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Abstract: To address multi-modal multi-objective problems (MMOPs), this paper proposes a wolf
pack optimization algorithm using random adaptive-shrinking grid search (RASGS) and raid towards
global best archive (GBA) for MMOPs. Firstly, RASGS with logical symmetry was adopted to enhance
the exploitation of the algorithm in the local area as well as locate a larger number of Pareto-optimal
solutions. Moreover, with the help of an existing sorting method composed of the non-dominated
sorting scheme and special crowding distance (SCD), the GBA strategy was employed to obtain and
maintain the historical global optimal solution of the population as well as induce the population to
explore better solutions. The experimental results indicate that the proposed method has obvious
superior performance compared with the existing related algorithms.

Keywords: multi-modal; multi-objective; wolf pack optimization; random adaptive-shrinking grid
search; global best archive

1. Introduction

In many practical problems, such as economic, management, military, science and
engineering design, it is often difficult to judge the quality of a scheme with one index,
and more than one uncoordinated or even contradictory objectives must be considered
simultaneously. Multi-modal multi-objective optimization problems are defined as the
multi-objective optimization problems (MOPs) with at least two similar feasible regions
in the decision space corresponding to the same region of the objective space [1]. In real
life, it is critical to find all the Pareto optimal solutions in decision space simultaneously for
the purpose of decision-making as well as a new challenge; for instance, it is in [2] that the
researchers described a real-world scenario: {Option 1, Option 2, Option 3} and {Option4,
Option 5, Option 6} are two Pareto sets (PSs) that correspond to the same Pareto front (PF);
however, the former go through a gas station while the latter do not. The gas station is
needed for some travelers, while it is unnecessary and a nuisance with some potential
safety risks for the others, as detailed in Figure 1.

People have been active in researching and solving multi-objective problems to meet
various emerging needs, such as in [3], where to solve constrained MOPs (CMOPs),
Zou et al. proposed a dual population multi-objective optimization evolutionary algorithm
that is different from the traditional MOPs. In [4], to solve global optimization problems
regarding multiple objective functions, Moghdani R et al. introduced the multi-objective
volleyball premier league (MOVPL) algorithm. In [5], Ewees A.A. et al. reported a new
multi-objective optimization method (called MWDEO) including improved whale optimiza-
tion algorithm (WOA) devoted to global exploration as well as the differential evolution
(DE) algorithm used to exploit the search space, which enriches the theoretical research
in this field. Wang Q et al. adopted multi-objective optimization methods to solve the
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problems regarding aerospace shell production scheduling in [6]. In [7], researchers pro-
posed a novel particle swarm optimization method named AMPSO by combining dynamic
neighborhood-based learning strategy and competition mechanism, committing to solve
MMOPs. In [8], researchers introduced a novel and efficient method for solving MOPs
inspired by the collision between balls in the game of billiards. In [9], researchers presented
a test suite for MOPs including 16 real-world problems, which is used for performance
evaluation for multiple-objective optimization algorithms. Some papers showed surveys
for methods to solve MOPs, such as in [10], where researchers systematically reviewed and
summarized various multi-objective methods devoted to solving MOPs based on hundreds
of articles published from 1978 to 2021. In [11], Tian Y et al. gave a comprehensive overview
of multi-objective evolutionary algorithms to solve large-scale MOPs.
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Figure 1. Path planning problem. Option 1, Option 6—1 intersection, 60 min; Option 2, Option 5
—2 intersections, 40 min; Option 3, Option 4—3 intersections, 20 min.

Recently, the wolf pack optimization algorithm (WPOA) and its variants have been
widely applied in many fields owing to their superior optimization performance and ro-
bustness. For example, in [12], a novel algorithm named FWPA is proposed to solve a set
of static multidimensional knapsack benchmarks as well as several dynamic multidimen-
sional knapsack problems. In [13], researchers adopted a new wolf pack algorithm named
HWPA to improve the forecasting performance by obtaining a suitable partition of the
universe of discourse. In [14], the authors proposed a new method named DSO-WPOA
to promote the coverage rate of movable wireless sensor networks. Especially, in [15], the
authors proposed a strategy named ASGS to promote the exploitation ability in local space,
which greatly enhances the optimization ability of the WPOA.

Unfortunately, there are few cases where the WPOA or its variants are used to solve
MMOPs. Consequently, inspired by the superior performance of the WPOA and the need
to address MMOPs, in this paper we propose a wolf pack optimization algorithm using
random adaptive-shrinking grid search (RASGS) and raid towards global best archive
(GBA) for multi-modal multi-objective problems (MMO-WPOA-RASGS-GBA for short).

This article is organized as follows. Section 2 reviews related works. Section 3 presents
an overview of the proposed method. In Section 4, validation experiments are shown.
Section 5 concludes the paper.

2. Related Works
2.1. Special Crowding Distance and non-dominated_scd_sort

It is hard to decide which solution is the best one in multi-objective optimization
owing to its complexity discussed above, so a dominated relationship [16] was designed to
compare the qualities of different solutions which lead to the new concepts: non-dominated
solutions, the Pareto optimal set (PS) in decision space as well as the corresponding Pareto
front (PF) in objective space [1].
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To analyze and manipulate the distribution of the various Pareto optimal sets, re-
searchers proposed the concept of a crowding distance (CD), which is embedded in the
omni-optimizer algorithm [17] to compare different non-dominated schemes. Accordingly,
the idea of CD has been applied to the following related algorithms, for example, in [1], aim-
ing to obtain more PSs, Liang et al. introduced DN-NSGAII, which utilizes a decision-space
CD to sort the same front in objective space, which means the CD of PSs in the decision
space can be used to determine which solution is better.

CDi,xj =
xj(right o f i)−xj(le f t o f i)

xmax
j −xmin

j

CDi,x =
Num_D

∑
j=1

CDi,xj , j = 1, 2, . . . , Num_D
(1)


CDi,xj =

xj(right o f i)−xj(le f t o f i)
xmax

j −xmin
j

CDi,x =
Num_D

∑
j=1

CDi,xj , j = 1, 2, . . . , Num_D
(2)

where CDi,xj means the CD of the i-th solution in j-th decision space, while CDi, fm means
the one in m-th objective space; CDi,x means the total CD of the i-th solution in decision
space, while CDi, f means the one in objective space; Num_D means the dimension number
of decision space, while Num_O means the one of objective space.

It should be emphasized that the calculation of CD is different in the decision space
and the objective space, and for decision space CD can be obtained from Equation (1) and
for objective space from Equation (2). Note that if a solution is a boundary solution in the
decision space, the numerator in Equation (1) should be replaced by (xj(right o f i)− xj(i))
or (xj(i)− xj(right o f i)), as the case may be, and the quantity should be multiplied by a
factor of two since this computes only a one-sided difference; otherwise, when a solution is
a boundary solution in the objective space, an infinite distance is assigned so as not to lose
the solution.

CDavg, f =
∑Num_S

i=1 CDi, f

Num_S
(3)

where CDavg, f means the average CD of all solutions in objective space; Num_S means the
number of all solutions.

However, CD has shortcomings in that if a solution i is the smallest one in the m-th
objective for minimization problems, CDi, f is set to ∞, and CDavg, f is equal to ∞, so it is
unable to compare the CDi, f and CDavg, f . Accordingly, in [2], researchers proposed special
crowding distance (SCD) conceived for the purpose of further improving CD along with
an obvious adaptation that CDi, fm is assigned to be set to 1 when the i-th solution is the
minimum one in the m-th objective space for minimization problems. The SCD can be
obtained from the following Equation (4).

SCDi =

max
(

CDi,x, CDi, f

)
, when CDi,x > CDavg,x or CDi, f > CDavg, f

min
(

CDi,x, CDi, f

)
, other conditions

(4)

where SCDi means the special crowding distance of the i-th solution; CDi,x means the
crowding distance of the i-th solution about decision space, while CDi,f means the one
about objective space. max(parameter1,parameter2) is a function that returns the parameter
with a larger value, while max(parameter1,parameter2) returns the one with a smaller value.

According to the original authors, SCD enhanced genetic diversity of both decision
and objective spaces simultaneously owing to the max or min selection procedure reflected
in Equation (4).

non-dominated_scd_sort is a function based on non-dominated relation and SCD,
which firstly sorts solutions according to non-dominated sorting scheme from Reference [18]
and then sorts them in descending order according to their SCD, with the result that the first
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solution is the non-dominated one with the largest SCD. In fact, non-dominated_scd_sort
provides a reference to compare the quality of many different non dominated solutions,
which provides support for the GBA strategy discussed later in this paper.

2.2. Strategy of Adaptive-Shrinking Grid Search (ASGS)

In 2007, researchers introduced the wolf swarm algorithm [19] inspired by the hunt-
ing process of wolves and composed mainly of the migration, summon-raid, siege, and
population renewal mechanism of survival of the fittest. Since the wolf pack optimization
algorithm (WPOA) was proposed, it has been widely applied in many different kinds
of fields and continuously improved in various forms owing to its strong performance
detailed in [15]. As a variant of the WPOA, the excellent performance of ASGS-CWOA [15]
mainly benefits from the strategy of ASGS, which inspired us to use it to solve MMOPs. It
is briefly described as follows.

Based on the ideas of LWPS [20] and CWOA [21], only one position was examined to
determine whether it can become the next traveling position, shown in Equation (5); that
is, a searching wolf can investigate one position along a direction, and it is obvious that
the method is not suitable for searching for the local neighborhood space centered by the
current wolf, which includes numerous locations to be investigated.

xid−new = xid + rand(−1, 1) ∗ step_a (5)

where xid−new means the new location of the i-th wolf about the d-th dimension; rand(−1,1) returns
a random value between−1 and 1; step_a means the step size during the stage of migration.

Thus, in [15], the authors proposed the strategy of ASGS conceived for the purpose of
covering the whole local domain space centered by the current wolf to be investigated as
much as possible, although it is impossible to exhaust all the positions to be investigated
for the continuous space problem. The main thought of ASGS is to take the current wolf
position as the center and the changing adaptive step size as the measurement scale to
generate several inspection points in order to detect the best position in the local region
(the position with the best fitness value) for the procedure of migration or siege, as shown
in the following Equations (6) and (7).

a = 1−
(

t−1
2

)2

step_anew = step_a0 ∗ a
step_cnew = step_c0 ∗ rand(0, 1) ∗ a

(6)


k = −K,−K + 1, . . . , 0, . . . , K− 1, K
[k, xid−new] = xid + step_anew ∗ k

xi−new = {[(1 ∼ K), xi1−new], [(1 ∼ K), xi2−new], . . . ,[(1 ∼ K), xiD−new]}
(7)

where a is a factor for step_anew and step_cnew; step_anew means the new step size of migration
for the t-th iteration, while step_cnew means the one of siege; rand(0,1) returns a random value
between 0 and 1; step_c0 means the initial step size of the stage of siege; K means the number
of nodes taken along any direction for a wolf; xi−new means the new position of i-th wolf
while xid−new means the new one for the d-th dimension.

According to the above formula, each wolf inspects (2×k+1)D positions in its own local
space during hunting and running as shown in Figure 2, where D means the dimension
number of solution space. Refer to [15] for a detailed discussion of ASGS.
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3. Overview of New Proposed Method
3.1. RASGS

It is difficult to solve the MMP problem, while the ASGS greatly improves the opti-
mization performance of the wolf pack optimization algorithm when solving the single
objective problem. This encourages us to use the modified ASGS-CWOA to solve the MMP
problem. It is undeniable that ASGS-CWOA has excellent performance in solving MMPs
(as demonstrated in the experiment in Section 4).

However, we also found that the ASGS strategy extends with the same step size.
Although the step size changes adaptively with the advance of iterations, this equidistant
expansion greatly limits the flexibility of the ASGS strategy as shown in Figure 2. In order
to overcome this deficiency of the ASGS strategy, we propose the random ASGS strategy
(RASGS) that introduces a random parameter in the equidistant step size to make the
ASGS strategy flexible while maintaining its own basic exploration/extension framework
as shown in Figure 3. In Figures 2 and 3, the red point indicates the location of the current
wolf, while the black ones represent the positions to be investigated during the stage of
migration or siege, and the black dotted lines indicate the potential routes for the current
wolf to explore. The RASGS strategy can be illustrated by the following Equation (8).

krand = k + rand(0, 1), k = −K,−K + 1, . . . , 0, . . . , K− 1, K

[k, xid−new] =

{
xid + step_anew ∗ krand, krand < K

xid, krand > K
xi−new = {[(1 ∼ K), xi1−new], [(1 ∼ K), xi2−new], . . . ,[(1 ∼ K), xiD−new]}

(8)

where the variables involved in Equation (8) can be found in the formula already described.
In essence, solving nonlinear and irregular MMPs requires that the algorithm can not

only maintain the stability of the search framework in the hunting and siege stages but also
maintain a certain degree of flexibility to deal with the complex and infinite solution space.
RASGS inherits the function of the former and introduces random parameters resulting in
the implementation of the latter. Similar to ASGS-CWOA, the algorithm based on this new
strategy is abbreviated to RASGS-CWOA.

It can also be seen from Figure 3 that although random factors have been added, the
locations to be investigated in the local areas are symmetrical and centered on the current
wolf position, which is determined by Formula (8).
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3.2. GBA

As mentioned above, MMPs have multiple inconsistent goals, making it impossible to
compare the quality of different non-dominated solutions through traditional methods, so a
global optimal solution like the single objective programming problem cannot be found, as
shown in the Figure 4 where for N1, N2 and N3, the best solution cannot be compared due to
the two independent evaluation objectives F-1 and F-2. Obviously, solution N1 (corresponding
to P1 and P1′ in the decision space) is the best on target F-2 and the worst on F-1 (assuming the
larger the better). On the contrary, solution N3 (corresponding to P3 and P3′ in the decision
space) is the worst on target F-2 and the best on F-1. Solution N2 (corresponding to P2 and p2′

in the decision space) is in the middle value on objectives F-1 and F-2.
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In [2], the authors adopted SCD to sort the non-dominated solutions so as to obtain a
descending order of non-dominated solutions that could not be compared before. The first
non-dominated solution in the sequence has the optimal SCD.

According to the idea of ASGS-CWOA, wolves need to raid to the leader wolf; that is,
the global optimum, in the summon-raid stage, and the non-dominated solution sorting
method proposed in Reference [2] provides the necessary method for obtaining the global
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optimum required in this stage. In fact, the first non-dominated solution in the sequence
obtained after sorting is not really the global optimum in the true sense but a reference,
which is enough to induce wolves to gather. In this paper, the method based on SCD to
obtain the global optimum and complete the calculation of the summon-raid is called raid
to global best archive (GBA) as shown in Figure 5.
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In particular, in order to compare the support of the GBA strategy for the methods
proposed in this paper, this paper proposes the strategy of raid to neighborhood best (RNB for
short) based on previous studies, the main idea of which is to establish the local neighborhood
optimal archive centered on the current wolf (this paper adopts the ring strategy taking N−1,
N and N+1, where N means the current solution while N−1 and N+1 mean the solution
before the current solution and the one after the current solution, respectively, detailed in
Reference [2]). In the summon-raid stage, wolves rush to the optimal one in their respective
neighborhood optimal archive, not the one with the global optimum.

3.3. Overview of Flow Chart of MMO-WPOA-RASGS-GBA

The execution flow of the new algorithm is shown in Figure 5, and the detailed
operation details are as described above as well as referring to Reference [15], while the
step size during stages of migration, summon-raid and siege are calculated according to
Equations (9) and (10).

step_a_basic = (VRmax−VRmin)/2
step_b_basic = (VRmax−VRmin)/10

step_c_max = sum(VRmax−VRmin)/20
step_c_min = 1e− 40

(9)


stepa = (1− ((t− 1)/T)̂5) ∗ step_a_basic
stepb = (1− ((t− 1)/T)̂5) ∗ step_b_basic

stepc = step_c_min ∗ (VRmax −VRmin) ∗ exp
(
(log(step_c_min/step_c_max)) ∗ t

T
) (10)

where stepa, stepb and stepc mean the step size during stages of migration, summon-raid
and siege, respectively. VRmax is the maximum range of solution space, while VRmin
means the minimum one in each dimension.
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4. Validation Experiment
4.1. Experimental Environment

To verify the feasibility and efficiency of the algorithm proposed in this paper, several
groups of comparative experiments were carried out by using the new method: MMO-
WPOA-RASGS-GBA, DN-NSGAII, MO-Ring-PSO-SCD, MMO-WPOA-LWPS-GBA, MMO-
WPOA-LWPS-RNB, MMO-WPOA-ASGS-GBA, MMO-WPOA-ASGS-RNB and MMO-
WPOA-RASGS-RNB. A detailed description is given in the following Table 1.

Table 1. Descriptions of comparative methods.

Order Name Description

1 MMO-WPOA-RASGS-GBA

MMO-WPOA-RASGS-GBA was implemented
according to the ideas from Sections 2 and 3 and
with the following main parameters. Population

size: popsize = 100 × n_var (n_var means the
number of dimension in decision space);

maximum iterations: Max_Gen = fix
(5000 × n_var/popsize), where fix is a function
that rounds a given parameter to the nearest

integer in the direction of zero.

2 DN-NSGAII According to the idea from Reference [1],
DN-NSGII was designed and implemented.

3 MO-Ring-PSO-SCD

For comparison, the algorithm
MO-Ring-PSO-SCD was completely

implemented by using the ideas of Reference [2],
and the code and data published by the author

were fully used.

4 MMO-WPOA-LWPS-GBA

MMO-WPOA-LWPS-GBA was implemented
based on LWPS and the strategy of GBA, where
LWPS is the concept of Reference [20]. In order
to maintain the consistency of comparison, the
main parameter settings were the same as the

new proposed method
MMO-WPOA-RASGS-GBA.

5 MMO-WPOA-LWPS-RNB

MMO-WPOA-LWPS-RNB was implemented
based on LWPS and the strategy of RNB. The
main parameter settings were the same as the

new proposed method
MMO-WPOA-RASGS-GBA.

6 MMO-WPOA-ASGS-GBA

MMO-WPOA-ASGS-GBA was implemented
based on ASGS-CWOA and the strategy of GBA.
The main parameter settings were the same as

the new proposed method
MMO-WPOA-RASGS-GBA.

7 MMO-WPOA-ASGS-RNB

MMO-WPOA-ASGS-RNB was implemented
based on ASGS-CWOA and the strategy of RNB.
The main parameter settings were the same as

the new proposed method
MMO-WPOA-RASGS-GBA.

8 MMO-WPOA-RASGS-RNB

MMO-WPOA-RASGS-RNB was implemented
based on RASGS-CWOA and the strategy of
RNB. The main parameter settings were the

same as the new proposed method
MMO-WPOA-RASGS-GBA.

Table 1 shows the numerical experimental configuration and concepts of the eight methods.
We conducted all the experiments on a laptop with Windows 7 (64 bit), 12.0 GB memory and an
AMD A6-3400 m CPU. In order to meet the following statistical analysis needs, independent
experiments were carried out 21 times on 11 test functions as shown in Table 2.
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Table 2. Test functions and their features.

Function Name Numbers of PSs Overlap in Every Dimension

MMF1 2 ×
MMF2 2 ×
MMF3 2 √
MMF4 4 ×
MMF5 4 ×
MMF6 4 √
MMF7 2 ×
MMF8 4 ×

SYM-PART simple 9 √
SYM-PART rotated 9 √
Omni-test (n = 3) 27 √

It must be noted that test functions shown in Table 2 are from Reference [2], which
also shows the need for academic verification uniformity.

4.2. Experimental Data and Analysis

In this study, Pareto set proximity (PSP) and hypervolume (Hv) were adopted to test
the performance of different methods for MMPs. For a detailed introduction of PSP and HV,
please refer to Reference [2]. In order to facilitate simulation experiments and statistics, we
used the reciprocal forms of PSP and HV: rPSP and rHV, the smaller the better. On 11 test
functions, 21 simulation experiments were carried out for 8 comparison algorithms, and the
original data obtained from the experiments are shown in Table 3, which gives the original
test data regarding PSP gained by running each comparison algorithm on 11 test functions
as well as the data regarding HV. Based on these original test data, some necessary analysis
and discussion regarding the performance of different methods are given.

Table 3. PSP and HV obtained from running 8 comparison algorithms on 11 test functions.

Method Function
Best Worst Mean Standard Deviation

PSP HV PSP HV PSP HV PSP HV

DN-NSGAII

1 13.07157454 0.871441292 7.45420489 0.867777461 10.37862956 0.869543972 1.537400748 0.000971016
2 27.14697376 0.86034517 2.743265272 0.812130676 10.66215106 0.842723622 7.025888613 0.014772512
3 20.99165336 0.864179667 4.321204324 0.795025678 11.03379399 0.845174252 5.389567687 0.019247749
4 19.06053311 0.538831423 7.920388234 0.538013489 13.74047358 0.538371962 2.963817426 0.000223549
5 6.721691985 0.871705041 4.318902002 0.868264371 6.003089379 0.870574743 0.554027273 0.000831438
6 8.487121963 0.871841635 5.297196162 0.864684655 7.018860458 0.870276462 0.944228126 0.001536351
7 25.73434643 0.870961261 14.03144506 0.867162762 19.59652068 0.869747436 3.233112307 0.000948028
8 7.574435284 0.420461536 1.968899546 0.418607833 4.165918029 0.419632606 1.41998449 0.000424649
9 0.901421457 16.65058558 0.102172245 16.63836026 0.248497916 16.64395359 0.174115453 0.003450843
10 0.851985453 16.64076529 0.071600353 16.62908329 0.217284248 16.63583674 0.171143405 0.00305863
11 0.824966497 52.80128767 0.490736377 52.78893019 0.669547795 52.79724749 0.089073764 0.00288194

...... Related data for MO-Ring-PSO-SCD, MMO-WPOA-LWPS-GBA, MMO-WPOA-LWPS-RNB, MMO-WPOA-ASGS-GBA,
MMO-WPOA-ASGS-RNB, MMO-WPOA-RASGS-GBA

MMO-
WPOA-

RASGS-RNB

1 23.93129451 0.872464015 19.78287453 0.871847053 21.41931497 0.872185149 1.080976338 0.000170628
2 164.1425286 0.871207671 131.6933317 0.869951014 143.0823892 0.870452374 7.876139977 0.000293692
3 155.8376542 0.871516532 125.5565595 0.870361056 141.025033 0.870966491 7.632984748 0.000359212
4 44.61290138 0.539158648 37.32542416 0.537586604 41.39526592 0.538390431 2.136074745 0.000416678
5 14.17445297 0.872425458 11.75215944 0.871841708 12.87865508 0.872182454 0.733297984 0.000160872
6 16.16825152 0.872555153 13.16557559 0.870727596 14.60809281 0.872027625 0.801278727 0.000459748
7 44.49262842 0.87165644 34.98611381 0.870040226 40.65581559 0.870956842 2.399970212 0.000453174
8 21.84212415 0.420854555 18.19303417 0.414828247 20.09382787 0.419980567 0.968923642 0.001257179
9 18.27235864 16.64725864 12.79305015 16.63366917 15.15875804 16.6406475 1.345772599 0.003929908
10 13.51032998 16.62859054 10.44428702 16.619417 12.33495567 16.62457421 0.808215646 0.002706662
11 10.08414621 52.75576581 3.400506796 52.73641053 7.186849936 52.74821071 1.866408547 0.005407196

(1-MMF1, 2-MMF2, 3-MMF3, 4-MMF4, 5-MMF5, 6-MMF6, 7-MMF7, 8-MMF8, 9-SYM_PART_simple, 10-SYM-
PART-rotated, 11-Omni-test. Limited to space, only some data are listed; the complete data are shown in the link
in Appendix A).
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Note: black “*” corresponds to DN-NSGAII; black “.” corresponds to MO-PSO-Ring-
SCD; green “*” corresponds to MMO-WPOA-ASGS-GBA; green “.” corresponds to MMO-
WPOA-ASGS-RNB; blue “*” corresponds to MMO-WPOA-LWPS-GBA; blue “.” corre-
sponds to MMO-WPOA-LWPS-RNB; red “*” corresponds to MMO-WPOA-RASGS-GBA
and red “.” corresponds to MMO-WPOA-RASGS-RNB. Refer to Figures 6 and 7.
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Figure 6. Schematic diagram of the PSP obtained from 21 independent runs. Figure 6. Schematic diagram of the PSP obtained from 21 independent runs.

As can be seen from Figures 6 and 7, it is obvious that the red * curve representing the
new method MMO-WPOA-RASGS-GBA is at the top except for the last three subgraphs of
Figure 7, which shows that this method has good performance on the whole based on PSP
and HV indicators.

However, we can also see that green curves and the red “.” curve representing MMO-
WPOA-ASGS-RNB, MMO-WPOA-ASGS-GBA and MMO-WPOA-RASGS-RNB are very
close, so it is hard to distinguish their performance based on Figures 6 and 7. Accordingly,
optimal value, worst value, average value and the standard deviation for PSP and HV are
adopted to help us further investigate and analyze the superior performance of the new
algorithm, shown in Table 4.
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Table 4. Difference between MMO-WPOA-RASGS-GBA and other similar methods.

Item Order
Difference from PSP Difference from HV

Best Worst Mean SD Best Worst Mean SD

MMO-
WPOA-
RASGS-
GBA vs.
MMO-

WPOA-
ASGS-
GBA

1 −0.286 −0.201 0.084 −0.353 0.000058 0.000342 0.000115 −0.000045
2 5.941 −12.345 2.047 2.514 0.000284 −0.000023 0.000130 0.000023
3 −2.777 −4.035 4.173 −1.272 0.000314 0.000453 0.000189 0.000008
4 −0.990 2.557 −0.108 −1.307 −0.000037 0.000320 0.000061 −0.000110
5 0.729 0.299 0.111 0.154 −0.000069 −0.000219 0.000008 −0.000010
6 0.736 −0.006 0.083 0.171 −0.000173 0.000001 −0.000058 0.000011
7 0.981 3.152 0.790 −0.204 0.000058 0.000475 0.000441 −0.000149
8 −1.288 5.861 0.549 −1.618 −0.000131 0.000218 0.000071 −0.000108
9 −0.099 0.822 0.153 −0.099 −0.001311 0.000372 0.000426 0.000230
10 0.566 0.082 −0.141 0.087 −0.000035 0.001645 −0.000159 0.000284
11 1.103 0.032 0.192 0.187 0.006698 0.003756 0.002740 0.000001
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Table 4. Cont.

Item Order
Difference from PSP Difference from HV

Best Worst Mean SD Best Worst Mean SD

MMO-
WPOA-
RASGS-
GBA vs.
MMO-

WPOA-
ASGS-
NBA

1 0.869 1.060 0.804 −0.231 −0.000221 0.000235 0.000014 −0.000087
2 4.089 −17.950 0.862 3.338 0.000265 0.000293 0.000148 −0.000040
3 −0.817 −4.143 2.317 −0.095 0.000322 0.000828 0.000234 −0.000070
4 −2.946 4.975 −0.724 −1.425 −0.000059 0.000023 −0.000037 0.000043
5 0.388 −0.272 −0.197 0.102 0.000002 −0.000229 0.000138 0.000063
6 −0.034 0.495 −0.234 −0.013 0.000061 0.000034 −0.000001 0.000002
7 −2.262 4.520 0.982 −1.514 0.000478 0.001490 0.000664 −0.000318
8 −0.728 0.804 0.244 −0.238 0.000040 0.001471 0.000181 −0.000241
9 −4.212 0.752 −1.848 −0.934 −0.016784 −0.017689 −0.016462 0.000119
10 0.660 −0.231 0.031 0.134 0.001701 0.001232 −0.000149 −0.000082
11 2.238 1.786 1.685 0.049 0.021988 0.019958 0.017610 0.000246

MMO-
WPOA-
RASGS-
GBA vs.
MMO-

WPOA-
RASGS-

NBA

1 −0.430 0.090 0.308 −0.172 0.000022 −0.000070 −0.000037 0.000048
2 −0.358 −16.393 3.237 3.359 0.000282 −0.000012 0.000376 0.000080
3 3.775 −10.517 4.956 2.424 0.000630 0.000341 0.000359 −0.000005
4 −0.922 −0.487 −1.063 −0.329 −0.000263 0.000223 0.000031 −0.000111
5 −0.087 −0.102 −0.198 −0.062 0.000170 −0.000264 0.000111 0.000079
6 −0.619 −0.299 −0.322 −0.107 0.000016 0.000874 0.000099 −0.000172
7 −1.023 1.259 −0.300 −0.466 0.000146 −0.000937 −0.000057 0.000160
8 0.218 −0.697 0.156 0.068 0.000057 0.004944 0.000502 −0.000967
9 −4.721 −2.007 −3.041 −0.560 −0.018404 −0.015793 −0.016118 −0.000714
10 0.730 0.834 0.218 −0.016 0.003227 0.001239 0.000091 0.000453
11 1.251 2.255 1.949 −0.427 0.016015 0.015172 0.011846 −0.000418

(1-MMF1, 2-MMF2, 3-MMF3, 4-MMF4, 5-MMF5, 6-MMF6, 7-MMF7, 8-MMF8, 9-SYM-PART-Simple, 10-SYM-
PART-rotated, 11-Omni-test).

Table 5 was obtained based on the values listed in Table 4 to show the dominance
ratios between the newly proposed algorithm and other similar algorithms for PSP and HV.

Table 5. Statistical data for MMO-WPOA-RASGS-GBA and other similar methods.

Item Index

Statistics for PSP Statistics for HV

Number of
Advantages

Dominance
Ratio

(Total: 11)

Number of
Advantages

Dominance
Ratio

(Total: 11)

vs. MMO-
WPOA-

ASGS-GBA

Best 6 54.55% 5 45.45%
Worst 7 63.64% 9 81.82%
Mean 9 81.82% 9 81.82%

SD 6 54.55% 5 45.45%

vs. MMO-
WPOA-

ASGS-NBA

Best 5 45.45% 8 72.73%
Worst 7 63.64% 9 81.82%
Mean 7 63.64% 7 63.64%

SD 7 63.64% 6 54.55%

vs. MMO-
WPOA-

RASGS-NBA

Best 4 36.36% 9 81.82%
Worst 4 36.36% 6 54.55%
Mean 6 54.55% 8 72.73%

SD 8 72.73% 6 54.55%

In terms of the optimal value or maximum value of PSP, it can be clearly seen from
Table 5 that six records of MMO-WPOA-RASGS-GBA are better than MMO-WPOA-ASGS-
GBA, five records are better than MMO-WPOA-ASGS-RNB and four records are better than
MMO-WPOA-RASGS-RNB, and the difference between other records without advantages
is very small. In particular, the former has the best performance in the more complex
functions SYM-PART-rotated and Omni-test (with 9 and 27 Pareto sets, respectively, as
detailed in Table 2). In terms of minimum or worst value for PSP, seven records of MMO-
WPOA-RASGS-GBA are better than MMO-WPOA-ASGS-GBA, seven records are better
than MMO-WPOA-ASGS-RNB and four records are better than MMO-WPOA-RASGS-
RNB, and the difference between other records without advantages is very small, which
means that the proposed method.
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MMO-WPOA-RASGS-GBA has an advantage rate of about 63.64%, 63.64% and 36.36%
compared with the other three approximation algorithms. Similarly, in terms of median for
PSP, nine records of MMO-WPOA-RASGS-GBA are better than MMO-WPOA-ASGS-GBA,
seven records are better than MMO-WPOA-ASGS-RNB and six records are better than
MMO-WPOA-RASGS-RNB, and the difference between other records without advantages
is very small, which means that MMO-WPOA-RASGS-GBA has an advantage rate of
about 81.82%, 63.64% and 54.55% compared with the other three approximation algorithms.
Finally, in terms of standard deviation for PSP, six records of MMO-WPOA-RASGS-GBA are
better than MMO-WPOA-ASGS-GBA, seven records are better than MMO-WPOA-ASGS-
RNB and eight records are better than MMO-WPOA-RASGS-RNB, and the difference
between other records without advantages is very small, which means that MMO-WPOA-
RASGS-GBA has an advantage rate of about 54.55%, 63.64% and 72.73% compared with
the other three approximation algorithms.

Therefore, it can be concluded that the proposed algorithm has overall advantages in
terms of PSP index.

In terms of the optimal value or maximum value of HV, it can be clearly seen from
Table 5 that five records of MMO-WPOA-RASGS-GBA are better than MMO-WPOA-
ASGS-GBA, eight records are better than MMO-WPOA-ASGS-RNB and nine records are
better than MMO-WPOA-RASGS-RNB, and the difference between other records without
advantages is very small, which means that MMO-WPOA-RASGS-GBA has an advantage
rate of about 45.45%, 72.73% and 81.82% compared with the other three approximation
algorithms. In terms of minimum or worst value for HV, nine records of MMO-WPOA-
RASGS-GBA are better than MMO-WPOA-ASGS-GBA, nine records are better than MMO-
WPOA-ASGS-RNB and six records are better than MMO-WPOA-RASGS-RNB, and the
difference between other records without advantages is very small, which means that
the proposed method MMO-WPOA-RASGS-GBA has an advantage rate of about 81.82%,
81.82% and 54.55% compared with the other three approximation algorithms. Similarly,
in terms of median for HV, nine records of MMO-WPOA-RASGS-GBA are better than
MMO-WPOA-ASGS-GBA, seven records are better than MMO-WPOA-ASGS-RNB and
eight records are better than MMO-WPOA-RASGS-RNB, and the difference between other
records without advantages is very small, which means that MMO-WPOA-RASGS-GBA
has an advantage rate of about 81.82%, 63.64% and 72.73% compared with the other
three approximation algorithms. Correspondingly, in terms of standard deviation for
HV, five records of MMO-WPOA-RASGS-GBA are better than MMO-WPOA-ASGS-GBA,
six records are better than MMO-WPOA-ASGS-RNB and six records are better than MMO-
WPOA-RASGS-RNB, and the difference between other records without advantages is very
small, which means that MMO-WPOA-RASGS-GBA has an advantage rate of about 45.45%,
54.55% and 54.55% compared with the other three approximation algorithms.

Accordingly, it can be concluded that the proposed algorithm has overall advantages
in terms of HV index, although some performance is not good.

5. Conclusions

To address multi-modal multi-objective problem, a wolf pack optimization algorithm
using strategies of random adaptive-shrinking grid search and raid towards global best
for MMOPs is proposed, which enriches the method system for using the WPOA to solve
MMOPs and makes two key contributions: Firstly, RASGS was adopted to enhance the
exploitation of the algorithm in the local area as well as locate a larger number of Pareto-
optimal solutions. Moreover, with the help of an existing sorting method composed of the
non-dominated sorting scheme and SCD, the strategy of GBA is introduced to obtain and
maintain the historical global optimal solution of the population as well as induce the pop-
ulation to explore better solutions. Theoretical research and experimental results indicate
that MMO-WPOA-RASGS-GBA has comprehensively superior PSP and HV compared with
DN-NSGAII, MO-Ring-PSO-SCD, MMO-WPOA-LWPS-GBA, MMO-WPOA-LWPS-NBA,
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MMO-WPOA-ASGS-GBA, MMO-WPOA-ASGS-NBA and MMO-WPOA-RASGS-NBA un-
der the same conditions.

However, it needs to be stated that MMO-WPOA-RASGS-GBA is not perfect, and its
performance is not optimal in some aspects, such as MMO-WPOA-RASGS-RNB performing
better than MMO-WPOA-RASGS-GBA on maximum and minimum values of PSP, as
shown in Table 5, which indicates the strategy of RNB is better than GBA in some aspects.
Unfortunately, the former performs weakly on median and standard deviation of PSP. On
the contrary, this is exactly the advantage of the method proposed in this paper.

Future work will be carried out to continuously improve our related methods to
address MMOPs and solve practical engineering problems.
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