TWOALM

Error1 2.47 0.15 1.09 0.41 0.03 0.05 0.55 0.22
Error2 0.20 3.58 1.57 1.50 0.18 0.23 0.24 0.82

LM
Error1 4.87 4.41 15.84 14.95 5.53 10.76 7.16 30.54
Error2 27.22 47.72 27.14 42.18 68.47 62.36 37.43 30.29

R3
TWOALM

Error1 0.46 0.84 1.33 1.02 0.00 0.27 0.15 0.46
Error2 0.34 0.40 0.40 1.81 1.43 0.38 1.13 1.07

LM
Error1 12.28 22.57 0.34 7.25 3.81 16.04 9.46 3.76
Error2 64.39 119.47 106.31 93.01 126.93 95.38 80.99 93.81

R4
TWOALM

Error1 0.41 0.09 0.25 1.02 0.54 0.00 0.24 0.42
Error2 0.20 2.83 3.55 2.12 2.24 0.51 0.01 0.31

LM
Error1 1.16 10.42 0.38 6.13 13.42 7.05 4.98 1.33
Error2 67.20 114.28 89.21 135.55 63.58 57.13 102.47 97.05
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Table 3. Cont.

Resolution Algorithm 10 dB 12 dB 14 dB 16 dB 18 dB 20 dB 22 dB 24 dB

R5
TWOALM

Error1 1.17 0.78 0.42 0.60 0.11 0.27 0.11 0.00
Error2 1.52 0.11 1.72 2.87 1.79 0.97 0.07 0.90

LM
Error1 7.02 15.24 36.10 1.61 13.30 2.80 34.20 0.74
Error2 136.42 87.49 71.32 156.76 101.51 121.77 104.21 186.19

R6
TWOALM

Error1 3.17 2.76 1.51 0.07 0.55 0.23 0.81 0.10
Error2 7.63 9.28 1.46 2.20 2.31 0.22 3.13 0.97

LM
Error1 1.73 29.55 11.17 58.03 13.13 9.94 12.99 14.84
Error2 182.09 97.30 161.24 121.32 176.53 140.57 199.55 131.12

R7
TWOALM

Error1 1.48 0.02 0.38 0.42 0.24 0.84 0.22 1.78
Error2 1.86 1.67 0.97 4.59 2.97 2.16 1.96 16.29

LM
Error1 20.10 29.59 35.12 23.82 14.00 40.29 52.07 44.57
Error2 235.81 258.37 248.49 215.68 243.54 190.68 165.54 156.71

R8
TWOALM

Error1 4.50 2.20 1.22 12.67 0.76 16.13 27.71 19.07
Error2 14.45 19.90 3.16 33.68 10.66 44.27 59.23 3.05

LM
Error1 56.10 24.23 26.26 62.91 53.58 27.57 33.10 27.42
Error2 330.30 242.44 328.67 295.81 164.69 111.16 263.38 215.16

R9
TWOALM

Error1 0.07 4.59 18.78 28.22 1.63 40.73 11.13 17.16
Error2 0.80 26.06 2.90 43.38 70.58 33.59 8.17 10.64

LM
Error1 42.58 23.99 36.55 63.72 35.21 31.12 49.28 46.58
Error2 228.78 314.41 383.07 219.07 419.76 232.48 292.38 332.37

5.2. Results in the Analysis of Experimental Data

Figure 5 shows the worst-fitting results of the proposed algorithm, the TWOA algo-
rithm, and the LM algorithm on the ME signals of these ionic samples. The residual curve is
drawn in the lower part of each figure. Figure 5a–c show the fitting results of the proposed
algorithm, TWOA algorithm, and LM algorithm on sample 1 (NH+

4 &K+), respectively.
In addition, the fitting results of these three algorithms on sample 2 (Ca2+&Mg2+) are
shown in Figure 5d–f, respectively. Although the complexing agent 18-Crown-6 (Table 1)
was added to the running buffer, the peaks of sample 1 were severely overlapped at the
same concentration. The residual curves of the proposed method (Figure 5a,d) and TWOA
(Figure 5b,e) had significantly less fluctuation than those of the LM algorithm (Figure 5c,f).
This fluctuation is because the LM algorithm fits the ion signal to a large peak. Except for a
few signal points, the fitted curve of the proposed method fits well to the bulk of the ion
signal. The residual curves showed that the fitting accuracy of the proposed algorithm was
close to that of the WOA algorithm, and both were higher than the LM algorithm.

Table 4 shows the number of fittings that regard the experimental data as a single peak
over 100 fittings. In each fit, the proposed algorithm fitted the experimental data to two
peaks. However, the LM algorithm often treated the experimental data as a single peak,
especially for the detection signal of sample 1. Table 4 shows that the global optimization
ability of the proposed algorithm was close to that of the TWOA algorithm. In contrast, for
ion peaks with a large degree of overlap, the LM algorithm with an inappropriate starting
point was likely to fall into a local minimum.

Table 4. The number of single peaks fitted to the experimental data.

Sample TWOA LM TWOALM

NH+
4 &K+ 0 43 0

Ca2+&Mg2+ 0 22 0
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Figure 5. Fitting results of the experimental data. The subfigures (a–c) are the fitting results of the
NH+

4 &K+ signal, respectively. The subfigures (d–f) are the fitting results of the Ca2+&Mg2+ signal,
respectively. Experimental peaks, fitted peaks, peak 1 and peak 2 are represented by a grey circle,
black solid line, cyan dashed line and magenta dashed line, respectively.

Table 5 shows the comparison of the fitting performance of the three algorithms to the
experimental data. Table 5 shows that the proposed algorithm had the smallest fitting error,
indicating that it can perform a more accurate analysis of the experimental data than other
algorithms. In contrast, in terms of computational speed, both the proposed algorithm
and the LM algorithm were significantly faster than the TWOA algorithm. The speeds
of the proposed algorithm and the LM algorithm were close to each other. Moreover, by
comparing the values of Error1 and Error2, it can be seen that the stability of the TWOALM
algorithm was greater than that of LM. It can be seen from Table 5 that the computational
speed of the proposed algorithm was significantly faster than that of the TWOA algorithm,
which was consistent with the fitting results on synthetic data (Table 2). In contrast, the
proposed algorithm can achieve higher fitting accuracy at a faster speed. In each calculation,
the starting point of the LM algorithm was randomly generated. Hence, the fitting errors
in Table 5 also show that the fitting performance of the LM algorithm is dependent on the
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starting point. In contrast, the proposed algorithm can achieve higher fitting accuracy at a
faster speed.

Table 5. Fitting error and calculation time of experimental data. Fitting errors are the mean (Error1)
and median (Error2) of the RMSE over 100 fittings. The calculation time is the median time of
100 computations.

Sample TWOA LM TWOALM

NH+
4 &K+

Error1 4.099440085 8.303486631 4.099440072
Error2 4.099440072 4.099440072 4.099440072
Time(s) 32.6398813 0.21237084 0.176207775

Ca2+&Mg2+
Error1 1.589428358 2.298334751 1.589428313
Error2 1.589428316 1.589428313 1.589428313
Time(s) 29.06685794 0.155972324 0.11844894

A comprehensive analysis of the fitting results of synthetic peaks (Tables 2 and 3,
Figures 3 and 4) and microchip electrophoresis ion peaks (Tables 4 and 5, Figure 5) showed
that the proposed overlapping peak analysis algorithm combined the fitting accuracy of
the TWOA algorithm and the convergence speed of the LM algorithm. The algorithm has
great application prospects, not only for analyzing electrophoretic overlapping peaks, but
also for processing high-throughput peak signals such as chromatography, spectroscopy
and mass spectrometry.

6. Conclusions

In this article, we used a commonly used chaotic map method, tent map, to improve
the WOA algorithm and propose the TWOA algorithm. Specifically, we used tent mapping
to replace the uniformly distributed parameters in the original WOA, and then used
simulation experiments to verify its convergence performance. In addition, we proposed
a peak fitting algorithm TWOALM based on the proposed TWOA algorithm and the LM
algorithm. Simulation peaks with different noise levels and resolutions and microchip
electrophoresis experimental data were used to verify the performance of the algorithm.
This algorithm effectively solves the dependence of the LM algorithm on the starting
point and has broad application prospects. The fitting results of the simulated peaks and
microchip electrophoresis ion peaks showed that the combination of the chaotic map-based
WOA algorithm and LM algorithm could significantly improve the fitting accuracy of
overlapping peaks. To expand the application of this method, more peak function fitting
needs to be further studied in the future. In addition, the problem of multiple peaks
overlapping, which is common in high-throughput signals, is worth further investigation.
A feasible idea is to combine the peak detection method and expand it to quantitative
analysis of three-dimensional overlapping signals.
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Appendix A

In this section, the fitting results of different WOA algorithms for the synthetic
peak with different SNRs are shown in Figures A1–A8, which are cited in the main text
(Section 3.1).

Figure A1. The fitting results of different WOA algorithms for the synthetic peak with SNR of 10 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).

Figure A2. The fitting results of different WOA algorithms for the synthetic peak with SNR of 12 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).
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Figure A3. The fitting results of different WOA algorithms for the synthetic peak with SNR of 14 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).

Figure A4. The fitting results of different WOA algorithms for the synthetic peak with SNR of 16 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).
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Figure A5. The fitting results of different WOA algorithms for the synthetic peak with SNR of 18 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).

Figure A6. The fitting results of different WOA algorithms for the synthetic peak with SNR of 20 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).
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Figure A7. The fitting results of different WOA algorithms for the synthetic peak with SNR of 22 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).

Figure A8. The fitting results of different WOA algorithms for the synthetic peak with SNR of 24 dB.
(a) Fitting error (root mean square error), (b) calculation time (mean value).
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