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Abstract: A large class of integrable non-linear partial differential equations is characterized by the
existence of the associated linear problem (in the case of two independent variables, known as a Lax
pair) containing the so-called spectral parameter. In this paper, we present and discuss the conjecture
that the spectral parameter can be interpreted as the parameter of some one-parameter groups of
transformation, provided that it cannot be removed by any gauge transformation. If a non-parametric
linear problem for a non-linear system is known (e.g., the Gauss–Weingarten equations as a linear
problem for the Gauss–Codazzi equations in the geometry of submanifolds), then, by comparing
both symmetry groups, we can find or indicate the integrable cases. We consider both conventional
Lie point symmetries and the so-called extended Lie point symmetries, which are necessary in some
cases. This paper is intended to be a review, but some novel results are presented as well.

Keywords: Lie point symmetries; extended Lie point symmetries; integrable systems; spectral
parameter; Lax pair

1. Introduction

The key role of the spectral parameter for the integrability of non-linear partial differ-
ential equations has been recognized since the seminal work [1], in which the Korteweg–
de Vries equation appears as the condition for the isospectrality of the one-dimensional
Schrödinger spectral problem. Many methods for the theory of solitons, including the in-
verse scattering method, the Darboux–Bäcklund transformation, and the algebro-geometric
approach, are based on the existence of a linear problem with the spectral parameter [2].
Since the very beginning, the crucial problem consisted of finding such linear systems
(often referred to as “Lax pairs”), usually by making some assumptions about their general
form and solving the resulting algebraic and analytic constraints [3,4].

The first observation of the connection between spectral parameters and Lie symme-
tries is due to Sasaki [5]. He noticed that scaling transformations applied to three popular
soliton equations, accompanied by an appropriate gauge transformation (if needed), can
remove the spectral parameter from the corresponding Lax pairs. Ten years later, Levi and
Sym realized that the inverse version of Sasaki’s procedure can produce Lax pairs with
a true spectral parameter from non-parametric linear systems [6] (see also [7]). A similar
idea, expressed in the language of nonlocal coverings, was formulated by Krasil’shchik and
Vinogradov (see [8] (Section 3.6)). The infinitesimal version of this approach (in which Lie
algebras are used instead of Lie groups) was presented in [9,10].

Lie symmetries of integrable non-linear partial differential equations (PDEs) have
been studied very frequently, but this has not concerned symmetries of the corresponding
Lax pairs. In this context, it is worth mentioning the interesting papers by Estévez and
her collaborators [11–13]. They consider a 2 + 1-dimensional system of PDEs and its Lax
pair (without a parameter). Reducing the system by Lie symmetries to 1 + 1-dimensional
equations, they obtain the corresponding Lax pairs with spectral parameters. The final
goal is similar (though not identical) to ours, but the starting point is different. We should
also mention Marvan’s approach [14–16] here, in which a non-removable parameter is
introduced by cohomological methods. This approach is related to Sakovich’s observations
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(see, for example, [17]). Important results have been recently obtained by Morozov [18,19].
Both approaches (symmetries and cohomologies) were compared in [20], a work in which
many examples are presented.

In this paper, we present the results (including some new ones) and open problems
related to the research program of interpreting the spectral parameter as a group parameter
that cannot be removed by gauge transformations. If a non-parametric linear problem for a
non-linear system is known, which is a typical situation in the geometry of submanifolds
(i.e., the Gauss–Weingarten equations as a linear problem for the Gauss–Codazzi equations),
then the comparison of the symmetry groups of both systems can lead to finding the
integrable cases.

2. Classical Soliton Equations and Scaling Transformations

In three classical cases, Sasaki showed that a simple scaling symmetry (possibly
accompanied by a gauge transformation) can remove the spectral parameter from the
standard Lax pair [5]. It is natural to reverse this observation and use scaling symmetries
to insert a parameter into a given non-parametric linear problem.

The sine-Gordon equation
uxt = sin u, (1)

is the compatibility condition for the linear system:

Ψx =

(
1 − 1

2 ux
1
2 ux −1

)
Ψ, Ψt =

1
4

(
cos u sin u
sin u − cos u

)
Ψ. (2)

Here, and in the sequel, the partial derivatives with respect to x and t are denoted by
the corresponding subscripts.

The scaling symmetry of (1) (the Lorentz transformation in light-cone coordinates)

x̃ = λx, t̃ = t/λ (3)

inserts the parameter λ into (2)

Ψx =

(
λ − 1

2 ux
1
2 ux −λ

)
Ψ, Ψt =

1
4λ

(
cos u sin u
sin u − cos u

)
Ψ. (4)

The Korteweg–de Vries equation

ut + 6uux + uxxx = 0 (5)

is the compatibility condition for the linear system:

Ψx =

(
1 u
−1 −1

)
Ψ,

Ψt =

(
−(4 + 2u + ux) −(uxx + 2ux + 2u2 + 4u)

2u + 4 ux + 2u + 4

)
Ψ.

(6)

The scaling transformation

x̃ = λx, t̃ = λ3t, ũ =
u
λ2 (7)

is a symmetry of (5) but is not a symmetry of (6). It inserts the spectral parameter into (6).
By also performing the gauge transformation

Ψ̃ =

(
1/
√

λ 0
0

√
λ

)
Ψ (8)
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we obtain the Lax pair:

Ψx =

(
λ u
−1 −λ

)
Ψ,

Ψt =

(
−(4λ3 + 2λu + ux) −(uxx + 2λux + 2u2 + 4λ2u)

2u + 4λ2 ux + 2λu + 4λ3

)
Ψ.

(9)

The modified Korteweg–de Vries equation

ut + 6u2ux + uxxx = 0 (10)

is the compatibility condition for the linear system:

Ψx =

(
1 u
−u −1

)
Ψ,

Ψt =

(
−(2u2 + 4) −(uxx + 2ux + 2u3 + 4u)

uxx − 2ux + 2u3 + 4u 2u2 + 4

)
Ψ.

(11)

The scaling transformation

x̃ = λx, t̃ = λ3t, ũ =
u
λ

(12)

leaves (10) invariant, and, at the same time, it inserts the spectral parameter into (11). Thus,
we obtain the following Lax pair (see [5])

Ψx =

(
λ u
−u −λ

)
Ψ,

Ψt =

(
−(2λu2 + 4λ3) −(uxx + 2λux + 2u3 + 4λ2u)

uxx − 2λux + 2u3 + 4λ2u 2λu2 + 4λ3

)
Ψ.

(13)

3. ZS-AKNS Hierarchy and Scaling Transformations

Surprisingly enough, the problem above has never been studied further in the context
of the whole hierarchy of soliton equations. In this section, we will show that the spectral
parameter can be interpreted as a parameter of some scaling transformation in the case of
the SU(2)-reduction in the Zakharov–Shabat-AKNS hierarchy (this reduction is not essential
and is chosen just to simplify the presentation) [2,3].

We consider the following linear problem (or Lax pair):

Ψx =

(
iλ q
−q̄ −iλ

)
, Ψt =


i

N

∑
k=0

Akλk
N

∑
k=0

Bkλk

−
N

∑
k=0

B̄kλk −i
N

∑
k=0

Akλk

Ψ, (14)

where q = q(x, t) ∈ C, Ak = Ak(x, t) ∈ R, and Bk = Bk(x, t) ∈ C are some fields
or dependent variables, and the bar denotes a complex conjugate. The compatibility
conditions for the Lax pair (14) yield the following system of non-linear equations [3,4]:

qt = B0x + 2iqA0,

Akx = i(qB̄k − q̄Bk), (k = 0, 1, . . . , N),

Bk−1 = qAk − i
2 Bkx, (k = 1, . . . , N),

BN = 0.

(15)
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This system can be considered as the Nth element of the SU(2)-ZS-AKNS hierarchy. In
fact, both variables, Ak and Bk, can be explicitly expressed by q and its derivatives so that
only one non-linear equation is left. In particular,

A3 = 4, A2 = 0, A1 = −2q2, A0 = 0,

B3 = 0, B2 = 4q, B1 = −2iqx, B0 = −2q3 − qxx,
(16)

is a special solution of (15) equivalent to the modKdV Equation (10).
The corresponding non-parametric linear problem can be obtained by substituting

λ = 1 into (14):

Ψx =

(
i q
−q̄ −i

)
, Ψt =


i

N

∑
k=0

Ak

N

∑
k=0

Bk

−
N

∑
k=0

B̄k −i
N

∑
k=0

Ak

Ψ. (17)

It is easy to show that the parameter λ can be reintroduced into (17) by applying the
following scaling symmetry of (15):

x̃ = λx, t̃ = λNt, q̃ =
q
λ

, Ãk = λk−N Ak, B̃k = λk−N Bk, (18)

for k = 0, 1, . . . , N. Indeed, suppose that we start from (17), in which we replaced all
variables with their tilde counterparts. Then, applying the transformation (18), we obtain
the exact Lax pair (14). The modKdV equation, presented earlier, is a special case of this
procedure (note that the spectral parameter is renamed: iλ 7→ λ).

4. Galilean Transformation

The non-parametric Lax pairs (6) and (11) can be obtained by putting λ = 1 into (9)
and (13), respectively. However, one can easily see that more natural (much simpler)
non-parametric linear problems can be obtained for λ = 0:

Ψx =

(
0 u
−1 0

)
Ψ, Ψt =

(
−ux −uxx − 2u2

2u ux

)
Ψ (19)

(for the KdV equation) and

Ψx =

(
0 u
−u 0

)
Ψ, Ψt =

(
0 −uxx − 2u3

uxx + 2u3 0

)
Ψ (20)

(for the modKdV equation).
Is it possible to insert the spectral parameter into these linear problems using Lie point

symmetries? The answer is different in each of these two cases, mainly due to the fact that
the symmetry algebras are different.

The Lie algebra of point symmetries of the modKdV Equation (10) is three-dimensional
and consists of translations and a scaling:

∂x, ∂t, x∂x + 3t∂t − u∂u. (21)

All of these transformations leave the linear problem (20) invariant; none of them can
insert a parameter.

The Lie algebra of the point symmetries of the KdV equation is four-dimensional:

∂x, ∂t, x∂x + 3t∂t − 2u∂u, 6t∂x + ∂u. (22)
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The first three transformations, similar to the modKdV case, are symmetries of the
non-parametric linear problem (19). The last vector field generates the famous Galilean
transformation:

t̃ = t, x̃ = x + 6εt, ũ = u + ε. (23)

Denoting ε = −λ2, we obtain a linear problem with the spectral parameter:

Ψx =

(
0 u− λ2

−1 0

)
Ψ,

Ψt =

(
−ux −uxx − 2uλ2 − 2u2 + 4λ4

2u + 4λ2 ux

)
Ψ,

(24)

which is equivalent to the well-known scalar spectral problem for the KdV equation (includ-
ing the one-dimensional Schrödinger equation as the first equation) (compare Section 4.2
in Ref. [21]).

Interestingly, the Lax pair (24) can be transformed into (9) by the following gauge
transformation

Ψ 7→
(

1 λ
0 1

)
Ψ. (25)

The special role of two symmetries of the KdV equation and their gauge equivalence
were discussed in [20]. The paper [20] contains other interesting examples (including the
Burgers equation).

The non-linear Schrödinger (NLS) equation is another equation with a Galilean sym-
metry. This equation, given by

iqt + qxx + 2q|q|2 = 0, (26)

is the second member (N = 2) of the SU(2)-ZS-AKNS hierarchy (but the first one to be
non-linear). It can arise as the compatibility conditions for the following linear system:

Ψx =

(
0 q
−q̄ 0

)
Ψ, Ψt =

(
i|q|2 iqx
iq̄x −i|q|2

)
Ψ. (27)

The group of Lie point symmetries of the NLS equation is generated by:

∂t, ∂x, x∂x + 2t∂t − q∂q, iq∂q, 4t∂x + 2ixq∂q (28)

(to be more precise, we should add complex conjugates here, e.g., iq∂q− iq̄∂q̄ instead of iq∂q,
which is omitted for clarity and brevity). The last vector field generates the one-parameter
Galilean group:

t̃ = t, x̃ = x + 4λt, q̃ = q exp(2iλx + 4iλ2t). (29)

One can easily check that the Galilean transformation inserts a non-removable param-
eter into the linear problem (27). By also applying the gauge transformation

Ψ̃ =

(
exp(iλx + iλ2t) 0

0 exp(−iλx− iλ2t)

)
Ψ, (30)

we obtain the NLS Lax pair in the standard form:

Ψx =

(
iλ q
−q̄ −iλ

)
Ψ, Ψt =

(
i|q|2 − 2iλ2 iqx − 2λq
2λq̄ + iq̄x 2iλ2 − i|q|2

)
Ψ. (31)

We point out that the third vector field of (28) corresponds to the scaling symmetry

t̃ = λ2t, x̃ = λx, q̃ = λ−1q. (32)
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This transformation leaves the linear problem (27) invariant. However, if we consider
another non-parametric linear problem (for example, the one obtained by substituting
λ = 1 into (31)), then the scaling (32) can be used to insert the spectral parameter (this is a
special case of the procedure described in Section 3).

5. Lie Point Symmetries’ Algebras A and A′

In the first part of this paper, all considered symmetry transformations were, in fact,
changes in variables, and it was very easy to find explicit one-parameter groups corre-
sponding to vector fields. In general, the situation can become more complicated, and it is
useful to have a precise algorithm to compute the Lie point symmetries of the considered
non-linear system, which are not symmetries of the corresponding linear problem [9,10].

Following Olver’s monograph [22], we denote the independent variables by x (as a
shorthand for x1, x2, . . . , xn, where n is the number of independent variables) and depen-
dent variables by u (as a shorthand for u1, u2, . . . , um, where m is the number of independent
variables). Derivatives of u are denoted by the multi-index J. For instance, J = {1, 1, 2}
corresponds to u112 which means that u is differentiated twice with respect to x1 and once
with respect to x2. In the case of J = ∅ (the empty set), we have no differentiation, i.e.,
u∅ ≡ u. In Section 2, we used the notation: x1 = t, x2 = x and u1 = u (or u1 = q).
Therefore, u112 ≡ uttx, etc.

We consider a system of partial differential equations, denoted by F(x, u, uJ) = 0,
which arises as the compatibility conditions for

Dk(Ψ) = UkΨ, ⇐⇒ G(x, u, uJ , Ψ) = 0. (33)

where Dk is the total derivative with respect to xk, and Uk = Uk(x, u, uJ) (k = 1, . . . , n).
G = 0 is just a shorthand for the linear system Ψk = UkΨ.

The compatibility conditions for (33) read as follows:

Dj(Uk)− Dk(Uj) + [Uk, Uj] = 0 ⇐⇒ F(x, u, uJ) = 0. (34)

We point out that the pairwise different indices j and k take all values from the set
{1, 2, . . . , n}. Thus, in general, F is a system of non-linear matrix PDEs. For n = 2, we have
only one matrix equation.

Infinitesimal point transformations for the variables and their derivatives are denoted
as follows:

x̃k = xk + εξk(x, u) + . . . , (k = 1, . . . , n),

ũα = uα + εηα(x, u) + . . . , (α = 1, . . . , m),

ũα
J = uα

J + εΓα
J + . . . .

(35)

We point out that, by assumption, ξk and ηα depend only on x and u (i.e., they do
not depend on any derivatives uJ). In contrast, the transformations of the derivatives are
uniquely determined provided that the transformations of x and u are known. The explicit
formula for Γα

J reads as follows:

Γα
J = DJ(η

α − ξkuα
k ) + ξkuα

Jk (36)

(see, e.g., [22]), where DJ is the total derivative with respect to the variables represented by
the multi-index J. In other words, the point transformation can be prolonged on the jet space
(the manifold parameterized by all variables and their derivatives: x, u, uk, ujk, . . . , uJ , . . .).
In particular, the prolongation of the vector field

vvv = ξk∂k + ηα∂uα (37)
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is given by
vvv∞ = ξk∂k + ηα∂uα + Γα

J ∂uα
J

(38)

where, in both formulas, the summation of all indices (including the multi-index J) is
assumed. The superscript ∞ means that the vector field contains differentiations with
respect to all derivatives uα

J (although, for each concrete case, when acting on F, only a
finite number of these terms are used). The alternative notation is vvv∞ = pr vvv, but the finite
version pr (m)vvv (the more precise) is the most popular (compare [22]).

The Lie algebra of the point symmetries of the non-linear system (34) (i.e., F = 0),
defined in the standard way, is denoted by A:

A = {vvv : vvv∞(F)|F=0 = 0}, (39)

where the condition F = 0 implies all of the differential consequences: DJ(F) = 0, as well.
In order to compute the algebra A, one needs to solve the so-called determining equa-

tions [22]. The calculations needed to obtain the results of this paper can be completed—and,
in fact, were completed—without computer assistance (see, e.g., Appendix A); however,
usually, computer assistance, such as in [23,24], is highly welcome.

The Lie point symmetries of the linear system (33) consist of conventional point
symmetries and gauge transformations [9,25]:

Ψ̃ = G(x, u)Ψ ≈ Ψ + εM(x, u)Ψ + . . . (40)

The corresponding vector field can be compactly written as

VVV = vvv + MΨ∂Ψ, (41)

where vvv is of the form (37), and, below, we denote π(VVV) = vvv.
The Lie algebra A′ (introduced in [9,25]) consists of the Lie point transformations (in-

cluding the gauge transformations with respect to Ψ), which do not change the system (33)
(i.e., G = 0):

A′ = {vvv : vvv = π(VVV) and VVV∞(G)|G=0 = 0}, (42)

where the condition G = 0 implies all its differential consequences: DJ(G) = 0, including
F = 0. We point out that, obviously, A′ ⊂ A. One can show (see [25]) that the determining
equations for the linear system (33) are given by:

Dk(M) = [Uk, M] + vvv∞(Uk) + Dk(ξ
j)Uj. (43)

Therefore, in order to compute the vector fields belonging to A′, it is sufficient to find
vector fields vvv that satisfy the system (43).

In the case of the Lie algebra generated by the basis E1, . . . , EN :

M = MαEα, Uk = Uα
k Eα, (44)

where Mα and Uα
k (α = 1, . . . , N) are scalar real functions, and the summation of the

repeating indices is assumed. Hence,

Dk(Mα) = cα
βγUβ

k Mγ + vvv∞(Uα
k ) + Dk(ξ

j)Uα
j , (45)

where cα
βγ are the so-called structure constants of the Lie algebra. In the case of the Lie

algebra su(2), we have N = 3 and
cα

βγ = εαβγ, (46)

where εαβγ is the Levi–Civita symbol (in particular, ε123 = −ε321 = 1). Indeed, for the Lie
algebra su(2), we have [E1, E2] = E3 and its cyclic permutations.
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6. Geometric Cases

The differential geometry of submanifolds is a source of actual and potential examples
of non-parametric linear problems. Indeed, any class of submanifolds immersed in an
ambient space can be characterized by the kinematics of the moving frame given by linear
Gauss–Weingarten equations and their non-linear compatibility conditions, the Gauss–
Codazzi equations (a system of non-linear partial differential equations) (see, e.g., [26,27]).

The Lie point symmetries of the Gauss–Codazzi equations can be used as a tool to
insert a parameter into the Gauss–Weingarten equations. If we succeed and this parameter
cannot be removed by any gauge transformation, then we conjecture that this parameter is
the spectral parameter—the existence of which is crucial for most soliton theory techniques.

The sine-Gordon Equation (1) is the most known case of this kind. It is associated with
pseudospherical surfaces immersed in a three-dimensional Euclidean space.

6.1. Constant Mean Curvature Surfaces

In this case, the Gauss–Codazzi equations can be reduced to the elliptic sinh-Gordon
equation [28]:

φxx + φyy + 2 sinh(2φ) = 0, (47)

and the Gauss–Weingarten equations can be put in the following form:

Ψx = (2 cosh φ E1 − φyE2)Ψ,

Ψy = (2 sinh φ E3 + φxE2)Ψ,
(48)

where E1, E2, and E3 denote (throughout this section) the standard basis in the Lie algebra
su(2) (then, Ψ belongs to the group SU(2)). In particular,

[E1, E2] = E3. (49)

One can use one of the standard matrix representations (in terms of the Pauli matrices),
but it is sufficient and even easier to proceed without any explicit matrix form. The elliptic
sinh-Gordon equation is invariant with respect to the rotation

x̃ = x cos ε + y sin ε, ỹ = y cos ε− x sin ε, (50)

and the linear system (48) transforms into the Lax pair:

Ψx =
(
(eϕ + e−ϕ cos 2ε)E1 − ϕyE2 + e−ϕ sin 2ε, E3

)
Ψ

Ψy = (e−ϕ sin 2ε, E1 + ϕxE2 + (eϕ − e−ϕ cos 2ε)E3)Ψ,
(51)

which can be transformed into the rational form with respect to λ = e2iε (compare [29]).
The elliptic sinh-Gordon equation also describes the spherical surfaces (surfaces with

a positive constant curvature).

6.2. Generalized Bianchi System

Hyperbolic surfaces (i.e., surfaces with a negative Gaussian curvature, immersed in
E3) can always be parameterized by asymptotic coordinates such that the corresponding
fundamental forms read as follows:

I = ρ2(a2dx2 + 2ab cos ϕdxdt + b2dt2),
I I = 2ρab sin ϕdxdt,

(52)

where the function ρ = ρ(x, t) is related to the Gaussian curvature (K = ρ−2), and functions
a, b, and ϕ satisfy the so-called generalized Bianchi system:
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ϕxt +
∂

∂x

(
ρx

2ρ

b
a

sin ϕ

)
+

∂

∂t

(
ρt

2ρ

a
b

sin ϕ

)
= ab sin ϕ,

at +
ρt

2ρ
a− ρx

2ρ
b cos ϕ = 0,

bx +
ρx

2ρ
b− ρt

2ρ
a cos ϕ = 0.

(53)

In particular, ϕ = ϕ(x, t) is the angle between the coordinate lines (see, e.g., [6]).
The Gauss–Weingarten equations can be represented in the forms

Ψx =

(
−aE3 −

(
ϕx +

aρt sin ϕ

2bρ

)
E2

)
Ψ,

Ψt =

(
b(E3 cos ϕ− E1 sin ϕ) +

bρx sin ϕ

2aρ
E2

)
Ψ,

(54)

(see [6]). The Lie algebra A′ consists of vector fields of the form [9]:

ξ∂x + τ∂t − aξ ′∂a − bτ̇∂b (55)

where ξ = ξ(x), τ = τ(t), the prime and dot denote the derivatives, and

ξρx + τρt = 2c0ρ, (56)

where c0 = const. In the case of ρxt 6= 0, the Lie algebra A (i.e., the Lie point symmetries
of the system (53)) coincides with A′. If ρxt = 0, then A′ 6= A. In the generic case, if
ρ = h(x) + g(t), h′(x) 6= 0, and ġ 6= 0, the following vector field belongs to A and does not
belong to A′:

h2

hx
∂x −

g2

gt
∂t −

(
d

dx

(
h2

hx

)
− g + h

2

)
a∂a +

(
d
dt

(
g2

gt

)
− g + h

2

)
b∂b. (57)

The one-parameter group of transformations generated by this vector field inserts the
spectral parameter into (54):

Ψx =

(
−λaE3 −

(
ϕx +

aρt sin ϕ

2bρ

)
E2

)
Ψ,

Ψt =

(
b
λ
(E3 cos ϕ− E1 sin ϕ) +

bρx sin ϕ

2aρ
E2

)
Ψ,

(58)

where

λ =

√
1 + 2κg(t)
1− 2κ f (x)

(59)

and κ = const (compare [6]). We can see that the Lax pair depends in a simple rational
way on λ, which is not constant but does depend on x and t. Therefore, we say that
this is a non-isospectral Lax pair (actually the parameter κ can be considered a “true”
spectral parameter).

Another interesting observation concerning the Bianchi system can be found in [30]. It
turns out that the form (59) is the only possibility for any non-isospectral linear problem
that depends linearly on λ and 1/λ.
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6.3. Isothermic Surfaces

The isothermic surfaces immersed in R3 are characterized by the property that the
curvature lines allow for conformal parameterization (see, e.g., [31,32]). In other words,
there exist coordinates with the following fundamental forms:

I = e2θ(dx2 + dy2),

I I = e2θ(k1dx2 + k2dy2),
(60)

where k1 and k2 are the principal curvatures. The Gauss–Codazzi equations read:

θxx + θyy + k1k2e2θ = 0,

k1,x +(k1 − k2)θx = 0,

k2,y +(k2 − k1)θy = 0.

(61)

The Gauss–Weingarten equations can be represented in the forms:

Ψx = (θyE3 − k2eθE2)Ψ, Ψy = (−θxE3 + k1eθE1)Ψ. (62)

The Lie algebra A (symmetries of the system (61)) is four-dimensional:

∂x, ∂y, ∂θ − k1∂k1 − k2∂k2 , x∂x + y∂y − k1∂k1 − k2∂k2 (63)

Unfortunately, the Lie algebra A′ coincides with A: each transformation (63) leaves
the linear problem (62) invariant.

However, it is possible to find a linear problem with the spectral parameter. We just
have to start from a different non-parametric linear problem (see [31]):

Ψx = 1
2eee1(−θyeee2 − k2eθeee3 + eee4 sinh θ + eee5 cosh θ)Ψ,

Ψy = 1
2eee2(−θxeee1 − k1eθeee3 + eee4 cosh θ + eee5 sinh θ)Ψ,

(64)

Here, in order to simplify notation (the matrix representation is rather awkward),
Clifford numbers are used. They are characterized by the properties: eeejeeek = −eeekeeej (for
k 6= j) and eee1 = eee2 = eee3 = eee4 = −eee5 = 1, which are fully sufficient to perform all
calculations. In particular, we can easily compute the compatibility conditions for the
system (64) and show that they are equivalent to the Gauss–Codazzi Equation (61).

Note that we can identify

E1 =
1
2

eee3eee2, E2 =
1
2

eee1eee3, E3 =
1
2

eee2eee1, (65)

which yields standard commutation relations for the su(2) Lie algebra, including (49).
Actually, the linear problem (64) takes the values in the Lie algebra spin(4,1) (which is
isomorphic to so(4,1)).

Symmetries of the linear problem (64) are given by:

∂x, ∂y, ∂θ − k1∂k1 − k2∂k2 , x∂x + y∂y − k1∂k1 − k2∂k2 −
1
2

c3eee4eee5Ψ∂Ψ (66)

By projecting them onto the space (x, y, θ, k1, k2), we obtain the Lie algebra A′:

∂x, ∂y, ∂θ − k1∂k1 − k2∂k2 , x∂x + y∂y − k1∂k1 − k2∂k2 . (67)

By comparing (67) and (63), we see that the spectral parameter is inserted, again, by
the scaling transformation:
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x∂x + y∂y − k1∂k1 − k2∂k2 . (68)

The linear problem (64) is transformed into

Ψx = 1
2eee1(−θyeee2 − k2eθeee3 + λeee4 sinh θ + λeee5 cosh θ)Ψ,

Ψy = 1
2eee2(−θxeee1 − k1eθeee3 + λeee4 cosh θ + λeee5 sinh θ)Ψ.

(69)

This form of the spectral problem first appeared in [31], motivated by geometric
considerations that can be traced back to the works of Darboux and Bianchi. The Lie point
symmetries were mentioned, in this context, in [33] and discussed in detail in [34].

6.4. Open Problem: Chebyshev and Semi-Geodesic Coordinates

Krasil’shchik and Marvan found Lax pairs with non-removable parameters for two
large classes of surfaces immersed in R3 [35] by considering the Chebyshev coordinates:

I = dx2 + 2 cos ϕdxdt + dt2,

I I = b11dx2 + 2b12dxdt + b22dt2,
(70)

and the semi-geodesic coordinates:

I = dx2 + f (x, y)dy2,

I I = b11dx2 + 2b12dxdt + b22dt2,
(71)

and applying the covering theory approach. They obtained several integrable cases (char-
acterized by some restrictions on the coefficients of fundamental forms), including linear
Weingarten surfaces (where the Gaussian curvature is a linear function of the mean curva-
ture). An interesting open problem consists of performing an analysis of the Lie symmetries
for all of these cases.

7. Spectral Parameter as a Group Parameter—Recent Results

In this section, we consider three multidimensional equations with scalar linear prob-
lems. They arise as reductions of a large family of equations proposed by Bogdanov and
Pavlov [36]. In a recent paper, Morozov obtained their Lax representations using non-
central extensions of the symmetry algebras generated by exotic cohomology groups [19].
We are going to show that the spectral parameters in these Lax pairs are group parameters
and cannot be removed by gauge transformations. Detailed calculations, presented in the
Appendix A, can be also considered as a demonstration of our approach.

7.1. Hyper-CR Equation for Einstein–Weyl Structures

The hyper-Cauchy–Riemann equation for Einstein–Weyl structures, introduced in [37]
(see also [19,38]), reads:

uyy = utx + uyuxx − uxuxy. (72)

It has the following very simple, non-parametric spectral problem:

vt = −uyvx, vy = −uxvx, (73)

In Appendix A.1, we found infinitesimal symmetries both for the system (72) and
for (73). The Lie algebra A of the point symmetries of (72) is spanned by

A∂t + (Ȧx + 1
2 Äy2)∂x + (Ȧy)∂y + (Ȧu + Äxy + 1

6
...
Ay3)∂u,

Ḃy∂x + B∂y + (Ḃx + 1
2 B̈y2)∂u, C∂x + Ċy∂u, D∂u,

t∂t − x∂x − 2u∂u, ∂t, y∂x + 2x∂u,

(74)
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where A, B, C, and D are arbitrary functions of t. The Lie algebraA′ for the linear system (73)
is spanned by the same vector fields, except for the last one (see Appendix A.1).

Therefore, the spectral parameter λ is associated with the one-parameter group gener-
ated by the vector field y∂x + 2x∂u, which generates the following one-parameter group of
transformations:

x̃ = x + λy, ỹ = y, t̃ = t, ũ = u + 2λx + λ2y. (75)

By prolonging this action on the derivatives (note that ∂ỹ = ∂y − λ∂x) and substituting
them into (73), we obtain a linear problem with the spectral parameter λ:

vt = (λ2 − λux − uy)vx, vy = (λ− ux)vx, (76)

where the tilde is omitted.

7.2. Four-Dimensional Bogdanov–Pavlov Equation

Bogdanov and Pavlov considered a class of “quasi-classical” self-dual Yang–Mills
equations and their reductions [36]. One of them is given by the following 3+ 1-dimensional
equation (compare also [19]):

uzz = utx + uzuxy − uxuyz. (77)

The corresponding non-parametric linear problem reads as follows:

vt = −uzvy, vz = −uxvy. (78)

In Appendix A.2, we found infinitesimal symmetries both for the system (77) and
for (78). The Lie algebra A of point symmetries of (77) is spanned by

A∂u, µ∂y + (µyu + µtz)∂u, 2t∂t − u∂u, 2x∂x + z∂z − u∂u,

∂t, ∂x, ∂z, z∂x + 2t∂z

(79)

where A = A(t, y) and µ = µ(t, y). The Lie algebra A′ for the linear system (78) is spanned
by the same vector fields, except for the last one (see Appendix A.2).

Therefore, the spectral parameter λ is associated with the one-parameter group gener-
ated by the vector field z∂x + 2t∂z, which generates the following one-parameter group of
transformations:

x̃ = x + λz + λ2t, z̃ = z + 2λt (80)

We prolong this action on the derivatives:

∂t̃ = ∂t − 2λ∂z + λ2∂x, ∂x̃ = ∂x, ∂z̃ = ∂z − λ∂x, (81)

and transform the linear problem (78) into the following linear problem with the spectral
parameter λ:

vt = λ2vx − (λux + uz)vy, vz = λvx − uxvy, (82)

where the tilde is omitted.

7.3. Martínez Alonso–Shabat Equation

For the last example, we consider one of the hydrodynamic-type equations belonging
to the hierarchies introduced in [39] (see also [40,41]):

uty = uzuxy − uyuxz (83)

One can easily verify that
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vy = uyvx, vz = uzvx − vt, (84)

is a linear problem for (83).
The Lie point symmetries of Equation (83), computed in Appendix A.3, have the

following generators:

ξ∂x + (ξxu− ξtz)∂u, µ∂y, α∂u, t∂t + z∂z, ∂t, ∂z, z∂z + u∂u (85)

where α = α(t, x), ξ = ξ(t, x), and µ = µ(y, z) are the arbitrary functions of two variables.
The Lie algebra A′, corresponding to the Lie point symmetries of the linear prob-

lem (84), is spanned by the same vector fields, except for the last one. The one-parameter
group generated by the field z∂z + u∂u is a simple scaling transformation (z̃ = λz, ũ = λu).
It transforms (84) into the following Lax pair:

vy = λuyvx, vz = λ(uzvx − vt). (86)

The scaling transformation above can easily be guessed, but the calculations performed
in Appendix A.3 also show that the obtained spectral parameter cannot be removed by a
gauge transformation.

8. Extended Lie Point Symmetries

Extended Lie point symmetries are defined as symmetries of a family of equations,
and the family is parameterized by a set of functions f 1, . . . , f N (which are prescribed
functions, treated as parameters in the considered equations).

The vector field corresponding to the extended point transformation contains deriva-
tives with respect to these parameters

vvv = ξ j ∂

∂xj + ηα ∂

∂uα
+ ΦN ∂

∂ f N . (87)

The prolongation of the field vvv is computed in the standard way:

pr vvv = ξ j ∂

∂xj + ηα ∂

∂uα
+ Γα

j
∂

∂uα
j
+ ΛN

J
∂

∂ f N
J

(88)

where, as usual, the summation of the repeating indices (j, α) and multi-indices (J) is assumed.
The key assumption is that we consider the transformations that are standard Lie

point transformations with respect to the variables ξ j and ηα, but we assume nothing about
the transformation of the variables f N . Therefore, in the process of solving the determining
equations, we do not treat the functions f N and their derivatives as independent variables
in the jet space. We point out that other authors have recently begun to use a very similar
approach (although on the level of Lie group rather than Lie algebras) and have described
it in terms of Lie groupoids [42].

In the case of the extended Lie point symmetries, one can define the Lie algebras A
and A′ in a full analogy to the case of the conventional Lie point symmetries discussed in
Section 5.

8.1. Non-Homogeneous Non-Linear Schrödinger System

The geometrical considerations starting from semi-geodesic coordinates (71) (see [43])
lead to an interesting generalization of the cubic non-linear Schrödinger equation:

iqt + ( f q)xx + 2qR = 0, Rx = ( f |q|2)x + fx|q|2. (89)

The corresponding non-parametric linear problem (motivated by the Gauss–Weingarten
equations) is given by:
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Ψx =

(
0 q
−q̄ 0

)
Ψ, Ψt =

(
iR i( f q)x

i( f q̄)x −iR

)
Ψ. (90)

The system (89) is closely related (gauge equivalent) to the classical continuum non-
homogeneous Heisenberg Ferromagnet Model ~St = ~S × ( f~Sx)x (where ~S ∈ R3 and
(~S)2 = 1) [44] (see also [10]).

If fxx 6= 0, then the extended Lie point symmetries of the non-homogeneous non-linear
Schrödinger system (89) are generated by

∂x, x∂x − q∂q + 2 f ∂ f , τ∂t − τ̇(R∂R + f ∂ f ), 2iµq∂q + µ̇∂R, (91)

where τ = τ(t) and µ = µ(t) are arbitrary functions. In this case, algebras of the extended
Lie point symmetries of (89) and (90) are identical: A′ = A [9,25].

If fxx = 0, i.e., f = ax + b, where a = a(t) and b = b(t), then the algebra A′ of the
extended Lie point symmetries of the system (90) is spanned by:

∂x − a∂b, x∂x − q∂q + a∂a + 2b∂b, τ∂t − τ̇(R∂R + a∂a + b∂b), 2iµq∂q + µ̇∂R, (92)

where τ = τ(t) and µ = µ(t) are arbitrary functions. In this case, however, the Lie algebra
A is larger and also contains the following “nonlocal” vector field [45]:

2x(x
∫

a +
∫

b)∂x + (ix− 2
∫

a)q∂q + 2a
∫

a∂a + (4b
∫

a− 2a
∫

b)∂b. (93)

Surprisingly enough, this vector field can be explicitly integrated (see [46]):

x̃ =
x

(1− κ
∫

a)2 +
∫ 2κb

(1− κ
∫

a)3 , t̃ = t, R̃ = R,

q̃ = q(1− κ
∫

a)2 exp
(

ikx
1− κ

∫
a
+
∫ iκ2b

(1− κ
∫

a)2

)
,

ã =
a

(1− κ
∫

a)2 , b̃ =
b

(1− κ
∫

a)4 −
a

(1− κ
∫

a)2

∫ 2κb
(1− κ

∫
a)3 .

(94)

This transformation can be considered a generalization of the Galilean symmetry for
the non-homogeneous case. By applying it to the linear system (90), we obtain the following
non-isospectral Lax pair:

Ψx =

(
iλ q
−q̄ −iλ

)
Ψ, Ψt =

(
i|q|2 − 2i f λ2 i( f q)x − 2λ f q

2λ f q̄ + i( f q̄)x 2i f λ2 − i|q|2
)

Ψ, (95)

where
λ =

κ

2 + 2κ
∫

a
. (96)

This example is especially interesting because the extended Lie point symmetries
seem to be necessary in order to introduce a spectral parameter. By using the standard Lie
point symmetries, we lose some cases. The Lie point symmetries cannot insert the spectral
parameter for any linear functions in x, but rather only for linear functions of the following
special form:

f (x, t) = α̇(x + c1 + c2α) or f (x, t) = b(t), (97)

where c1 and c2 are constants, and α = α(t) and b = b(t) are the given functions of
one variable.

8.2. Generalized Bianchi System

In this case, the Lie point symmetries are fully sufficient to isolate integrable cases (see
Section 6.2), but, interestingly enough, the application of the extended Lie point symmetries
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yields the same result in an alternative way. In the case of ρxt 6= 0, we have A = A′, while
in the case of ρ = ρ = h(x) + g(t), there exists one extended Lie point symmetry of (53),
which does not belong to A′:

( f + g)(a∂a − b∂b) + 2 f 2∂ f − 2g2∂g. (98)

The corresponding one-parameter group

h̃ =
h

1− 2κh
, g̃ =

g
1 + 2κg

, ã = a
√

1 + 2κg
1− 2κh

, b̃ = b

√
1− 2κh
1 + 2κg

, (99)

transforms (54) into the Lax pair (58).
Comparing the vector fields (57) and (98), which insert the spectral parameter, we

can say that although both lead to the same result, in this case, the extended Lie point
symmetries seem to be computationally simpler and more elegant.

9. Conclusions

In this paper, we presented results supporting the conjecture that the spectral parame-
ters of the soliton theory can be interpreted as non-removable (by gauge transformations)
parameters of explicitly given one-parameter groups. In Sections 2 and 3, we underlined the
important role of simple scaling transformations. In many cases, including the ZS-AKNS
class of integrable systems, the spectral parameter is related to scaling. The Galilean trans-
formation (see Section 4), although less common, introduces the spectral parameter into the
simplest non-parametric linear problems in two very important cases: the Korteweg–de
Vries equation and the non-linear Schrödinger equation.

The geometric models presented in Section 6 are related to the geometry of the surfaces
in R3. Therefore, they have su(2)-valued linear problems (su(2) is isomorphic to so(3)). One
case, namely the isothermic surfaces, is especially interesting because it is not possible to
introduce a parameter into the su(2)-valued linear problem. In order to obtain a Lax pair
with the spectral parameter, one has to start from another closely related linear problem
that takes the values from a larger Lie algebra: so(4,1). There are many geometric problems
that can be investigated by the methods outlined in our paper.

Usually, in this context, we consider the Lie point transformations. In Section 5,
we present the algorithm for verifying whether it is possible to insert a non-removable
parameter into a given non-parametric linear problem. This consists of comparing two
Lie algebras, A and A′. We always have A′ ⊂ A. The condition A′ 6= A is sufficient
for the existence of a non-removable parameter. This parameter is related to any vector
field belonging to A′ \ A. In Section 7 (with details presented in the Appendix A), we
apply this procedure to the hyper-CR equation for Einstein–Weyl structures, the four-
dimensional Bogdanov–Pavlov equation, and the Martínez Alonso–Shabat equation. In
all of the investigated cases, we have dimA− dimA′ 6 1 (i.e., we can insert at most one
parameter according to the symmetries). It would be challenging to find a different case in
which there are more spectral parameters.

In the case of non-autonomous systems, in which the coefficients can be explicitly
dependent on the independent variables (e.g., all “non-homogeneous” systems), the Lie
point symmetries seem to be too restrictive, and we often need a larger class of symmetries.
In such a case, we propose consideration of the so-called extended Lie point symmetries.
In fact, they are not symmetries of a fixed equation or system, but rather symmetries of
the whole class of equations (with any parameters or non-homogeneities). In Section 8,
we present two older, interesting examples, namely the non-homogeneous non-linear
Schrödinger system and the generalized Bianchi system. In the near future, we plan to
check and investigate other cases in which non-removable parameters are inserted by
extended Lie point transformations.
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Appendix A

In the Appendix A, we present some basic information about Lie point symmetries,
following classical textbooks, such as [22,47], including more details related to Section 7.

We consider a non-linear partial differential equation of the form

F(t, x, y, z, u, ut, ux, uy, uz, utt, utx, uty, utz, uxx, uxy, uxz, uyy, uyz, uzz) = 0, (A1)

where u = u(t, x, y, z) is a dependent variable (an unknown). We assume that the
Equation (A1) is a compatibility condition for the system of two equations that are linear
with respect to another variable v = v(t, x, y, z):

Gk(t, x, y, z, v, u, vt, vx, vy, vz, ut, ux, uy, uz) = 0, (k = 1, 2), (A2)

Our goal is to find the Lie point symmetries of Equation (A1) which are not the
symmetries of the system (A2). First, we have to compute one-parameter groups of the
transformations preserving Equation (A1). We consider a general invertible transformation
of the form:

t̃ = ϕ0(t, x, y, z, u, ε), ỹ = ϕ2(t, x, y, z, u, ε), ũ = χ(t, x, y, z, u, ε),

x̃ = ϕ1(t, x, y, z, u, ε), z̃ = ϕ3(t, x, y, z, u, ε),
(A3)

where

ϕ0(t, x, y, z, u, 0) = t, ϕ2(t, x, y, z, u, 0) = y, χ(t, x, y, z, u, 0) = u,

ϕ1(t, x, y, z, u, 0) = x, ϕ3(t, x, y, z, u, 0) = z.
(A4)

We expand functions (A3) into the Taylor series with respect to the parameter ε in the
neighborhood of ε = 0 and, taking into account (A4), we confine ourselves to the linear
terms in ε:

t̃ ≈ t + ετ(t, x, y, z, u), ỹ ≈ y + εµ(t, x, y, z, u), ũ ≈ u + εη(t, x, y, z, u),

x̃ ≈ x + εξ(t, x, y, z, u), z̃ ≈ z + ερ(t, x, y, z, u).
(A5)

In other words,

τ =
∂ϕ0(t, x, y, z, u, ε)

∂ε

∣∣∣∣
ε=0

, ξ =
∂ϕ1(t, x, y, z, u, ε)

∂ε

∣∣∣∣
ε=0

,

µ =
∂ϕ2(t, x, y, z, u, ε)

∂ε

∣∣∣∣
ε=0

, ρ =
∂ϕ3(t, x, y, z, u, ε)

∂ε

∣∣∣∣
ε=0

,

η =
∂χ(t, x, y, z, u, ε)

∂ε

∣∣∣∣
ε=0

.

(A6)
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Thus, the one-parameter group (A3) is represented by the vector field

τ∂t + ξ∂x + µ∂y + ρ∂z + η∂u. (A7)

In order to prolong this vector field on the so-called jet space (see [22]), i.e., to compute
the induced transformation of the partial derivatives, we assume and use the invariance of
the differential form

du = utdt + uxdx + uydy + uzdx. (A8)

Indeed, by inserting the transformed functions (A3) into (A8), we obtain:

dχ = ũt̃, dϕ0 + ũx̃, dϕ1 + ũỹ, dϕ2 + ũz̃, dϕ3, (A9)

Then, by using (A5) and comparing the coefficients by the differentials dt, dx, dy, and
dz in (A9), we obtain:

ũt̃ ≈ ut + εΓ0, ũx̃ ≈ ux + εΓ1, ũỹ ≈ ut + εΓ2, ũz̃ ≈ ut + εΓ3, (A10)

where
Γp = Dp(η)− Dp(τ)ut − Dp(ξ)ux − Dp(µ)uy − Dp(ρ)uz, (A11)

where p = 0, 1, 2, 3, and Dp are total derivatives (D0 ≡ Dt, D1 ≡ Dx, D2 ≡ Dy, and
D3 ≡ Dz). In our case:

Dp = ∂p + up∂u. (A12)

Similarly, considering the differentials of up, we obtain prolongations of the second-
order derivatives

ũ p̃q̃ = upq + εΓpq, (A13)

where

Γpq = Dpq
(
η − τut − ξux − µuy − ρuz

)
+ τutpq + ξuxpq + µuypq + ρuzpq (A14)

and
Dpq = ∂2

pq + up∂2
qu + upq∂u + uq∂2

pu + upuq∂2
u. (A15)

A straightforward computation yields

Γpq = Dpq(η)− Dpq(τ)ut − Dp(τ)uqt − Dq(τ)upt

−Dpq(ξ)ux − Dp(ξ)uqx − Dq(ξ)upx − Dpq(µ)uy

−Dp(µ)uqy − Dq(µ)upy − Dpq(ρ)uz − Dp(ρ)uqz − Dq(ρ)upz.

(A16)

By substituting (A5), (A10) and (A13) into (A1), expanding the result to the Taylor series,
and equating to the zero term linear in ε, we obtain the so-called determining equations:

τ
∂F
∂t

+ ξ
∂F
∂x

+ µ
∂F
∂y

+ ρ
∂F
∂z

+ η
∂F
∂u

+ Γ0
∂F
∂ut

+ Γ1
∂F
∂ux

+ Γ2
∂F
∂uy

+Γ3
∂F
∂uz

+ Γ00
∂F

∂utt
+ Γ01

∂F
∂utx

+ Γ02
∂F

∂uty
+ Γ03

∂F
∂utz

+ Γ11
∂F

∂uxx

+Γ12
∂F

∂uxy
+ Γ13

∂F
∂uxz

+ Γ22
∂F

∂uyy
+ Γ23

∂F
∂uyz

+ Γ33
∂F

∂uzz
= 0.

(A17)

The variables t, x, y, z, u, up, and upq are treated as independent variables subject to the
constraint (A1). By solving the system (A17), we obtain the vector fields (A7) generating
the Lie point symmetries of (A1). The obtained Lie algebra is denoted by A.
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Now, we proceed to the Lie point symmetries of the system (A2). We consider the
transformation of the form (A3) accompanied by

ṽ = ψ(t, x, y, z, u, v, ε) ≈ v + εγ(t, x, y, z, u, v). (A18)

In other words, we consider vector fields of the form:

τ∂t + ξ∂x + µ∂y + ρ∂z + η∂u + γ∂v, (A19)

where τ, ξ, µ, ρ, and η depend on t, x, y, z, and u (as before), and γ can depend also on v.
The transformation group corresponding to the generator (A19) is found by solving the
Lie equations

dϕ0

dε
= τ(ϕ0, ϕ1, ϕ2, ϕ3, χ),

dϕ1

dε
= ξ(ϕ0, ϕ1, ϕ2, ϕ3, χ),

dϕ2

dε
= µ(ϕ0, ϕ1, ϕ2, ϕ3, χ),

dϕ3

dε
= ρ(ϕ0, ϕ1, ϕ2, ϕ3, χ),

dχ

dε
= η(ϕ0, ϕ1, ϕ2, ϕ3, χ),

dψ

dε
= γ(ϕ0, ϕ1, ϕ2, ϕ3, χ, ψ),

(A20)

with the initial conditions given by (A4) together with ψ(t, x, y, z, u, v, 0) = v.
The prolongation formulas for the derivatives of v have the form

ṽt̃ ≈ vt + εΛ0, ṽx̃ ≈ vx + εΛ1, ṽỹ ≈ vt + εΛ2, ṽz̃ ≈ vt + εΛ3, (A21)

where
Λp = Dp(γ)− Dp(τ)vt − Dp(ξ)vx − Dp(µ)vy − Dp(ρ)vz. (A22)

By computing the total derivative, we have to take into account the dependence on
v, i.e.,

Dp = ∂p + up∂u + vp∂v. (A23)

By substituting (A5), (A10) and (A21) into (A2), expanding the result into the Taylor
series, and equating to the zero term linear in ε, we obtain the so-called determining equations:

τ
∂Gk
∂t

+ ξ
∂Gk
∂x

+ µ
∂Gk
∂y

+ ρ
∂Gk
∂z

+ γ
∂Gk
∂v

+ η
∂Gk
∂u

+ Λ0
∂Gk
∂vt

+ Λ1
∂Gk
∂vx

+

+Λ2
∂Gk
∂vy

+ Λ3
∂Gk
∂vz

+ Γ0
∂Gk
∂ut

+ Γ1
∂Gk
∂ux

+ Γ2
∂Gk
∂uy

+ Γ3
∂Gk
∂uz

= 0, (k = 1, 2).
(A24)

The projection of the obtained Lie algebra on the space parameterized by t, x, y, z, and
u is denoted by A′.

In the case of the non-linear system (A1), the procedure described above is a special
case of the general approach outlined in Section 5, in which we have to identify the variables
and symmetry generators as follows:

x1 = t, x2 = x, x3 = y, x4 = z, u1 = u,

ξ1 = τ, ξ2 = ξ, ξ3 = µ, ξ4 = ρ, η1 = η.
(A25)

However, the linear system (A2) has, as a rule, a form different from (33), so the results
of Section 5 cannot be directly applied here.

Appendix A.1. Hyper-CR Equation for Einstein–Weyl Structures

We consider Equation (72) and the linear system (73) as special cases of Equations (A1)
and (A2), respectively. The transformed system (73) will take the form

ṽt̃ = −ũỹṽx̃, ṽỹ = −ũx̃ ṽx̃. (A26)
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By substituting (A10) and (A21) into (A26), we obtain determining equations

Λ0 = −Λ1uy − Γ2vx, Λ2 = −Λ1ux − Γ1vx. (A27)

Next, by substituting (A11) and (A22) into (A27) and treating the derivatives as
independent elements, we obtain the system

ξt = ηy, ξx =
1
2
(µy + ηu) = τ̇ − µy + ηu, ξy = µt = ηx, (A28)

where τ = τ(t), ξ = ξ(t, x, y), µ = µ(t, y), γ = γ(v), η = η(t, x, y, u).
Solving the system (A28), we find the Lie point symmetries for the system (73):

τ = A− c1t + c2, ξ = (Ȧ + c1)x + Ä
y2

2
+ Ḃy + C, µ = Ȧy + B,

η = (Ȧ + 2c1)u + Äxy + Ḃx +
...
A

y3

6
+ B̈

y2

2
+ Ċy + D, γ = γ(v),

(A29)

where c1 and c2 are constants, and A, B, C, and D are functions of t.

Next, we transform Equation (72):

ũỹỹ = ũt̃x̃ + ũỹũx̃x̃ − ũx̃ũx̃ỹ. (A30)

By substituting (A10) and (A13) into (A30), we obtain the determining equations

Γ22 = Γ01 + Γ11uy + Γ2uxx − Γ12ux − Γ1uxy. (A31)

Then, substituting (A11) and (A16) into (A31), we obtain the system

ξt = ηy, ξx =
1
2
(µy + ηu) = −τ̇ + 2µy, ξy =

1
2
(µt + ηx),

ξtx − ξyy = ηtu − ηxy, ξxy = ηyu, µyy = −ηxx + 2ηyu, ηtx = ηyy,

ξxx = ηxu = ηuu = 0,

(A32)

where τ = τ(t), ξ = ξ(t, x, y), µ = µ(t, y), η = η(t, x, y, u).
By solving the system (A32), we find the Lie point symmetries for the system (72):

τ = A− c1t + c2, ξ = (Ȧ + c1)x + Ä
y2

2
+ (Ḃ + c3)y + C, µ = Ȧy + B,

η = (Ȧ + 2c1)u + Äxy + (Ḃ + 2c3)x +
...
A

y3

6
+ B̈

y2

2
+ Ċy + D,

(A33)

where c1, c2, and c3 are constants, while A, B, C, and D are functions of t.
Both (A29) and (A33) define infinitely dimensional Lie algebras that are very similar to

each other. The parameter c3, absent in (A29), can be interpreted as the spectral parameter.
The function γ is related to the gauge invariance of the system (73).

Appendix A.2. Four-Dimensional Bogdanov–Pavlov Equation

We consider Equation (77) and the linear system (78) as special cases of Equations (A1)
and (A2), respectively. The transformed system (78) will take the form

ṽt̃ = −ũz̃ṽỹ, ṽz̃ = −ũx̃ ṽỹ. (A34)

By substituting (A10) and (A21) into (A34), we obtain the determining equations

Λ0 = −Λ2uz − Γ3vy, Λ3 = −Λ2ux − Γ1vy. (A35)
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Then, by ssubstituting (A11) and (A22) into (A35) and treating the derivatives as
independent elements, we obtain the system

µt = ηz, µy = −ξ̇ + ρ̇ + ηu = τ̇ − ρ̇ + ηu, (A36)

where τ = τ(t), ξ = ξ(x), µ = µ(t, y), ρ = ρ(z), η = η(t, y, z, u), and γ = γ(x, v).
By solving the system (A36), we find the Lie point symmetries for the system (78):

τ = 2c1t + c2, ξ = 2c3x + c4, µ = µ(t, y), ρ = (c1 + c3)z + c5,

η = (−c1 + c3 + µy)u + µtz + A, γ = γ(x, v),
(A37)

where c1, c2, c3, c4, and c5 are constants, and A is a function of t, y.
Now, we transform Equation (77):

ũz̃z̃ = ũt̃x̃ + ũz̃ũx̃ỹ − ũx̃ũỹz̃. (A38)

By substituting (A10) and (A13) into (A38), we obtain the determining equation

Γ33 = Γ01 + Γ12uz + Γ3uxy − Γ23ux − Γ1uyz. (A39)

Then, by substituting (A11) and (A16) into (A39), we obtain the following system

ξx = −µy + ρz + ηu = −τ̇ + 2ρz, ξz =
1
2

ρt, µt = ηz,

ξzz = ηyz − ηtu, ρzz = 0, ηzz = ηzu = ηuu = 0,
(A40)

where τ = τ(t), ξ = ξ(x, z), µ = µ(t, y), ρ = ρ(t, z) and eta = η(t, y, z, u).
By solving the system (A40), we find the Lie point symmetries for the system (77):

τ = 2c1t + c2, ξ = 2c3x + c6z + c4, µ = µ(t, y),

ρ = (c1 + c3)z + 2c6t + c5, η = (−c1 + c3 + µy)u + µtz + A.
(A41)

where c1, c2, c3, c4, c5, and c6 are constants, and A is a function of t, y.
The parameter c6, absent in (A37), can be interpreted as the spectral parameter. The

function γ is related to the gauge invariance of the system (78).

Appendix A.3. Martínez Alonso–Shabat Equation

Finally, we consider Equation (83) and the linear system (84) as special cases of
Equations (A1) and (A2), respectively. The transformed system (84) has the form

ṽỹ = ũỹṽx̃, ṽz̃ = ũz̃ṽx̃ − ṽt̃. (A42)

By substituting (A10) and (A21) into (A42), we obtain the determining equations

Λ2 = Λ1uy + Γ2vx, Λ3 = Λ1uz + Γ3vx −Λ0. (A43)

Then, by substituting (A11) and (A16) into (A43), we obtain the following system

τ̇ = ρ̇, ξt = −ηz, ξx = ηu, γt = −γz, (A44)

where τ = τ(t), ξ = ξ(t, x), µ = µ(y, z), ρ = ρ(z), η = η(t, x, z, u), and γ = γ(t, z, v).
By solving the system (A44), we find the Lie point symmetries for the system (84):

τ = c1t + c2, ξ = ξ(t, x), µ = µ(y, z), ρ = c1z + c3,

η = ξxu− ξtz + A, γ = γ(t, z, v),
(A45)
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where c1, c2, and c3 are constants, and A is a function of t, x.
Next, we transform Equation (77):

ũt̃ỹ = ũz̃ũx̃ỹ − ũỹũx̃z̃. (A46)

Substituting (A10) and (A13) into (A46), we obtain determining equations

Γ02 = Γ12uz + Γ3uxy − Γ13uy − Γ2uxz. (A47)

Then, substituting (A11) and (A16) into (A47), we obtain the following system

ξt = −ηz, ξx = τ̇ − ρ̇ + ηu, ηtu = −ηxz, ηzu = ηuu = 0, (A48)

where τ = τ(t), ξ = ξ(t, x), µ = µ(y, z), ρ = ρ(z) and η = η(t, x, z, u).
Solving the system (A48) we find all Lie point symmetries for the system (83):

τ = c1t + c2, ξ = ξ(t, x), µ = µ(y, z), ρ = (c1 + c4)z + c3,

η = (ξx + c4)u− ξtz + A.
(A49)

where c1, c2, c3, and c4 are constants, and A is a function of t, x.
The parameter c4, absent in (A45), can be interpreted as the spectral parameter. The

function γ is related to the gauge invariance of the system (84).
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10. Cieśliński, J.L.; Goldstein, P.; Sym, A. On integrability of the inhomogeneous Heisenberg ferromagnet model: Examination of a

new test. J. Phys. A Math. Gen. 1994, 27, 1645–1664. [CrossRef]
11. Estévez, P.G.; Gandarias, M.L.; Prada, J. Symmetry reductions of a 2+1 Lax pair. Phys. Lett. A 2005, 343, 40–47. [CrossRef]
12. Estévez, P.G.; Lejarreta, J.D.; Sardón, C. Integrable 1+1 dimensional hierarchies arising from reduction of a non-isospectral

problem in 2+1 dimensions. Appl. Math. Comput. 2013, 224, 311–324. [CrossRef]
13. Albares, P.; Estévez, P.G. Miura-reciprocal transformation and symmetries for the spectral problems of KdV and mKdV. Mathemat-

ics 2021, 9, 926. [CrossRef]
14. Marvan, M. On the horizontal gauge cohomology and non-removability of the spectral parameter. Acta Appl. Math. 2002, 72,

51–65. [CrossRef]
15. Marvan, M. Scalar second-order evolution equations possessing an irreducible sl2-valued zero-curvature representation. J. Phys.

A Math. Gen. 2002, 35, 9431–9439. [CrossRef]
16. Marvan, M. On the spectral parameter problem. Acta Appl. Math. 2010, 109, 239–255. [CrossRef]
17. Sakovich, S.Y. On conservation laws and zero-curvature representations of the Liouville equation. J. Phys. A Math. Gen. 1994, 27,

L125–L129. [CrossRef]
18. Morozov, O.I. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential

equations. J. Geom. Phys. 2018, 128, 20–31. [CrossRef]
19. Morozov, O.I. Lax representations with non-removable parameters and integrable hierarchies of PDEs via exotic cohomology of

symmetry algebras. J. Geom. Phys. 2019, 143, 150–163. [CrossRef]
20. Ferraioli, D.C.; de Oliveira Silva, L.A. Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry

actions. J. Geom. Phys. 2015, 94, 185–198. [CrossRef]

http://doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1002/sapm1974534249
http://dx.doi.org/10.1016/0550-3213(79)90517-0
http://dx.doi.org/10.1016/0375-9601(90)90897-W
http://dx.doi.org/10.1007/BF00131935
http://dx.doi.org/10.1088/0305-4470/27/5/028
http://dx.doi.org/10.1016/j.physleta.2005.05.089
http://dx.doi.org/10.1016/j.amc.2013.08.042
http://dx.doi.org/10.3390/math9090926
http://dx.doi.org/10.1023/A:1015218422059
http://dx.doi.org/10.1088/0305-4470/35/44/312
http://dx.doi.org/10.1007/s10440-009-9450-4
http://dx.doi.org/10.1088/0305-4470/27/5/004
http://dx.doi.org/10.1016/j.geomphys.2018.02.007
http://dx.doi.org/10.1016/j.geomphys.2019.05.001
http://dx.doi.org/10.1016/j.geomphys.2015.04.001


Symmetry 2022, 14, 2577 22 of 22
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33. Cieśliński, J. The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach. Diff.

Geom. Appl. 1997, 7, 1–28. [CrossRef]
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