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Abstract: The free vibration of isotropic gradient elastic thick non-rectangular microplates is analyzed
in this paper. To capture the microstructure-dependent effects of microplates, a negative second-order
gradient elastic theory with symmetry is utilized. The related equations of motion and boundary
conditions are obtained using the energy variational principle. A closed-form solution is presented
for simply supported free-vibrational rectangular microplates with four edges. A C1-type differential
quadrature finite element (DQFE) is applied to solve the free vibration of thick microplates. The
DQ rule is extended to the straight-sided quadrilateral domain through a coordinate transformation
between the natural and Cartesian coordinate systems. The Gauss–Lobato quadrature rule and
DQ rule are jointly used to discretize the strain and kinetic energies of a generic straight-sided
quadrilateral plate element. Selective numerical examples are validated against those available in the
literature. Finally, the impact of various parameters on the free vibration characteristics of annular
sectorial and triangular microplates is shown. It indicates that the strain gradient and inertia gradient
effects can result in distinct changes in both vibration frequencies and mode shapes.

Keywords: free vibration; non-rectangular microplates; gradient elastic theory with symmetry;
microstructure-dependent effects; differential quadrature finite element

1. Introduction

The free vibration of plates and plate assemblies is a hot topic that has continually
inspired researchers for well over two centuries. From an engineering perspective, the
importance of this topic cannot be overemphasized, particularly for its applications in the
aeronautical industry, where the top and bottom skins of an aircraft wing are generally
idealized as plate assemblies during the structural design. In the context of the first- or
third-order shear deformation theory (FSDT or TSDT), researchers have conducted many
numerical studies on the vibration characteristics of thick plates. For example, Bui et al. [1]
presented new numerical results of the high-frequency modes of Mindlin plates using an
effective shear-locking-free meshless method. Based on a modified FSDT, Nam et al. [2]
developed a four-node plate element with nine degrees of freedom per node for the static
bending and vibration of two-layer composite plates. Tran et al. [3] presented new finite
element results of the static bending at high temperatures and the thermal buckling of
sandwich FG plates using a modified TSDT. Thai et al. [4] applied the finite element method
to simulate the mechanical, electric, and polarization behaviors of TSDT-based piezoelectric
nanoplates resting on elastic foundations subjected to static loads. Doan et al. [5] used
the TSDT and phase-field approach to simulate the free vibration response of cracked
nanoplates while taking into account the flexoelectric effect. Duc et al. [6] established a
phase-field fracture model in the context of a new TSDT to study the buckling behavior of
multi-cracked FG plates.
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Increasing progress in ultra-precision machining techniques has spawned various
small-sized beam/plate-like structures in the past decades. Owing to their excellent me-
chanical, electrical, and thermal performance, such structures have widely served as the
major load-bearing objects in Micro-Electro-Mechanical Systems (MEMSs) [7]. However, at
the micron or even submicron level, the critical dimensions (e.g., diameter and thickness)
of structural members are usually of the same order as the characteristic dimensions of
constituent materials (e.g., grain size, void radius, and dislocation spacing), which could
induce the microstructure-dependent effects validated by experiments and simulations
on the bending of microbeams [8–10], the torsion of copper microwires [11,12], and the
process of wave propagation in superlattice solids [13,14]. Thus, microstructure-dependent
effects should be considered in analyzing static and dynamic problems of small-scale beams
and plates for the reliability and design accuracy of MEMS devices. Due to the lack of
long-range interactions among adjacent material points, classical continuum mechanics
fails to capture size-dependent phenomena.

Classical continuum mechanics needs to be improved by introducing the higher-
order spatial derivatives of strain, stress, and inertia terms while preserving its powerful
homogenizing characteristic. To realize dimensional homogeneity, one or more material
length scale parameters (MLSPs) should be used in non-classical constitutive equations.
The original work on gradient-type continuum mechanics can be traced back to Cauchy’s
exploratory study on modeling discrete lattices in the 1850s. After that, the Cosserat
brothers clearly defined microrotations and couple stress in the early 20th century. The
first renaissance of higher-order continuum mechanics was promoted by the representative
works of Koiter [15], Mindlin [16–18], Toupin [19], and others. Early works focused on
the construction of a theoretical framework but lacked experimental validation. Some
simplified gradient elasticity theories [8,13,20–23] were proposed and partly validated
in the 1980s and 1990s for engineering applications. Among these theories, the single-
parameter gradient elasticity theory (SGET) formulated by Aifantis, Ru, and Altan [20,21]
and the modified strain gradient elasticity theory (MSGT) established by Lam et al. [8] are
the most attractive. Based on the SGET and MSGT, the size-dependent Bernoulli–Euler
beam [24,25], Timoshenko beam [26], Reddy–Levinson beam [27], Kirchhoff plate [28,29],
Mindlin plate [30,31], Reddy plate [32], and Kirchhoff–Love cylindrical shell [33,34] models
have been developed to predict the static bending, free vibration, and buckling behaviors of
microscale devices. Roudbari et al. [35] and Kong [36] reviewed the recent advances in non-
classical continuum mechanics models and provided research insights for future studies.

In addition to two types of gradient effects, size-dependent phenomena are also
caused by other physical factors (e.g., nonlocal stress and surface energy effects). Thus,
multifactorial size-dependent constitutive models have been developed to understand
mechanical behavior among microscale members. Recently, the nonlocal strain gradient
theory (NSGT) proposed by Lim et al. has attracted the most attention [37]. The NSGT can
be regarded as a unification of Eringen’s nonlocal elasticity theory [38] and Aifantis’s strain
gradient theory [20]. A nonlocal parameter and a strain gradient parameter are used to
weigh the importance of the strain gradient and nonlocal effects. Both the stiffening and
softening effects of structural members can be captured by the NSGT. Thus, it has been
widely used in modeling small-sized structures with two types of size effects ,. For instance,
Lu et al. [39] proposed a unified nonlocal strain gradient beam model for analyzing the
size-dependent bending and buckling behaviors of nanobeams with different slenderness
ratios. Ma et al. [44] studied wave propagation in thermo-electro-magneto-mechanical-
elastic nanoshells using the nonlocal strain gradient thin and shear-deformable cylindrical
shell models. Lu et al. [45] developed a consistent surface-stress-enriched nonlocal strain
gradient model for a rectangular buckled plate, by which the critical buckling loads of
SSSS, CCSS, and CCCC nanoplates are determined. Lu et al. [48] derived a nonlocal strain
gradient model including surface stress effects to analyze the free vibration of moderately
thick FG cylindrical nanoshells.
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Although the size-dependent continuum modeling of microstructural members has
been well studied, the derived governing differential equations can be solved analytically
for extremely limited types of boundaries, loadings, and geometric conditions. The reason is
that the higher-order gradients introduced by the model can lead to a remarkable rise in the
order of equations of motion and boundary conditions. For instance, the deflection of gra-
dient elastic Kirchhoff plates [28,29] and Kirchhoff–Love cylindrical shells [33,34] requires
C2-continuity. The deflection and rotations of gradient elastic Mindlin plates [31,49] require
C1-continuity. Moreover, gradient elastic Reddy plates [32] require both the C1-continuity
of rotation and the C2-continuity of deflection. These imply extreme difficulty in solving
gradient elastic boundary value problems using both analytical and numerical methods.
Although some conventional analytical methods, e.g., the assumed mode method [45,48],
Navier method [29,39,40,44,50], extended Kantorovich method [51,52], and p-version Ritz
method [31], have been proposed to solve special gradient elastic boundary value problems,
so far, few studies have focused on gradient elastic plates with non-rectangular shapes and
sudden changes in edge supports and thicknesses.

Advanced numerical methods for gradient elastic beams and plates have come forth
through the hard work of researchers. For example, Thai et al. [53] analyzed the size-
dependent mechanical behavior of FG microplates by combining the use of MSGT and
isogeometric analysis (IGA). Nguyen et al. [54] investigated the vibration behavior of FG
microplates with cracks, strain gradient effects, and micro-inertia effects by means of an
extended IGA. According to the four-unknown refined plate theory, Nguyen et al. [55]
used the IGA to predict the geometrically nonlinear bending responses of small-scale FG
plates. Moreover, Nguyen et al. [56] constructed a novel NURBS-based IGA model to study
the static bending, free vibration, and buckling of couple-stress-enriched FG microplates
with higher-order shear and normal deformation effects. Niiranen et al. [57] performed an
IGA on the Galerkin discretization scheme with C2-continuity to address the sixth-order
boundary value problems of gradient elastic Kirchhoff plates. Balobanov et al. [58] proposed
a single-parameter gradient elastic Kirchhoff–Love shell model of arbitrary geometry and
the associated H3-conforming isogeometric Galerkin method. Although the IGA approach
can yield arbitrary-order continuous basis functions, there are still inadequacies in the
integration of the weak form and the imposition of essential boundary conditions in such
a method. In addition, the basis functions of an IGA model often have a larger support
domain than those of the related finite element model, implying less sparse system matrices
and higher computational expense. According to SGET-based Kirchhoff plates, Babu and
Patel [59] established nonconforming C2-continuous rectangular plate finite elements for
studying the free vibration and linear buckling of single-walled graphene sheets. However,
since the standard FEM is subjected to higher-order continuity conditions, researchers
have committed to seeking other alternative methods. Wang [60] developed a weak-form
quadrature element method (QEM) to study the free vibration of nonlocal strain gradient
Euler–Bernoulli beams. Ishaquddin and Gopalakrishnan [61] presented a weak-form QEM
for SGET-based Euler–Bernoulli beams and Kirchhoff plates. To enhance the adaptability of
the DQM, combining the advantages of the DQM and FEM may be a good choice. Zhang
et al. [62] utilized the advantages of the DQM and FEM for the first time to construct
weak-form DQFEs related to isotropic MSGT-based Euler–Bernoulli and Timoshenko beam
models, respectively. Soon afterward, they proposed a series of weak-form DQFEs for
size-dependent Reddy beams [63,64], Mindlin plates [65,66], and Kirchhoff plates [67–69]
and showed the efficacy of their developed DQFEM in comparison with the standard FEM.

The aim of this article is to study the free vibration of non-rectangular gradient elas-
tic thick microplates with two types of gradient effects. The remainder of the paper is
organized as follows. Section 2 applies the energy variational principle to derive the corre-
sponding equations of motion and boundary conditions. Section 3 develops a quadrilateral
differential quadrature finite element to solve the resulting higher-order boundary value
problems. In Section 4, we highlight the effectiveness of our theoretical model and solution
method by comparing it with other available methods and use it to predict the vibrational
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behavior of annular sectorial and triangular microplates. Finally, we draw conclusions
from our research work in Section 5.

2. Governing Equations of Gradient Elastic Thick Microplates

An originally flat isotropic microplate with moderate thickness h is illustrated in
Figure 1, where the plate midplane A coincides with the OXY coordinate plane, and the
bold symbols n and s are the unit normal and tangent vectors at a point on the boundary
curve ∂A, respectively. The material parameters are as follows: Young’s modulus E, shear
modulus G, Poisson’s ratio ν, and mass density ρ. When the plate receives a transversely
distributed load Q on the upper flat surface, there will be a deflection W and two transverse
normal rotations ΦX and ΦY about the Y- and X-axes, respectively.
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For a moderately thick microplate, the displacement field is assumed as

UX = ZΦX(X, Y, t), UY = ZΦY(X, Y, t), UZ = W(X, Y, t), (1)

where UX , UY, and UZ are the displacement components along the X-, Y-, and Z-directions,
respectively.

The nonzero components of the Cauchy strain tensor are

εXX = Z
∂ΦX
∂X

, εYY = Z
∂ΦY
∂Y

, εXY = εYZ =
Z
2

(
∂ΦX
∂Y

+
∂ΦY
∂X

)
, εZX = εXZ =

1
2

(
ΦX +

∂W
∂X

)
, (2)

εYZ = εZY =
1
2

(
ΦY +

∂W
∂Y

)
Second-order gradient elastic theory [20,21] is initiated from the homogenization of

lattice structures by applying the Taylor series to approximate the displacement field of a
discrete model. For the negative form, the related constitutive relation is expressed in the
following symmetrical form:

σij = Cijkl

(
εkl − l2

s∇2εkl

)
(3)

where Cijkl denotes the elastic constitutive tensor with double symmetry, ls is the static
length scale parameter, ∇2 is the Laplace operator, Latin subscripts run over the symbols
X, Y, and Z unless otherwise indicated, and εkl is the Cauchy strain tensor.
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The exploration of the plane stress conditions and Equations (2) and (3) yield the
stress–strain equations for gradient elastic Mindlin microplates as follows:

σXX = E
1−ν2

(
1− l2

s∇2)(εXX + νεYY) =
(
1− l2

s∇2)σ̂XX .
σXY = E

1+ν

(
1− l2

s∇2)εXY =
(
1− l2

s∇2)σ̂XY,
σYY = E

1−ν2

(
1− l2

s∇2)(εYY + νεXX) =
(
1− l2

s∇2)σ̂YY.
σXZ = E

1+ν

(
1− l2

s∇2)εXZ =
(
1− l2

s∇2)σ̂XZ,
σYZ = E

1+ν

(
1− l2

s∇2)εYZ =
(
1− l2

s∇2)σ̂YZ

(4)

where σ̂XX , σ̂XY, σ̂YY, σ̂XZ, and σ̂YZ are classical stresses, and E and ν are Young’s modulus
and Poisson’s ratio, respectively.

Based on Equations (2)–(4) and [28], the strain energy of the present microplate is
expressed as

Πs =
1
2

∫
Ω (σ̂XXεXX + σ̂YYεYY + 2σ̂XYεXY + 2Ksσ̂YZεYZ + 2Ksσ̂XZεXZ)dΩ+

l2
s
2

∫
Ω


∂σ̂XX

∂X
∂εXX
∂X + ∂σ̂XX

∂Y
∂εXX

∂Y + ∂σ̂YY
∂X

∂εYY
∂X + ∂σ̂YY

∂Y
∂εYY
∂Y + 2 ∂σ̂XY

∂X
∂εXY
∂X

+2 ∂σ̂XY
∂Y

∂εXY
∂Y + 2Ks

∂σ̂YZ
∂X

∂εYZ
∂X + 2Ks

∂σ̂YZ
∂Y

∂εYZ
∂Y + 2Ks

∂σ̂XZ
∂X

∂εXZ
∂X

+2Ks
∂σ̂XZ

∂Y
∂εXZ

∂Y

dΩ

= 1
2

∫
A

{
Γ1

[(
ΦX + ∂W

∂X

)2
+
(

ΦY + ∂W
∂Y

)2
]
+ Γ2

(
∂ΦX
∂Y + ∂ΦY

∂X

)2
+ Γ3

∂ΦX
∂X

∂ΦY
∂Y

+Γ4

[(
∂ΦX
∂X

)2
+
(

∂ΦY
∂Y

)2
]
+ Γ5

(
∂ΦX
∂X + ∂2W

∂X2

)2
+ Γ5

(
∂ΦY
∂X + ∂2W

∂X∂Y

)2

+Γ5

(
∂ΦX
∂Y + ∂2W

∂X∂Y

)2
+ Γ5

(
∂2W
∂Y2 + ∂ΦY

∂Y

)2
+ Γ6

(
∂2ΦX
∂X∂Y + ∂2ΦY

∂X2

)2
+

+Γ6

(
∂2ΦX
∂Y2 + ∂2ΦY

∂X∂Y

)2
+ Γ8

(
∂2ΦX
∂X∂Y

∂2ΦY
∂Y2 + ∂2ΦY

∂X∂Y
∂2ΦX
∂X2

)
+

Γ7

[(
∂2ΦX
∂X∂Y

)2
+
(

∂2ΦY
∂X∂Y

)2
+
(

∂2ΦY
∂Y2

)2
+
(

∂2ΦX
∂X2

)2
]}

dA

(5)

where

Γ1 = KsEh
4(1+ ν)

, Γ2 = Eh3

48(1+ ν)
, Γ3 = Eν h3

12(1− ν2)
, Γ4 = Eh3

24(1− ν2)
, Γ5 = KsEhl2

s
4(1+ ν)

,

Γ6 = Eh3l2
s

48(1+ ν)
, Γ7 = Eh3l2

s
24(1− ν2)

, Γ8 = Eh3ν l2
s

12(1− ν2)
,

(6)

where Ks is the shear correction factor. Equation (5) can reduce to its counterpart (see
Equation (10) in [66]) when Σ1 = Γ5, Σ15 = Σ5 = Σ2 = 0, Σ3 + Σ17 = Γ3, Σ4 + Σ16 =
Γ4 + Γ5, Σ18 = Γ2 − Γ5, Σ12 = 2 Γ6, Σ8 = Σ7 = Σ6 = 2 Γ5, Σ9 = Γ1, Σ10 = Γ6 + Γ7,
Σ11 = Γ8, Σ13 = Γ7, and Σ14 = Γ6.

To capture the inertia gradient effect, the contribution of the velocity gradient should
be considered. On the basis of [13,57], the kinetic energy of the present microplate is as
follows:

Πd =
∫

Ω
ρ
2

(
∂UX

∂t
∂UX

∂t + l2
d

∂2UX
∂X∂t

∂2UX
∂X∂t + l2

d
∂2UY
∂Y∂t

∂2UY
∂Y∂t + l2

d
∂2UZ
∂Z∂t

∂2UZ
∂Z∂t

)
dΩ

= 1
2

∫
A


ρ h
(

∂W
∂t

)2
+ ρ h3

12

(
∂ΦX

∂t

)2
+ ρ h3

12

(
∂ΦY

∂t

)2
+

ρhl2
d

[(
∂ΦX

∂t

)2
+
(

∂ΦY
∂t

)2
+
(

∂2W
∂X∂t

)2
+
(

∂2W
∂Y∂t

)2
]
+

ρl2
dh3

12

[(
∂2ΦX
∂t∂X

)2
+
(

∂2ΦX
∂t∂Y

)2
+
(

∂2ΦY
∂t∂X

)2
+
(

∂2ΦY
∂t∂Y

)2
]


dA
(7)

where ld is the dynamic length scale parameter.
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Similar to the derivation process in [28,30], the virtual work done by external forces is
written as the following equation:

δΠe=
∫

A
QδWdXdY +

∫
∂A

V(W)δWds +
∫

∂A
M(W)

∂δW
∂n

ds +
∫

∂A
V(Φs)δΦsds

+
∫

∂A
M(Φs)

∂δΦs

∂n
ds +

∫
∂A

V(Φn)δΦnds +
∫

∂A
M(Φn)

∂δΦn

∂n
ds

(8)

where Q is the distributed transverse load, V(W), V(Φs), and V(Φn) are generalized shear
forces, and M(W), M(Φs), and M(Φn) are generalized bending moments.

The displacement-based equations of motion and boundary conditions of gradient
elastic thick microplates can be obtained using the variational formulations provided
in [69].

For any (X, Y) ∈ A and t ∈ (t1, t2):

Q + 2Γ1

(
∂ΦX
∂X + ∂ΦY

∂Y

)
− 2Γ5

(
∂4W
∂X4 + 2 ∂4W

∂Y2∂X2 +
∂4W
∂Y4

)
+ 2Γ1

(
∂2W
∂X2 + ∂2W

∂Y2

)
−2Γ5

(
∂3ΦX
∂X3 + ∂3ΦY

∂X2∂Y + ∂3ΦX
∂X∂Y2 +

∂3ΦY
∂Y3

)
− ρh ∂2W

∂t2 + ρhl2
d

(
∂4W

∂X2∂t2 +
∂4W

∂Y2∂t2

)
= 0,

(9)

Γ3
∂2ΦY
∂X∂Y + 2Γ4

∂2ΦX
∂X2 − 2Γ1

(
ΦX + ∂W

∂X

)
+ 2Γ2

(
∂2ΦX
∂Y2 + ∂2ΦY

∂X∂Y

)
− Γ8

(
∂4ΦY

∂X3∂Y + ∂4ΦY
∂X∂Y3

)
+2Γ5

(
∂3W
∂X3 + ∂3W

∂X∂Y2 +
∂2ΦX
∂X2 + ∂2ΦX

∂Y2

)
− 2Γ6

(
∂4ΦX

∂X2∂Y2 +
∂4ΦY

∂X3∂Y + ∂4ΦX
∂Y4 + ∂4ΦY

∂X∂Y3

)
−ρh

(
h2

12 + l2
d

)
∂2ΦX

∂t2 − 2Γ7

(
∂4ΦX
∂X4 + ∂4ΦX

∂X2∂Y2

)
+

ρh3l2
d

12

(
∂4ΦX

∂X2∂t2 +
∂4ΦX

∂Y2∂t2

)
= 0,

(10)

Γ3
∂2ΦX
∂X∂Y + 2Γ4

∂2ΦY
∂Y2 − 2Γ1

(
ΦY + ∂W

∂Y

)
+ 2Γ2

(
∂2ΦY
∂X2 + ∂2ΦX

∂X∂Y

)
− Γ8

(
∂4ΦX
∂X∂Y3 +

∂4ΦX
∂X3∂Y

)
+2Γ5

(
∂3W
∂Y3 + ∂3W

∂X2∂Y + ∂2ΦY
∂Y2 + ∂2ΦY

∂X2

)
− 2Γ6

(
∂4ΦY

∂X2∂Y2 +
∂4ΦX
∂X3∂Y + ∂4ΦY

∂X4 + ∂4ΦX
∂X∂Y3

)
−ρh

(
h2

12 + l2
d

)
∂2ΦY

∂t2 − 2Γ7

(
∂4ΦY

∂X2∂Y2 +
∂4ΦY
∂Y4

)
+

ρh3l2
d

12

(
∂4ΦY

∂X2∂t2 +
∂4ΦY

∂Y2∂t2

)
= 0.

(11)

Because of the introduction of higher-order partial derivatives and boundary condi-
tions, the present model is difficult to solve using an analytical or semi-analytical method.
The available works focus on seeking analytical/numerical solutions for gradient elastic
beams and plates with simple loading and boundary conditions.

3. Solution Procedure
3.1. Navier Method

For a simply supported gradient elastic rectangular microplate, the Navier method
can be used to derive the analytical free vibration solution. In this case, W, ΦX , and ΦY can
be written as

W =
∞
∑

m=1

∞
∑

n=1
Amnejωt sin(αmX) sin(βnY),

ΦX =
∞
∑

m=1

∞
∑

n=1
Bmnejωt cos(αmX) sin(βnY),

ΦY =
∞
∑

m=1

∞
∑

n=1
Cmnejωt sin(αmX) cos(βnY),

(12)

where Amn, Bmn, and Cmn are Fourier coefficients, ω is the vibration frequency, j is the
imaginary unit, LX and LY are the length and width of a rectangular microplate, respectively,
and αm = mπ/LX βn = nπ/LY. The following expression is obtained by substituting
Equation (12) into Equations (9)–(11).

K(mn)
11 K(mn)

12 K(mn)
13

K(mn)
21 K(mn)

22 K(mn)
23

K(mn)
31 K(mn)

32 K(mn)
33

−ω2

M(mn)
11 M(mn)

12 M(mn)
13

M(mn)
21 M(mn)

22 M(mn)
23

M(mn)
31 M(mn)

32 M(mn)
33



Amn

Bmn
Cmn

 =

0
0
0

, (13)
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where

K(mn)
21 = K(mn)

12 = 2 Γ1αm + 2 Γ5αm
(
α2

m + β2
n
)
,

K(mn)
31 = K(mn)

13 = 2Γ1βn + 2Γ5 βn
(
α2

m + β2
n
)
,

K(mn)
22 = 2 Γ1 + 2(Γ4 + Γ5 )α

2
m + 2 (Γ2 + Γ5)β2

n + 2
(
α2

m + β2
n
)(

β2
nΓ6 + α2

mΓ7
)
,

K(mn)
23 = (Γ3 + 2 Γ2)αmβn + (Γ8 + 2Γ6)α

3
mβn + (Γ8 + 2Γ6)αmβ3

n,

(14)

M(mn)
11 = ρh + ρhl2

d

(
α2

m + β2
n

)
, M(mn)

33 = M(mn)
22 =

ρh3

12
+ ρhl2

d +
ρl2

dh3

12

(
α2

m + β2
n

)
. (15)

For a non-trivial solution of Amn, Bmn, and Cmn, it is required that the determinant of
the coefficient matrix of Equation (13) vanish. The determinant of the coefficient matrix in
Equation (13) is a cubic equation in ω2, the smallest (positive) root of which gives the mnth
natural frequency, ωmn, for the free vibration of the plate.

3.2. Differential Quadrature Finite Element Method (DQFEM)

A quadrilateral DQFE is derived to address the general free vibration problem of the
present gradient elastic model. Figure 2 illustrates a 2D DQ-based geometric mapping scheme
to satisfy the C1-continuity conditions of W, ΦX, and ΦY and a natural-to-Cartesian coordi-
nate transformation to make the DQ rule feasible for a straight-sided quadrilateral domain.
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From Figure 2, we can derive the partial derivative relationship between the global
and local coordinate systems as follows:

[
∂

∂X
∂

∂Y

]
= J−1

XY

[
∂

∂X
∂

∂Y

]
,


∂2

∂X2
∂2

∂Y2
∂2

∂X∂Y

 =


(

∂X
∂X

)2 (
∂Y
∂X

)2
2 ∂X

∂X
∂Y
∂X(

∂X
∂Y

)2 (
∂Y
∂Y

)2
2 ∂X

∂Y
∂Y
∂Y

∂X
∂X

∂X
∂Y

∂Y
∂X

∂Y
∂Y

∂Y
∂X

∂X
∂Y + ∂X

∂X
∂Y
∂Y




∂2

∂X2

∂2

∂Y2

∂2

∂X∂Y

, (16)
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where

JXY =

[
∂X
∂X

∂Y
∂X

∂X
∂Y

∂Y
∂Y

]
, J−1

XY
=

[
∂X
∂X

∂Y
∂X

∂X
∂Y

∂Y
∂Y

]
. (17)

Using Equations (16) and (17), Equation (5) can be transformed into a natural coordi-
nate system:

Πs =
∫ 1
−1

∫ 1
−1

[
β1

(
∂2W
∂X2

)2
+ β2

(
∂2W
∂Y2

)2
+ β3

(
∂2W

∂X∂Y

)2
+ β4

∂2W
∂X2

∂2W
∂Y2 + β5

∂2W
∂X2

∂2W
∂X∂Y

+

β6
∂2W
∂Y2

∂2W
∂X∂Y

+ β7

(
∂2ΦX

∂X2

)2
+ β8

(
∂2ΦX

∂Y2

)2
+ β9

(
∂2ΦX
∂X∂Y

)2
+ β10

∂2ΦX

∂X2
∂2ΦX

∂Y2 +

β11
∂2ΦX

∂X2
∂2ΦX
∂X∂Y

+ β12
∂2ΦX

∂Y2
∂2ΦX
∂X∂Y

+ β13

(
∂2ΦY

∂X2

)2
+ β14

(
∂2ΦY

∂Y2

)2
+ β15

(
∂2ΦY
∂X∂Y

)2

+β16
∂2ΦY

∂X2
∂2ΦY

∂Y2 + β17
∂2ΦY

∂X2
∂2ΦY
∂X∂Y

+ β18
∂2ΦY

∂Y2
∂2ΦY
∂X∂Y

+ β19
∂2ΦX

∂X2
∂2ΦY

∂X2 +

β20
∂2ΦX

∂Y2
∂2ΦY

∂Y2 + β21
∂2ΦX

∂X2
∂2ΦY

∂Y2 + β22
∂2ΦY

∂X2
∂2ΦX

∂Y2 + β23
∂2ΦX

∂X2
∂2ΦY
∂X∂Y

+

β24
∂2ΦX

∂Y2
∂2ΦY
∂X∂Y

+ β25
∂2ΦY

∂Y2
∂2ΦX
∂X∂Y

+ β26
∂2ΦY

∂X2
∂2ΦX
∂X∂Y

+ β27
∂2ΦX
∂X∂Y

∂2ΦY
∂X∂Y

+

β28
∂2W
∂Y2

∂ΦX
∂Y

+ β29
∂2W
∂Y2

∂ΦX
∂X

+ β30
∂2W
∂Y2

∂ΦY
∂Y

+ β31
∂2W
∂Y2

∂ΦY
∂X

+ β32
∂2W
∂X2

∂ΦX
∂Y

+β33
∂2W
∂X2

∂ΦX
∂X

+ β34
∂2W
∂X2

∂ΦY
∂Y

+ β35
∂2W
∂X2

∂ΦY
∂X

+ β36
∂2W

∂X∂Y
∂ΦX
∂Y

+ β37
∂2W

∂X∂Y
∂ΦX
∂X

+β38
∂2W

∂X∂Y
∂ΦY
∂Y

+ β39
∂2W

∂X∂Y
∂ΦY
∂X

+ β40
∂ΦX
∂Y

∂ΦY
∂Y

+ β41
∂ΦY
∂X

∂ΦX
∂Y

+ β42
∂ΦX
∂X

∂ΦX
∂Y

+β43
∂ΦX
∂X

∂ΦY
∂Y

+ β44
∂ΦX
∂X

∂ΦY
∂X

+ β45
∂ΦY
∂X

∂ΦY
∂Y

+ β46

(
∂W
∂X

)2
+ β47

(
∂W
∂Y

)2
+

β48

(
∂ΦX
∂X

)2
+ β49

(
∂ΦX
∂Y

)2
+ β50

(
∂ΦY
∂X

)2
+ β51

(
∂ΦY
∂Y

)2
+ β52

∂W
∂X

∂W
∂Y

+ β53ΦX
∂W
∂X

+β54ΦX
∂W
∂Y

+ β55ΦY
∂W
∂X

+ β56ΦY
∂W
∂Y

+ β57
(
Φ2

X + Φ2
Y
)]∣∣JXY

∣∣dXdY,

(18)

where βm is the coordinate transformation coefficient, as shown in Appendix A.
Based on Equations (7), (16) and (17), the kinetic energy for the gradient elastic thick

plate element is rewritten as

Πd =
∫ 1

−1

∫ 1

−1



α1

(
∂W
∂t

)2
+ α2

[(
∂ΦX

∂t

)2
+
(

∂ΦY
∂t

)2
]
+ α3

(
∂2W
∂X∂t

)2
+

α4

(
∂2W
∂Y∂t

)2
+ α5

∂2W
∂X∂t

∂2W
∂Y∂t

+ α6
∂2ΦY
∂X∂t

∂2ΦY
∂Y∂t

+

α6
∂2ΦX
∂X∂t

∂2ΦX
∂Y∂t

+ α7

[(
∂2ΦX
∂X∂t

)2
+
(

∂2ΦY
∂X∂t

)2
]
+

α8

[(
∂2ΦY
∂Y∂t

)2
+
(

∂2ΦX
∂Y∂t

)2
]


∣∣JXY

∣∣dXdY, (19)

where

α1 = ρ h
2 , α2 =

ρh(h2+12l2
d )

24 , α3 =
ρhl2

d
2

[(
∂X
∂X

)2
+
(

∂X
∂Y

)2
]

,

α4 =
ρhl2

d
2

[(
∂Y
∂X

)2
+
(

∂Y
∂Y

)2
]

, α5 = ρhl2
d

(
∂X
∂X

∂Y
∂X + ∂X

∂Y
∂Y
∂Y

)
,

α6 =
ρh3l2

d
12

(
∂X
∂X

∂Y
∂X + ∂X

∂Y
∂Y
∂Y

)
, α7 =

ρh3l2
d

24

[(
∂X
∂X

)2
+
(

∂X
∂Y

)2
]

,

α8 =
ρh3l2

d
24

[(
∂Y
∂X

)2
+
(

∂Y
∂Y

)2
]

.

(20)

Gauss–Lobatto (GL) quadrature points and weight coefficients in Figure 2 are given by

Y1 = X1 = −1, Y2 = X2 = −1/
√

5, X3 = Y3 = 1/
√

5, X4 = Y4 = 1, (21)

C(X)
1 = C(Y)

1 = C(X)
4 = C(Y)

4 = 1/6, C(X)
2 = C(Y)

2 = C(X)
3 = C(Y)

3 = 5/6. (22)
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Next, the Lagrange interpolation technique is used to obtain the trial functions of
W,ΦX , and ΦY:

∆ =
4

∑
i=1

4

∑
j=1

lX(i)
(
X
)
lY(j)

(
Y
)
∆ij, (23)

where ∆ij represents the function value of W, ΦX, or ΦY at the ijth GL quadrature point;
lX(i)

(
X
)

and lY(j)
(
Y
)

are the Lagrange interpolation polynomials along the X- and Y-
directions, respectively.

For a standard parent domain [−1, 1]× [−1, 1], the 1st and 2nd partial derivatives of
W, ΦX , and ΦY at all GL quadrature points are expressed as follows:


D(1)

X
W(GL)

D(1)
X

ΦX(GL)

D(1)
X

ΦY(GL)

 = A(1)
X

W(GL)
ΦX(GL)
ΦY(GL)

,


D(1)

Y
W(GL)

D(1)
Y

ΦX(GL)

D(1)
Y

ΦY(GL)

 = A(1)
Y

W(GL)
ΦX(GL)
ΦY(GL)

,


D(2)

X
W(GL)

D(2)
X

ΦX(GL)

D(2)
X

ΦY(GL)

 = A(2)
X

W(GL)
ΦX(GL)
ΦY(GL)

,


D(1⊕1)

XY
W(GL)

D(1⊕1)
XY

ΦX(GL)

D(1⊕1)
XY

ΦY(GL)

 = A(1⊕1)
XY

W(GL)
ΦX(GL)
ΦY(GL)

,


D(2)

Y
W(GL)

D(2)
Y

ΦX(GL)

D(2)
Y

ΦY(GL)

 = A(2)
Y

W(GL)
ΦX(GL)
ΦY(GL)

,

(24)

where D(p⊕q)
XY

∆(GL) is the following partial derivative matrix:

D(p⊕q)
XY

∆(GL) =

[(
∂p+q∆

∂Xp
∂Yq

)
11

,
(

∂p+q∆

∂Xp
∂Yq

)
21

,
(

∂p+q∆

∂Xp
∂Yq

)
31

,
(

∂p+q∆

∂Xp
∂Yq

)
41

,(
∂p+q∆

∂Xp
∂Yq

)
12

,
(

∂p+q∆

∂Xp
∂Yq

)
22

,
(

∂p+q∆

∂Xp
∂Yq

)
32

,
(

∂p+q∆

∂Xp
∂Yq

)
42

,(
∂p+q∆

∂Xp
∂Yq

)
13

,
(

∂p+q∆

∂Xp
∂Yq

)
23

,
(

∂p+q∆

∂Xp
∂Yq

)
33

,
(

∂p+q∆

∂Xp
∂Yq

)
43

,(
∂p+q∆

∂Xp
∂Yq

)
14

,
(

∂p+q∆

∂Xp
∂Yq

)
24

,
(

∂p+q∆

∂Xp
∂Yq

)
34

,
(

∂p+q∆

∂Xp
∂Yq

)
44

]T

(25)

with
(

∂p+q∆
∂Xp

∂Yq

)
ij

denoting the function value of ∂p+q∆
∂Xp

∂Yq at the ijth GL quadrature point.

W(GL), ΦX(GL), and ΦY(GL) are defined in the following vectors:

∆(GL) = [∆11, ∆21, ∆31, ∆41, ∆12, ∆22, ∆32, ∆42, ∆13, ∆23, ∆33, ∆43, ∆14, ∆24, ∆34, ∆44]
T, (26)

and A(1)
X

, A(1)
Y

, A(2)
X

, A(1⊕1)
XY

, and A(2)
Y

are 16 × 16 weight coefficient matrices, as detailed
in [65].

Based on Equation (22), the following weigh coefficient matrix C(GL) formed at all
quadrature points is defined:

C(GL) = diag([1, 5, 5, 1, 5, 25, 25, 5, 5, 25, 25, 5, 1, 5, 5, 1])/36, (27)

The element stiffness and mass matrices and load vector are determined using the
same discretization procedure as depicted in [66,70]. Based on the previous work in [57],
we divide the clamped and simply supported boundaries into two types according to the
normal curvature, i.e., single and double attributes.

Simply supported (S):

Single attribute : W = Φs= 0 (28)
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Double attribute : W = Φs =
∂Φn

∂n
= 0 (29)

Clamped (C):
Single attribute : W = Φs = Φn= 0 (30)

Double attribute : W = Φs = Φn =
∂Φn

∂n
= 0 (31)

Free (F): No constraint.

4. Numerical Results and Discussion
4.1. Model Validation

The convergence and accuracy of our model are verified by some selective examples.
The vibration frequencies predicted by the pb-2 Ritz method for thick macroplates and by
the Navier method for thick microplates are used as benchmarks.

Figures 3 and 4 illustrate three mesh densities for an annular sectorial plate and an equi-
lateral triangular plate, respectively. For the annular sectorial case, ωn = ωR2

out
√

ρh/D,
inner radius Rin = 0.5, outer radius Rout= 1.0, h = 0.1, sectorial angle α= 45

◦
, ν = 0.3,

and Ks = 5/6; for the equilateral triangular plate, ωn = ωL2
√

ρh/D, side length L= 1.0,
h = 0.1, ν = 0.3, and Ks = π2/12. Note that D = Eh3/

[
12
(
1− ν2)] is the flexural rigidity

of the thin plate.
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The six lowest dimensionless frequencies for two macroplates under three types of
meshing are shown in Tables 1 and 2. It is expected that the predicted frequency parameters
converge to their counterparts using the pb-2 Ritz method [71] and ABAQUS (8-node
curved thick shell element) as mesh density increases. The use of Mesh III can produce
good accuracy since the maximum relative error between the proposed method and the
reported results in [71] is less than 1‰. However, it can be observed that the change in the
boundary conditions affects the convergence error. To further validate the effectiveness of
our method, we provide the six lowest vibration mode shapes in the form of deflection
contour plots for two macroplates (Figures 5 and 6). As expected, the present contour plots
are in agreement with those obtained by ABAQUS.

Table 1. The six lowest dimensionless frequencies for an annular sectorial macroplate with three
types of meshing (single attribute).

Plate Type Source
Dimensionless Frequency

¯
ω1

¯
ω2

¯
ω3

¯
ω4

¯
ω5

¯
ω6
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Mesh I 8.6418 31.3613 34.7885 75.3018 76.0219 86.9152 (1.20‰)
Mesh II 8.6433 31.3884 34.7981 75.3645 76.0880 86.9775 (0.49‰)
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Figure 6. The six lowest vibration mode shapes of an equilateral triangular Mindlin macroplate under
three different boundary conditions (single attribute).

Table 3 presents the eight lowest dimensionless frequencies of a square epoxy resin
microplate with L/h = 10, E = 1.44 GPa, ρ= 1220 kg/m3, ν = 0.38, ls/h = 1, and ld/h = 1.
It is noted that numerical and analytical frequencies can achieve consistency with the
increase in the mesh density.
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Table 3. The eight lowest dimensionless frequencies for a simply supported square microplate with
different mesh densities (single attribute).

Mode
Mesh Density Navier

Method4×4 8×8 12×12 16×16 20×20 24×24

ω1 1.7737 1.7747 1.7747 1.7747 1.7747 1.7747 1.7747
ω2 3.9638 3.9502 3.9488 3.9485 3.9485 3.9484 3.9484
ω3 6.0028 5.9862 5.9839 5.9833 5.9831 5.9830 5.9830
ω4 7.1447 7.0213 7.0113 7.0094 7.0088 7.0086 7.0085
ω5 9.0701 8.9722 8.9628 8.9607 8.9601 8.9598 8.9595
ω6 11.7753 10.8629 10.8185 10.8101 10.8077 10.8068 10.8063
ω7 12.0071 11.8812 11.8680 11.8649 11.8638 11.8634 11.8630
ω8 13.5871 12.7407 12.7007 12.6928 12.6904 12.6895 12.6883

The variations in the logarithms of the 1-norms of reduced stiffness and mass matrices
(after imposing essential boundary conditions) against strain gradient and inertia gradient
parameters are illustrated in Figures 7 and 8, respectively. With the increase in gradient
parameters, log10(Cond(K, 1)) and log10(Cond(M, 1)) both decrease. The flattened curves
(see Figures 7 and 8) indicate that the increasing gradient parameters can improve the
convergence of the elements.
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Table 4 lists the dimensionless fundamental frequencies presented by the present
gradient elastic Mindlin plate model and the available gradient elastic Kirchhoff plate model
in [68]. For comparison, the plate dimensions are h = 0.34 nm and LX = LY = 10 nm. It
can be seen that the present predictions are consistent with those in the literature when the
plate is very thin.

Table 4. Comparison of dimensionless fundamental frequency for a square nanoplate with different
gradient parameters (single attribute).

Plate Type ld

ls

0.2 nm 1.0 nm

Ref. [68] Present Ref. [68] Present

SFSF

0.0 nm 0.9774 0.9802 0.9878 0.9920
0.2 nm 0.9735 0.9761 0.9839 0.9864
0.5 nm 0.9539 0.9553 0.9640 0.9688
1.0 nm 0.8922 0.8945 0.9017 0.9079

SCSF

0.0 nm 3.6907 3.6967 4.6619 4.6668
0.2 nm 3.6556 3.6620 4.6160 4.6198
0.5 nm 3.4858 3.4887 4.3949 4.3968
1.0 nm 3.0268 3.0302 3.8032 3.8046

4.2. Parameter Settings

The solution method is then used to analyze the free vibration of gradient elastic
annular sectorial and triangular microplates made of epoxy resin. Here, the material
property parameters are assumed as [31] E= 1.44GPa, ρ = 1220kg/m2, Ks = 5/6, and
ν = 0.38.

Tables 5 and 6 summarize the six lowest dimensionless frequencies for an annular
sectorial microplate and an equilateral triangular microplate, where ls = ls/h, ld = ld/h,
Rout/h = 10, and L/h = 10, and the underlined values in Table 5 are the ratios of the
frequency for the case of ls = 1 (or ld = 1) to the frequency for the case of ls = ld = 0. As
expected, an increased ls or a decreased ld can lead to the increasing vibration frequencies
of microplates, especially for the higher-order modes. This is because the strain gradient
and inertia gradient play roles in enhancing the structural bending rigidity and inertia. By
comparing the underlined values in Table 6, we observe that strain gradient and inertia
gradient effects become significant when increasing the order of the vibration mode, but
they are slightly affected by the boundary conditions. However, variations in the frequency
ratio against the order of the vibration mode are different between equilateral triangular
and annular sectorial microplates. In Tables 5 and 6, the boundary condition has a more
remarkable impact on the frequency ratio in the equilateral triangular case than it does in
the annular sectorial case. By comparing the results shown in bold (Tables 5 and 6) between
the cases of ls = ld= 0 and ls = ld = 1, we find that the inertia gradient has a greater
influence on the frequencies than the strain gradient for the second vibration mode.

The six lowest vibration mode shapes of an annular sectorial microplate with SSCC edges
and an equilateral triangular microplate with SCC edges are illustrated in Figures 9 and 10,
respectively. In the figures, we observe that the first mode shape is almost unaffected by
gradient parameters, while others are not. It is indicated that the introduced gradient effects
change the vibration mode shapes, along with the frequency values. Similar observations
have been previously reported in [57], where the authors show the four lowest eigenmodes
of square and annular gradient elastic microplates with in-plane free vibrations.
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Table 5. The six lowest dimensionless frequencies for an annular sectorial microplate with different
boundary conditions and gradient parameters (single attribute).

Plate Type (
¯
l s,

¯
l d)

Dimensionless Frequency

¯
ω1

¯
ω2

¯
ω3

¯
ω4

¯
ω5

¯
ω6
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(0, 0) 81.5207 130.4961 168.5017 202.1629 211.4280 268.4294
(0.5, 0) 95.3423 153.3994 207.0074 256.5577 272.0939 364.4674
(0, 0.5) 72.2138 104.7030 131.3718 146.1192 152.6934 182.6297

(1, 0) 124.5375 203.0303 281.0181 366.8073 393.5932 534.6659
1.5277 1.5558 1.6677 1.8144 1.8616 1.9918

(0, 1) 55.9479 72.3129 88.2711 93.1260 97.2287 110.6023
0.6863 0.5541 0.5239 0.4606 0.4599 0.4120

(1, 1) 87.4697 112.4565 143.7237 165.9530 178.1079 203.0451
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Figure 10. Two types of gradient effects on the six lowest vibration mode shapes of an equilateral
triangular microplate with SCC edges (single attribute).

Figure 11 presents the 7th to 12th vibration mode shapes and the related frequencies of
an annular sectorial microplate in terms of two outer radius-to-thickness ratios and two sets
of gradient parameters, respectively. A comparison between Cases 1 and 3 (or Cases 2 and
4) shows that the transverse shear deformation can considerably change the higher-order
vibration frequencies and mode shapes. The comprehensive effect of the strain gradient
and inertia gradient causes a decrease in the vibration frequencies of the thick microplate.
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Moreover, the size dependence of vibration mode shapes is also shown by comparing Case
1 with Case 2 (or Case 3 with 4).
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Figure 11. Transverse shear deformation effect on the 7th to 12th vibration frequencies and mode
shapes of an annular sectorial microplate with SSCC edges (single attribute).

In addition, another comparative test has been conducted to confirm whether the
normal curvature has an influence on the vibration mode shapes of an annular sectorial
microplate with SSCC edges. As shown in Figure 12, considering the normal curvature,
there are significant changes in the vibration mode shapes and increasing vibrational
frequencies, especially for higher-order modes.
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5. Conclusions

In this article, we formulate the equations of motion and appropriate boundary condi-
tions for Mindlin microplates with arbitrary shapes based on the negative second-order
gradient elastic theory and the energy variational principle. A C1-type four-node DQFE
is proposed to analyze the resulting higher-order boundary value problems. Then, the
DQ rule is properly used to convert the equation from natural coordinates into Cartesian
coordinate systems in the straight-sided quadrilateral domain. The element stiffness matrix,
mass matrix, and load vector are derived using the minimum-potential-energy principle.
The effectiveness of our theoretical model and solution method is demonstrated in com-
parison to other methods. Finally, the free vibration of annular sectorial and triangular
microplates is analyzed using the new solution method. Several interesting points are
observed as follows.

(1) The element convergence can be improved by increasing two types of gradient effects.
(2) The strain gradient and inertia gradient can cause the frequency stiffening and

softening effects of microplates, respectively.
(3) The vibration mode shapes can be changed to a certain extent by introducing two

types of gradient effects.
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(4) The high-order vibration frequencies and mode shapes are more sensitive to
boundary conditions, transverse shear deformation, and gradient parameters.
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