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Abstract: In this note, we first recall that the sets of all representatives of some special ordinary
residue classes become (m, n)-rings. Second, we introduce a possible p-adic analog of the residue
class modulo a p-adic integer. Then, we find the relations which determine when the representatives
form a (m, n)-ring. At very short spacetime scales, such rings could lead to new symmetries of
modern particle models.
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1. Introduction

The fundamental conception of p-adic numbers is based on a special extension of ratio-
nal numbers that is an alternative to real and complex numbers. The main idea is the com-
pletion of the rational numbers with respect to the p-adic norm, which is non-Archimedean.
Nowadays, p-adic methods are widely used in number theory [1,2], arithmetic geome-
try [3,4] and algorithmic computations [5]. In mathematical physics, a non-Archimedean
approach to spacetime and string dynamics at the Planck scale leads to new symmetries of
particle models (see, e.g., [6,7] and the references therein). For some special applications,
see, e.g., [8,9]. General reviews are given in [10–12].

Previously, we have studied the algebraic structure of the representative set in a fixed
ordinary residue class [13]. We found that the set of representatives becomes a polyadic or
(m, n)-ring, if the parameters of a class satisfy special “quantization” conditions. We have
found that similar polyadic structures appear naturally for p-adic integers, if we introduce
informally a p-adic analog of the residue classes, and we investigate here the set of its
representatives along the lines of [13–15].

2. (m, n)-Rings of Integer Numbers from Residue Classes

Here we recall that representatives of special residue (congruence) classes can form
polyadic rings, as was found in [13,14] (see also notation from [15]).

Let us denote the residue (congruence) class of an integer a modulo b by

[a]b = {{rk(a, b)} | k ∈ Z, a ∈ Z+, b ∈ N, 0 ≤ a ≤ b− 1}, (1)

where rk(a, b) = a + bk is a generic representative element of the class [a]b. The canonical
representative is the smallest non-negative number of these. Informally, a is the remainder
of rk(a, b) when divided by b. The corresponding equivalence relation (congruence modulo
b) is denoted by

r = a(mod b). (2)

Introducing the binary operations between classes (+cl ,×cl), the addition [a1]b +cl
[a2]b = [a1 + a2]b, and the multiplication [a1]b ×cl [a2]b = [a1a2]b, the residue class (binary)
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finite commutative ring Z�bZ (with identity) is defined in the standard method (which
was named “external” [13]). If a 6= 0 and b is prime, then Z�bZ becomes a finite field.

The set of representatives {rk(a, b)} in a given class [a]b does not form a binary ring,
because there are no binary operations (addition and multiplication) which are simulta-
neously closed for arbitrary a and b. Nevertheless, the following polyadic operations on
representatives rk = rk(a, b), m-ary addition νm

νm
[
rk1 , rk2 , . . . , rkm

]
= rk1 + rk2 + . . . + rkm , (3)

and n-ary multiplication µn

µn
[
rk1 , rk2 , . . . , rkn

]
= rk1 rk2 . . . rkn , rki

∈ [a]b, ki ∈ Z, (4)

can be closed but only for special values of a = aq and b = bq, which defines the nonderived
(m, n)-ary ring

Z(m,n)
(
aq, bq

)
=
〈[

aq
]

bq
| νm, µn

〉
(5)

of polyadic integers (that was called the “internal” way [13]). The conditions of closure for
the operations between representatives can be formulated in terms of the (arity shape [14])
invariants (which may be seen as some form of “quantization”)

(m− 1)
aq

bq
= Im

(
aq, bq

)
∈ N, (6)

an−1
q

aq − 1
bq

= Jn
(
aq, bq

)
∈ N, (7)

or, equivalently, using the congruence relations [13]

maq ≡ aq
(
mod bq

)
, (8)

an
q ≡ aq

(
mod bq

)
, (9)

where we have denoted by aq and bq the concrete solutions of the “quantization”
Equations (6)–(9). To understand the nature of the “quantization”, we consider in detail
the concrete example of nonderived m-ary addition and n-ary multiplication appearance
for representatives in a fixed residue class.

Example 1. Let us consider the following residue class

[[3]]4 = {. . .− 45,−33,−29,−25,−21,−17,−13,−9,−5,−1, 3, 7, 11, 15, 19, 23, 27, 31 . . .}, (10)

where the representatives are

rk = rk(3, 4) = 3 + 4k, k ∈ Z. (11)

We first obtain the condition for when the sum of m representatives belongs to the class (10).
So, we compute step by step

m = 2, rk1 + rk2 = rk + 3 /∈ [[3]]4, k = k1 + k2, (12)

m = 3, rk1 + rk2 + rk3 = rk + 6 /∈ [[3]]4, k = k1 + k2 + k3, (13)

m = 4, rk1 + rk2 + rk3 + rk4 = rk + 9 /∈ [[3]]4, k = k1 + k2 + k3 + k4, (14)

m = 5, rk1 + rk2 + rk3 + rk4 + rk5 = rk ∈ [[3]]4, k = k1 + k2 + k3 + k4 + k5 + 3. (15)
...

Thus, the binary, ternary, and 4-ary additions are not closed, while 5-ary addition is. In general,
the closure of m-ary addition holds valid when 4 | (m− 1), that is for m = 5, 9, 13, 17, . . ., such that
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m

∑
i=1

rki
= rk ∈ [[3]]4, k =

m

∑
i=1

ki + 3`ν, (16)

where `ν = m−1
4 ∈ N is a natural number. The “quantization” rule for the arity of addition (6), (8)

becomes m = 4`ν + 1.
If we consider the minimal arity m = 5, we arrive at the conclusion that 〈{rk} | ν5〉, is a 5-ary

commutative semigroup, where ν5 is the nonderived (i.e., not composed from lower arity operations)
5-ary addition

ν5
[
rk1 , rk2 , rk3 , rk4 , rk5

]
= rk1 + rk2 + rk3 + rk4 + rk5 , rki

∈ [3]4, (17)

given by (15), and total 5-ary associativity follows from that of the binary addition in (3) and (17).
In this case, `ν is the “number” of composed 5-ary additions (the polyadic power). There is no
neutral element z for 5-ary addition ν5 (17) defined by ν5[z, z, z, z, rk] = rk, and so the semigroup
〈{rk} | ν5〉 is zeroless. Nevertheless, 〈{rk} | ν5〉 is a 5-ary group (which is impossible in the binary
case, where all groups contain a neutral element, the identity), because each element rk has a unique
querelement r̃k defined by (see, e.g., [15])

ν5[rk, rk, rk, rk, r̃k] = rk, rk, r̃k ∈ [34], (18)

Therefore, from (15) and (17) it follows that r̃k = −3rk = r−9−12k. For instance, for the first several
elements of the residue class [3]4 (10), we have the following querelements

7̃ = −21, 1̃1 = −33, 1̃5 = −45, (19)

−̃1 = 3, −̃5 = 15, −̃9 = 27. (20)

Note that in the 5-ary group
〈
{rk} | ν5, (̃·)

〉
, the additive quermapping defined by rk 7→ r̃k

is not a reflection (of any order) for m ≥ 3, i.e., ˜̃rk 6= rk (as opposed to the inverse in the binary
case) [15].

Now, we turn to the multiplication of n representatives (11) of the residue class [3]4 (10).
By analogy with (12)–(15) we obtain, step by step

n = 2 rk1 rk2 = rk + 6 /∈ [[3]]4, k = 3k1 + 3k2 + 4k1k2,

n = 3
{

rk1 rk2 rk3 = rk ∈ [[3]]4,
k = 9k1 + 9k2 + 9k3 + 12k1k2 + 12k1k3 + 12k2k3 + 16k1k2k3 + 6,

n = 4


rk1 rk2 rk3 rk4 = rk + 2 /∈ [[3]]4,
k = 27k1 + 27k2 + 27k3 + 27k4 + 36k1k2 + 36k1k3 + 36k1k4
+36k2k3 + 36k2k4 + 36k3k4 + 48k1k2k3 + 48k1k2k4 + 48k1k3k4
+48k2k3k4 + 64k1k2k3k4 + 19,

n = 5



rk1 rk2 rk3 rk4 rk5 = rk ∈ [[3]]4,
k = 81k1 + 81k2 + 81k3 + 81k4 + 81k5 + 108k1k2 + 108k1k3 + 108k1k4
+108k2k3 + 108k1k5 + 108k2k4 + 108k2k5 + 108k3k4 + 108k3k5 + 108k4k5
+144k1k2k3 + 144k1k2k4 + 144k1k2k5 + 144k1k3k4 + 144k1k3k5 + 144k2k3k4
+144k1k4k5 + 144k2k3k5 + 144k2k4k5 + 144k3k4k5 + 192k1k2k3k4 + 192k1k2k3k5
+192k1k2k4k5 + 192k1k3k4k5 + 192k2k3k4k5 + 256k1k2k3k4k5 + 60.

(21)

By direct computation, we observe that the binary and 4-ary multiplications are not closed,
but the ternary and 5-ary ones are closed. In general, the product of n = 2`µ + 1 (`µ ∈ N) elements
of the residue class [3]4 is in the class, which is the “quantization” rule for multiplication (7) and (9).
Again, we consider the minimal arity n = 3 of multiplication and observe that 〈{rk} | µ3〉 is a
commutative ternary semigroup, where

µ3
[
rk1 , rk2 , rk3

]
= rk1 rk2 rk3 , rki

∈ [3]4 (22)
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is a nonderived ternary multiplication, and the total ternary associativity of µ3 is governed by
associativity of the binary product in (4) and (22). As opposed to the 5-ary addition, 〈{rk} | µ3〉 is
not a group, because not all elements have a unique querelement. However, a polyadic identity e
defined by (i.e., as a neutral element of the ternary multiplication µ3)

µ3[e, e, rk] = rk, e, rk ∈ [3]4, (23)

exists and is equal to e = −1.
The polyadic distributivity between ν5 and µ3 [15] follows from the binary distributivity in Z

and (17), (22), and therefore, the residue class [3]4 has the algebraic structure of the polyadic ring

Z(5,3) = Z(5,3)(3, 4) =
〈
{rk} | ν5, (̃·), µ3, e

〉
, e, rk ∈ [3]4, (24)

which is a commutative zeroless (5, 3)-ring with the additive quermapping (̃·) (18) and the multi-
plicative neutral element e (23).

The arity shape of the ring of polyadic integers Z(m,n)
(
aq, bq

)
(5) is the (surjective) map-

ping (
aq, bq

)
=⇒ (m, n). (25)

The mapping (25) for the lowest values of aq, bq is given in Table 1 (I = Im
(
aq, bq

)
,

J = Jn
(
aq, bq

)
).

Table 1. The arity shape mapping (25) for the polyadic ring Z(m,n)
(
aq, bq

)
(5). Empty cells indicate

that no such structure exists.

aq\bq 2 3 4 5 6 7 8 9 10

1

m = 3
n = 2
I = 1
J = 0

m = 4
n = 2
I = 1
J = 0

m = 5
n = 2
I = 1
J = 0

m = 6
n = 2
I = 1
J = 0

m = 7
n = 2
I = 1
J = 0

m = 8
n = 2
I = 1
J = 0

m = 9
n = 2
I = 1
J = 0

m = 10
n = 2
I = 1
J = 0

m = 11
n = 2
I = 1
J = 0

2

m = 4
n = 3
I = 2
J = 2

m = 6
n = 5
I = 2
J = 6

m = 4
n = 3
I = 1
J = 1

m = 8
n = 4
I = 2
J = 2

m = 10
n = 7
I = 2
J = 14

m = 6
n = 5
I = 1
J = 3

3

m = 5
n = 3
I = 3
J = 6

m = 6
n = 5
I = 3
J = 48

m = 3
n = 2
I = 1
J = 1

m = 8
n = 7
I = 3

J = 312

m = 9
n = 3
I = 3
J = 3

m = 11
n = 5
I = 3
J = 24

4

m = 6
n = 3
I = 4
J = 12

m = 4
n = 2
I = 2
J = 2

m = 8
n = 4
I = 4
J = 36

m = 10
n = 4
I = 4
J = 28

m = 6
n = 3
I = 2
J = 6

5

m = 7
n = 3
I = 5
J = 20

m = 8
n = 7
I = 11

J = 11,160

m = 9
n = 3
I = 5
J = 15

m = 10
n = 7
I = 5

J = 8680

m = 3
n = 2
I = 1
J = 2

6

m = 8
n = 3
I = 6
J = 30

m = 6
n = 2
I = 3
J = 3

7

m = 9
n = 3
I = 7
J = 42

m = 10
n = 4
I = 7

J = 266

m = 11
n = 5
I = 7

J = 1680
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Table 1. Cont.

aq\bq 2 3 4 5 6 7 8 9 10

8

m = 10
n = 3
I = 8
J = 56

m = 6
n = 5
I = 4

J = 3276

9

m = 11
n = 3
I = 9
J = 72

The binary ring of ordinary integers Z corresponds to
(
aq = 0, bq = 1

)
=⇒ (2, 2) or

Z = Z(2,2)(0, 1), I = J = 0.

3. Representations of p-Adic Integers

Let us explore briefly some well-known definitions regarding p-adic integers to estab-
lish notations (for reviews, see [10,11,16]).

A p-adic integer is an infinite formal sum of the form

x = x(p) = α0 + α1 p + α2 p2 + . . . + αi−1 pi−1 + αi pi + αi+1 pi+1 + . . . , αi ∈ Z, (26)

where the digits (denoted by Greek letters from the beginning of alphabet) 0 ≤ αi ≤ p− 1,
and p ≥ 2 is a fixed prime number. The expansion (26) is called standard (or canonical),
and αi are the p-adic digits which are usually written from the right to the left (positional
notation) x = . . . . αi+1αiαi−1 . . . α2α1α0 or sometimes x = {α0, α1, α2, . . . , αi−1, αi, αi+1 . . .}.
The set of p-adic integers is a commutative ring (of p-adic integers) denoted by Zp = {x},
and the ring of ordinary integers (sometimes called “rational” integers) Z is its (binary) subring.

The so-called coherent representation of Zp is based on the (inverse) projective limit of
finite fields Z�plZ, because the surjective map Zp −→ Z�plZ defined by

α0 + α1 p + α2 p2 + . . . + αi pi + . . . 7→
(

α0 + α1 p + α2 p2 + . . . + αl−1 pl−1
)

mod pl (27)

is a ring homomorphism. In this case, a p-adic integer is the infinite Cauchy sequence that
converges to

x = x(p) = {xi(p)}∞
i=1 = {x1(p), x2(p), . . . , xi(p) . . .}, (28)

where
xi(p) = α0 + α1 p + α2 p2 + . . . + αl−1 pl−1 (29)

with the coherency condition

xi+1(p) ≡ xi(p)mod pi, ∀i ≥ 1, (30)

and the p-adic digits are 0 ≤ αi ≤ p− 1.
If 0 ≤ xi(p) ≤ pi − 1 for all i ≥ 1, then the coherent representation (28) is said to

be reduced. The ordinary integers x ∈ Z embed into p-adic integers as constant infinite
sequences by x 7→ {x, x, . . . , x, . . .}.

Using the fact that the process of reducing modulo pi is equivalent to vanishing the
last i digits, the coherency condition (30) leads to a sequence of partial sums [16]

x = x(p) = {yi(p)}∞
i=1 = {y1(p), y2(p), . . . , yi(p) . . .}, (31)

where
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y1(p) = α0, y2(p) = α0 + α1 p,

y3(p) = α0 + α1 p + α2 p2, y4(p) = α0 + α1 p + α2 p2 + α3 p3, . . . . (32)

Sometimes, the partial sum representation (31) is simpler for p-adic integer computations.

4. (m, n)-Rings of p-Adic Integers

As may be seen from Section 2 and [13,14], the construction of the nonderived (m, n)-
rings of ordinary (“rational”) integersZ(m,n)

(
aq, bq

)
(5) can be performed in terms of residue

class representatives (1). To introduce a p-adic analog of the residue class (1), one needs
some ordering concept, which does not exist for p-adic integers [16]. Nevertheless, one
could informally define the following analog of ordering.

Definition 1. A “componentwise strict order” <comp is a multicomponent binary relation between
p-adic numbers a = {αi}∞

i=0, 0 ≤ αi ≤ p− 1 and b = {βi}∞
i=0, 0 ≤ βi ≤ p− 1, such that

a <comp b⇐⇒ αi < βi, for all i = 0, . . . , ∞, a, b ∈ Zp, αi, βi ∈ Z. (33)

A “componentwise nonstrict order” ≤comp is defined in the same way, but using the nonstrict
order ≤ for component integers from Z (digits).

Using this definition, we can define a p-adic analog of the residue class informally by
changing Z to Zp in (1).

Definition 2. A p-adic analog of the residue class of a modulo b is

[a]b =
{
{rk(a, b)} | a, b, k ∈ Zp, 0 ≤ a < b

}
, (34)

and the generic representative of the class is

rk(a, b) = a +p b •p k, (35)

where +p and •p are the binary sum and the binary product of p-adic integers (we treat them
componentwise in the partial sum representation (32)), and the ith component of (35)’s right hand
side is computed by mod pi.

As with the ordinary (“rational”) integers (1), the p-adic integer a can be treated as
a type of remainder for the representative rk(a, b) when divided by the p-adic integer
b. We denote the corresponding p-adic analog of (2) (informally, a p-adic analog of the
congruence modulo b) as

r = a
(
Modp b

)
. (36)

Remark 1. In general, to build a nonderived (m, n)-ring along the lines of Section 2, we do not
need any analog of the residue class at all, but only the concrete form of the representative (35). Then,
demanding the closure of m-ary addition (3) and n-ary multiplication (4), we obtain conditions on
the parameters (now digits of p-adic integers) similar to (6) and (7).

In the partial sum representation (31), the case of ordinary (“rational”) integers cor-
responds to the first component (first digit α0) of the p-adic integer (32), and higher com-
ponents can be computed using the explicit formulas for sum and product of p-adic
integers [17]. Because they are too cumbersome, we present here the “block-schemes” of
the computations, while concrete examples can be obtained componentwise using (32).

Lemma 1. The p-adic analog of the residue class (34) is a commutative m-ary group 〈[a]b | νm〉, if

(m− 1)a = b •p I, (37)
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where I is a p-adic integer (addition shape invariant), and the nonderived m-ary addition νm is the
repeated binary sum of m representatives rk = rk(a, b)

νm
[
rk1 , rk2 , . . . , rkm

]
= rk1 +p rk2 +p . . . +p rkm . (38)

Proof. The condition of closure for the m-ary addition νm is rk1 +p rk2 +p . . .+p rkm = rk0 in
the notation of (34). Using (35), it provides ma + b •p

(
k1 +p k2 +p . . . +p km

)
= a +p b •p

k0, which is equivalent to (37), where I = k0 −p
(
k1 +p k2 +p . . . +p km

)
. The querelement

rk̄ [18] satisfies
νm[rk, rk, . . . , rk, rk̄] = rk, (39)

which has a unique solution k̄ = (2−m)k− I. Therefore, each element of [a]b is invertible
with respect to νm, and 〈[a]b | νm〉 is a commutative m-ary group.

Lemma 2. The p-adic analog of the residue class (34) is a commutative n-ary semigroup 〈[a]b | µn〉,
if

an − a = b •p J, (40)

where J is a p-adic integer (multiplication shape invariant), and the nonderived m-ary multiplication
νm is the repeated binary product of n representatives

µn
[
rk1 , rk2 , . . . , rkn

]
= rk1 rk2 . . . rkn . (41)

Proof. The condition of closure for the n-ary multiplication µn is rk1 •p rk2 •p . . . •p rkm =
rk0 . Using (35) and opening brackets, we obtain na + b •p J1 = a +p b •p k0, where J1 is
some p-adic integer, which gives (40) with J = k0 −p J1.

Combining the conditions (37) and (40), we arrive at

Theorem 1. The p-adic analog of the residue class (34) becomes a (m, n)-ring with m-ary addi-
tion (38) and n-ary multiplication (41)

Z(m,n)
(
aq, bq

)
=
〈[

aq
]

bq
| νm, µn

〉
, (42)

when the p-adic integers aq, bq ∈ Zp are solutions of the equations

maq = aq
(
Modp bq

)
, (43)

an
q = aq

(
Modp bq

)
. (44)

Proof. The conditions (43)–(44) are equivalent to (37) and (40), respectively, which shows
that

[
aq
]

bq
(considered as a set of representatives (35)) is simultaneously an m-ary group with

respect to νm, and an n-ary semigroup with respect to µn, and is therefore a (m, n)-ring.

If we work in the partial sum representation (32), the procedure of finding the dig-
its of p-adic integers aq, bq ∈ Zp such that

[
aq
]

bq
becomes a (m, n)-ring with initially

fixed arities is recursive. To find the first digits α0 and β0 that are ordinary integers,
we use the Equations (6)–(9), and for their arity shape, we use Table 1. Next, we con-
sider the second components of (32) to find the digits α1 and β1 of aq and bq by solving
Equations (37) and (40) (these having initially given arities m and n from the first step)
by application of the exact formulas from [17]. In this way, we can find as many digits
(α0, , αimax), (β0, , βimax) of aq, and bq as needed for our accuracy preferences in building the
polyadic ring of p-adic integers Z(m,n)

(
aq, bq

)
(42).

Further development and examples will appear elsewhere.
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5. Conclusions

The study of “external” residue class properties is a foundational subject in standard
number theory. We have investigated their “internal” properties to understand the algebraic
structure of the representative set of a fixed residue class. We found that if the parameters
of a class satisfy some special “quantization” conditions, the set of representatives becomes
a polyadic ring. We introduced the arity shape, a surjective-like mapping of the residue
class parameters to the arity of addition m, and the arity of multiplication n, which result
in commutative (m, n)-rings (see Table 1).

We then generalized the approach thus introduced to p-adic integers by defining
an analog of a residue class for them. Using the coherent representation for p-adic inte-
gers as partial sums we defined the p-adic analog of the “quantization” conditions in a
componentwise manner for when the set of p-adic representatives form a polyadic ring.
Finally, we proposed a recursive procedure to find any desired digits of the p-adic residue
class parameters.

The proposed polyadic algebraic structure of p-adic numbers may lead to new symme-
tries and features in p-adic mathematical physics and the corresponding particle models.
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