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Abstract: Internet Protocol version 6 (IPv6) and its core protocol, Internet Control Message Protocol
version 6 (ICMPv6), need to be secured from attacks, such as Denial of Service (DoS) and Distributed
DoS (DDoS), in order to be reliable for deployment. Several Intrusion Detection Systems (IDSs)
have been built and proposed to detect ICMPv6-based DoS and DDoS attacks. However, these IDSs
suffer from several drawbacks, such as the inability to detect novel attacks and a low detection
accuracy due to their reliance on packet-based traffic representation. Furthermore, the existing IDSs
that rely on flow-based traffic representation use simple heuristics features that do not contribute to
detecting ICMPv6-based DoS and DDoS attacks. This paper proposes a flow-based IDS by enriching
the existing features with a set of new features to improve the detection accuracy. The flow consists
of packets with similar attributes (i.e., packets with the same source and destination IP address) and
features that can differentiate between normal and malicious traffic behavior, such as the source
IP address’s symmetry and the whole flow’s symmetry. The experimental results reveal that the
enriched features significantly improved the IDS’s detection accuracy by 16.02% and that the false
positive rate decreased by 19.17% compared with state-of-the-art IDSs.

Keywords: IPv6; ICMPv6; DDoS; flow-based representation; intrusion detection; intrusion detection
system

1. Introduction

Internet Protocol version 6 (IPv6) is designed to replace Internet Protocol version 4
(IPv4) to overcome the problem of IPv4 address exhaustion. IPv6 improves many aspects of
IPv4, such as security, address auto-configuration, router discovery, successful transmission
notification, and mobility. IPv6 depends on Internet Control Message Protocol version
6 (ICMPv6) for core communication features, such as address resolution and neighbor
discovery. Therefore, ICMPv6 is an essential and irreplaceable protocol for IPv6-enabled
devices to communicate in IPv6 networks [1].

ICMPv6 is a network layer protocol in the Open Systems Interconnection (OSI) model
designed to allow link-local devices to communicate using IPv6. ICMPv6 has two types of
communication messages: informational sharing messages and error-reporting messages [2,3].
ICMPv6 uses informational messages to perform tests, diagnoses, and other central func-
tions, whereas error-reporting messages are used for reporting errors in IPv6 packet deliv-
eries. Unlike ICMPv4, which can be blocked at the network default gateway to mitigate
ICMPv4-based attacks, ICMPv6 is an essential part of IPv6 that cannot be disabled or
blocked from the network to prevent ICMPv6-based attacks [4]. Therefore, attackers utilize
such communication media (ICMPv6) to perform attacks due to their mandatory existence.
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However, ICMPv6 has many limitations that expose the IPv6 protocol to various
security threats. Several studies have shown that ICMPv6 is vulnerable to several types
of attacks. One of the most severe security threats based on ICMPv6 is Denial of Service
(DoS) and Distributed DoS (DDoS) attacks [5]. Such attacks aim to overwhelm the targeted
victim’s machine by bombarding it with many packets that consume its resources and
bandwidth, stopping it from working [6]. ICMPv6 attacks were first discovered in 2011,
as reported in the Arbor Networks Security Report [7].

The problem of IPv4 Intrusion Detection Systems (IDSs) being unable to detect IPv6
DDoS attacks is due to the structural differences between the two protocols. Many re-
searchers studied the problem of ICMPv6-DDoS attacks [8–11]. These researchers followed
two approaches to detecting ICMPv6-DDoS attacks: signature and anomaly detection. IPv6
signature-based IDSs are limited to previously known attacks, with their signatures in the
record. Therefore, they have a low accuracy in detecting new IPv6 attacks with unknown
signatures, as mentioned in Section 3.1. On the other hand, IPv6 anomaly-based IDSs have
several drawbacks: (i) they use packet-based traffic representation, which is irrelevant to
detect such attacks, (ii) they depend on an irrelevant set of features to build the training
and testing datasets, as shown in [9,12], and (iii) they suffer from a low detection accuracy
with a high rate of false alarms in detecting attacks, as shown in Section 3.2.

This paper extends the work of Elejla et al. [8] on a flow-based IDS due to their
relevant features and the dataset’s availability. This paper has three main contributions:
(i) an enriched set of flow-based features to improve the accuracy of detecting ICMPv6-
DDoS attacks with a low false alarm rate; (ii) an ensemble features reduction mechanism to
select the best set of features that contribute to the detection of ICMPv6-DDoS attacks; and
(iii) extensive evaluation using several machine learning algorithms to prove the significant
impact of the enriched set of flow-based features on the machine learning algorithm’s
detection accuracy.

The remaining parts of this paper are organized as follows: Section 2 presents a
background of IPv6, ICMPv6 protocols, and the types of network traffic representations
used by IDS. Section 3 reviews the state-of-art works of literature. Section 4 presents the
architecture of the flow-based IDS proposed by this paper to detect ICMPv6-DDoS attacks.
Section 5 explains the flow dataset and the evaluation metrics used to evaluate the proposed
IDS. Additionally, it discusses the feature reduction process’s results and the proposed
IDS’ results in detecting the attacks. Section 6 presents the conclusions and findings of
this paper.

2. Background

This section provides a background of IPv6 and ICMPv6 with their security issues and
the existing IDSs’ traffic representation with their advantages and drawbacks.

2.1. IPv6 and ICMPv6 Protocols

The IPv4 protocol address consists of 32 bits representing around 4 billion unique IP
addresses. However, the number of IPv6-enabled devices is expected to reach 125 billion in
2023, far exceeding the ability of the IPv4 protocol to represent using its limited address
space [13]. Therefore, in 1998, the Internet Engineering Task Force (IETF) designed the
IPv6 protocol, also known as IPng, with 128 bits of address space, to replace the IPv4
protocol [13]. IPv6 protocol has an address pool of 3.41038 addresses that can cater to
current and future needs.

IPv6 is considered more secure than the IPv4 protocol due to the built-in security
mechanisms, such as end-to-end security features and an IP Security (IPSec) protocol [14].
However, IPv6 nodes and networks have been targeted by attackers using a few discovered
weaknesses and vulnerabilities. For example, attackers have been successful in performing
DoS and DDoS attacks against IPv6 targets [7,9] using penetration tools such as The
Hacker’s Choice (THC) [15].
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One of the main differences between IPv6 and IPv4 is its high dependency on the
ICMPv6 protocol. ICMPv4 is an optional protocol in IPv4 networks, but the ICMPv6 is
compulsory for IPv6 networks to work correctly [14]. Some of the services in IPv6 that use
ICMPv6 messages are similar to those provided by ICMPv4 messages for the IPv4 protocol.
However, there are also newly introduced services served by ICMPv6 messages in the IPv6
protocol, such as host address auto-configuration and the Neighbor Discovery Protocol
(NDP) [4]. In addition, many similar IPv6 functions to IPv4 only use ICMPv6 messages
but require separate and specific protocols in IPv4, such as the address resolution protocol
and Internet group management protocol. Consequently, the critical roles of the ICMPv6
protocol make it an essential and irreplaceable part of IPv6 networks [5].

The ICMPv6 protocol is responsible for testing, diagnosing, and other critical functions
using ICMPv6 informational messages. In addition, it is responsible for generating re-
sponses and reporting delivery errors of IPv6 messages using ICMPv6 error messages [16].
However, malicious users regularly misuse ICMPv6 messages to perform various attacks
on IPv6 nodes and networks, such as DoS and DDoS attacks [14]. DoS and DDoS attacks are
common in IPv6 networks, performed by overwhelming the victim device with numerous
packets until it consumes its resources. These attacks aim to limit the availability of the
victim’s devices and prevent them from serving legitimate users.

The ICMPv6 protocol dictates that all IPv6 nodes must deal with and respond to any
received ICMPv6 message. For example, in the case of the ICMPv6 Neighbor Solicitation
(NS) message, once received, the receiving node must respond with the ICMPv6 Neighbor
Advertisement (NA) message without verification. Therefore, attackers misused this
feature to perform DoS or DDoS attacks by bombarding numerous NS messages to the
targeted victim’s device to consume its resources and subsequently disrupt its services.
Moreover, the actual implementation of the IPv6 protocol in different networks shows that
it is vulnerable to several new IPv6 attacks that target the newly introduced IPv6 functions.
In addition, IPv6 networks are also vulnerable to several existing IPv4 attacks, such as
DDoS using ping request packets [16].

The ICMP protocol has a simple design and low security features, resulting in being
exploited by malicious users in order to perform various attacks on network nodes or the
network itself. To avoid the threats or exploitation of the ICMPv4 protocol, administrators
can block and deny all ICMPv4 messages in the network. However, this action is impossible
with ICMPv6 due to the high dependency of the IPv6 protocol on its message for correct
functioning. ICMPv6 messages must be allowed in IPv6 networks to work appropriately,
unlike IPv4 networks [17]. Consequently, to avoid the threats of ICMPv6, deploying IPv6
IDS in an IPv6 network can help to analyze IPv6 traffic in order to detect ICMPv6 attacks.

2.2. Existing IDSs’ Representations

The IDSs’ traffic representations are categorized into two classes: packet-based and
flow-based. The packet-based representation traditionally captures the whole payload
and headers of all of the packets. An alternative way to represent network traffic is called
flow-based representation. Flow-based representation combines a set of packets that have
common characteristics and stores them in one record. The IDSs’ traffic representations
have direct impacts on the detection ability and efficiency of the IDS.

2.2.1. Packet-Based Representation

IDSs that use packet-based traffic representation capture all packets passing through
a particular edge point of the network where the network traffic passes. The monitoring
device where the IDS is installed must capture the packets without filtration or loss, and
then store the captured packets with their complete information, including the information
of the OSI model and the time of receiving them [9]. The stored packets’ details enable IDSs
to detect attacks using deep inspection.

However, the main disadvantage of packet-based traffic representation is the size of
the generated traffic data required by the IDS for analysis and inspection. Winter et al. [9]
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showed that capturing the network traffic of a 1GBaseX network generated six gigabytes
of data per minute. As a result, IDSs that use packet-based traffic representation are
typically complex and slow due to the massive number of packets that need to be captured,
processed, and analyzed. In addition, packet-based traffic representation contains the
complete packet details, including private or sensitive data, preventing researchers from
sharing their datasets with others. Although anonymization can hide these details, it
demands additional efforts from the IDS and increases the possibility of errors.

2.2.2. Flow-Based Representation

IDSs that use flow-based traffic representation combine packets with the same charac-
teristics in one record. The targeted attacks for detection determine the flows’ definition
and the characteristics of the flows’ format. IPv4 flow-based IDSs usually form the flows
based on IPv4 addresses, port numbers, and the used protocol [9]. However, a flow-based
IDS needs to pre-format the flows before applying its detection mechanism, adding extra
computation in preprocessing the traffic. In addition, flow-based IDSs cannot detect attacks
that depend on the packets’ details that are unavailable while building the flows.

Flow-based IDSs have several advantages. First, they generate smaller-sized traffic
data than packet-based representation due to the inclusion of fewer details. For example,
Sperotto et al. [18] showed that a flow-based representation could represent the transfer of a
gigabyte-sized file using a single flow, which is equivalent to only 0.1% of the packet-based
representation. Second, a flow-based IDS is lightweight since it uses compact-sized traffic
data in inspection and analysis. Lastly, it allows for the sharing of the dataset since the
sensitive information in the packets, such as IPv6 addresses, has been removed from the
flow traffic.

In conclusion, each of the traffic representations has advantages and disadvantages.
In addition, both are good for detecting specific attack types. For instance, flow-based rep-
resentation is more suited to detecting attacks, such as DoS and DDoS. Table 1 summarizes
the two IDS representation techniques with their advantages and disadvantages.

Table 1. Summary of advantages and disadvantages of IDSs’ traffic representations.

Representation Advantage Disadvantage

Packet-based
representation

Contains the details of the whole packets.
Immediate availability of the traffic for
IDS without preprocessing.

Every packet needs to be inspected.
Has the problem of exposing sensitive details.
Unable to detect attacks that use encrypted
payload

Flow-based
representation

Allows for detection of attacks that use
encrypted payload
Overcomes the problem of sensitive details
Allows for building fast IDS

Availability of fewer packet details
Flows need to be constructed before IDS works
Inability to detect attacks that use encrypted
payload

As shown in Table 1, the use of packet-based traffic representation enables IDSs
to detect attacks by inspecting packet details. However, this representation generates a
huge amount of traffic data; therefore, it is impractical for today’s high-speed networks.
Furthermore, IDSs that use packet-based traffic representation are considered heavyweight
IDSs that are slow in analyzing these large amounts of traffic. In contrast, the flow-based
traffic representation is preferable for detecting attacks such as DDoS, where it forms
the traffic in a format more relevant to the IDS. DDoS attacks are performed by sending
numerous amounts of packets to the victim device in a short time interval. This attack
traffic can be easily represented in a flow-based representation format in a detectable and
recognizable way by flow-based IDSs [18].

3. Literature Review

Table 1 shows that the packet-based traffic representation allows for the building of
an IDS that detects attacks based on packet details. However, it generates a considerable
amount of traffic data, making it impractical for today’s high-speed networks. Furthermore,
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the amount of traffic data makes analyzing them cumbersome and time-consuming, re-
sulting in a heavyweight IDS. In contrast, the flow-based traffic representation is preferred
for detecting attacks such as DDoS since the traffic format is better suited for representing
traffic data in high-speed networks. Since DDoS attacks involve massive amounts of pack-
ets sent toward a victim within a small-time interval, flow-based representation can easily
represent the attack traffic in a detectable and recognizable way for flow-based IDSs [16].

3.1. Signature-Based IDSs

Signature-based IDSs depend on predefined signatures for attacks to be reported once
they match/find any of them. Several signature-based IDSs have been proposed to detect
IPv4 attacks. Some of these IDSs have been improved to support the detection of IPv6
DDoS attacks, including ICMPv6-DDoS attacks. Other IDSs have been proposed to detect
IPv6 DDoS attacks from their first release, including attacks that target ICMPv6. IDSs
that support IPv6 DDoS attacks are studied and presented in this section to evaluate and
judge them.

Snort [19] is a free and open-source IDS that was initially developed for IPv4 attack
detection in 2008 by Martin Roesch. It performs traffic analyses and logging to detect
malicious packets. In addition, it allows for writing plain-text rules language in order
to determine the packets that need to be collected. Snort started to support IPv6 attack
detection from version 2.8 in 2007. It deals with IPv6 packets in the same manner as IPv4
packets: by replacing IPv4 fields with its similar IPv6 fields, such as Time to Live (TTL)
being swapped with a hop limit. Snort fails to classify the performed attacks to IPv6 or
IPv4 attacks because it cannot differentiate IPv6 from IPv4 packets [17]. In addition, it is
considered weak at detecting attacks that use a connectionless protocol such as ICMPv6
and IPv6 autoconfiguration [17].

Vern Paxson developed Zeek [20] (previously known as Bro) in C language in 1999.
Zeek has supported several IPv6 features, such as IPv6 reassembly, fragmentation, and tun-
nel decapsulation, since Bro version 0.8 [21]. Zeek has a customized scripting language,
which allows users to write their policies. Although it was initially designed for IPv4, it
supports writing specified rules for IPv6, including IPv6 DDoS attacks. However, an exper-
iment in [22] showed that Zeek failed to detect 8% of IPv6 attacks, including DDoS attacks.
Even though it is suitable for large-scale networks with a good flexibility [23], Zeek requires
a massive amount of resources, resulting in a slow response to attacks [24].

Suricata [25] is a signature-based IDS developed by the Open Information Security
Foundation (OISF) in 2009. It was mainly designed to replace Snort IDS and supported
IPv6 from its first version. It was based on the same design and rules as Snort; however, it
benefits from modern multicore processor architectures by supporting parallelism to be
the fastest signature-based IDS [26]. Atlasis et al. [27] experimented on Suricata to check
its ability to detect ICMPv6-based attacks. Unfortunately, they obtained disappointing
results when they failed to detect any attacks. Moreover, it does not handle IPv6 traffic
well compared to IPv4 in stream reassembly. Another experiment by Atlasis et al. [28]
showed that Suricata could be evaded in several scenarios involving packet fragmentation
and padding with more than six octets. In addition, in terms of memory usage, Suricata
consumes the most memory compared to other IDSs.

The existing IPv6 signature-based IDSs suffer from several limitations. Signature-
based IDSs rely on attack patterns to detect an attack; therefore, it has trouble recognizing
unknown “zero-day” attacks because their patterns are not available in the database [29,30].
The lack of signatures is either because the attacks have not been detected yet—and,
therefore, the signature is unknown—or because other IDSs detect the attack, but the attack
signature has not been propagated. Moreover, signature-based IDSs can be easily misled
due to their dependency on fixed attack behaviors to recognize attacks, making them
unable to detect self-modifying behavioral attacks. These limitations are why researchers
turn to anomaly-based IDSs.
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3.2. Anomaly-Based IDSs

Anomaly-based IDSs look for a set of behaviors that describe attacks and other be-
haviors that characterize normal traffic. Several anomaly-based IDSs have been proposed
to detect IPv6 DDoS attacks. Characterizing the behaviors of normal and attack traffic is
made either by defining rules that describe the allowed and denied behaviors or by using
machine learning algorithms to auto-learn the behaviors of normal and malicious traffic
based on training traffic datasets [2].

3.2.1. Rules Anomaly-Based IDS

These IDSs depend on predefined rules written by their developers based on their
knowledge of the attacks. The rules define the expected behaviors of malicious traffic in
the network. Such IDSs can detect “zero-day” attacks as long as their attack behaviors fall
within the defined rules. This section presents a few IDSs that use this technique to detect
IPv6 attacks.

The first rule anomaly-based IDS was proposed by Barbhuiya et al. [31] to detect
Man-in-the-Middle (MiTM) and DDoS attacks that use NS and NA packets. The proposed
IDS is an active IDS that probes the host devices to reply with specified packets to be
compared with the defined rules [2]. The probe packets are sent once a new packet with
different IP-MAC addresses is received. The responses of probe packets are stored in six
tables that require reserving part of the device’s memory. Moreover, the probe packets
induce an extra amount of traffic (responses) in the network, which might help to further
consume the resources of the network, especially when a DDoS attack is present [32].
Additionally, the proposed IDS can only detect MiTM and DDoS attacks from spoofed
MAC or IP addresses but not from real MAC-IP addresses [7].

Bansal et al. [32] improved the IDS version of Barbhuiya et al. [31] by reducing the
number of used tables from six to four tables and using IPv6 MLD packets instead of NS
and NA packets. However, it still depends on probe packets and looking for spoofed
MAC-IP addresses to check whether the address is genuine or spoofed. Therefore, it still
inherits the drawbacks of the old IDS, which are the consumption of the device’s resources
and failure to detect attacks from real MAC-IP addresses.

A genetic algorithm was used in [33] to detect attacks that exploit NDP vulnerabilities.
The algorithm was trained and validated on the CERNET2 backbone network at Tsinghua
University in China. The achieved results were 85% with a low error rate of around 2%.
However, during the training phase, the network was void of malicious traffic, and mali-
cious traffic was injected from a separate dataset, resulting in a non-consistent and biased
dataset that might falsify the IDS in real implementation. Unfortunately, the authors did
not detail the feature selection and ranking process in their paper.

3.2.2. Machine Learning Anomaly-Based IDS

Machine learning has proven its efficiency in several areas, including classifying traffic
to detect malicious packets. Machine learning anomaly-based IDS is developed by training
a machine learning algorithm on a training dataset to learn the behaviors of malicious
traffic. These algorithms have various capabilities to learn the behaviors that depend on
the algorithm’s nature. However, they have the ability to auto-learn the behaviors, an ease
of use, and a low-cost deployment. Therefore, several researchers have adapted machine
learning algorithms to solve the problem of ICMPv6-DDoS attacks.

Apriori algorithm was used by Lai et al. [34] to detect IPv6 attacks based on six
different features extracted from the packets. The extracted features are the IPv6 address,
the port number, the protocol, the TCP flag, and the service. Some of these features are
irrelevant to the attacks, such as the IP address and port number [8]. A small-sized dataset
(5000 records) was collected from a four-PC network that was used to validate the IDS.
Moreover, the IDS achieved an unreliable and low accuracy in detecting the attacks.

Zulkiflee et al. [35] used a Support Vector Machine (SVM) to detect IPv6 attacks.
The algorithm was applied to a large dataset consisting of 250,008 records. A PSO algorithm
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was used to select the most relevant features. After features selection, the SVM was
applied to a training dataset consisting of five features extracted from the traffic: the
source IPv6 address, source and destination port numbers, time interval, and protocol.
The achieved average detection accuracy of the ICMPv6 RA attack was 99.95%. However,
the research only focused on attacks that use ICMPv6 RA packets and ignore other ICMPv6-
based attacks.

Redhwan et al. [36] utilized the Back-Propagation Neural Network (BPNN) algorithm
to detect IPv6 DDoS attacks. The algorithm was applied to a self-generated dataset collected
from six network devices at the National Advanced IPv6 Center (NAv6) in Universiti Sains
Malaysia (USM). The generated dataset was represented by 10 features: IPv6 source ad-
dresses, next header, ICMPv6 type, ICMPv6 code, ICMPv6 payload, traffic class, flow label,
hop limit, payload length, and reserve bit. The testing results achieved a high detection
accuracy of 98.3% with a 0.26 Root Mean Square Error (RMSE). However, the malicious
packets in the used dataset were from one type of IPv6 packets, which was ECHO requests
packets. In addition, the tiny size of the used dataset (2000 ECHO request packets) does
not accurately reflect the normal behaviors of the included attacks [12].

A number of classifiers (decision tree, random forest, naive Bayes, MLP, and Bayesian)
were applied by Alsadhan et al. [10] to detect NDP DDoS attacks. The researcher refor-
matted the traffic to flows instead of packets. Flow representation was used due to its
advantages over packet representation, as mentioned in [10]. The best detection accuracy
was achieved by the decision tree, the random forest (84%), which is not a reliable detection
accuracy. Moreover, NDP has only five types of ICMPv6 packets, where other ICMPv6
packets are not considered within the used dataset. Moreover, the dataset was built based
on 12 features without applying features ranking to select the most contributing features.

Anbar et al. [17] proposed a technique that exploits an Information Gain Ratio (IGR)
and Principal Component Analysis (PCA) for feature selection and an SVM-based predictor
model for detecting Router Advertisement (RA) flooding attacks. The proposed technique
was evaluated using a realistic dataset, achieving an excellent detection accuracy of 98.55%
and a low False Positive Rate (FPR) of 3.3%. Therefore, based on the results, the proposed
technique is efficient in detecting RA flooding attacks.

Elejla et al. [4] proposed a deep-learning-based approach to detect ICMPv6 flooding
DDoS attacks in IPv6 networks by introducing an ensemble feature selection technique that
utilizes chi-square and IGR methods to select significant features for attack detection with
a high accuracy. In addition, a Long Short-Term Memory (LSTM) was employed to train
the detection model on the selected features. The proposed approach was evaluated using
a synthetic dataset for the False-Positive Rate (FPR), detection accuracy, F-measure, recall,
and precision, achieving 0.55%, 98.41%, 98.39%, 97.3%, and 99.4%, respectively.

Hammoodi et al. [5] proposed a deep-learning-based approach to detect RA flooding
DDoS attacks. The authors utilized two ranking algorithms to select the most significant
features that reflect the influence of the whole feature set. Thereafter, the authors employed
the recurrent neural network as a classifier. The proposed approach showed promising
results in terms of adopting deep learning to detect RA-flooding-based DDoS attacks,
where the experimental results showed the effectiveness of the RNN by achieving a high
detection accuracy of 99.6% with a low false detection rate of 0.3%.

The first research that utilized flow-based traffic representation in detecting DDoS at-
tacks was conducted by Elejla et al. [8]. The flow was defined as a set of packets sent within
a specific time interval with the same source and destination IPv6 addresses. A dataset
built using 11 different basic features was used to train and test a number of classifiers.
The used classifiers were a decision tree, SVM, naïve Bayes, K-Nearest Neighbor (KNN),
random forest, and neural network. In addition to the cross-validation testing technique,
the supplied dataset test testing technique was used to avoid the cross-validation tech-
nique’s drawback (mentioned in [9,37]). The decision tree and random forest algorithms
achieved the best detection ability among other classifiers, with a detection accuracy of 85%
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and a false-positive rate of 17%. The results cannot be considered as reliable for the real
implementation of the proposed IDS.

Table 2 summarizes the existing IDSs for ICMPv6-DDoS attacks with their description
and drawbacks.

Table 2. Summary of the existing IDSs for ICMPv6-DDoS attacks.

IDS Description Drawbacks

Snort [19] Open-source IDS Limited to its database of signatures
Uses the same policies for IPv6 and Unable to detect self-modifying or zero-day attacks
IPv6 protocols Evadable using extension header

Inaccurate in detecting DDoS attacks

Zeek [20] Open-source IDS Limited to its database of signatures
Uses the same policies for IPv6 and Unable to detect zero-day and self-modifying attacks
IPv6 protocols Requires a huge amount of resources
Allows users to write their own rules Slow in analyzing traffic

Suricata [25] Open-source IDS Limited to its database of signatures
Uses the same policies for IPv6 and Unable to detect zero-day and self-modifying attacks
IPv6 protocols Evadable using fragmentation or padding
Supports multithreading Consumes machine memory

Inaccurate in detecting DDoS attacks

Barbhuiya et al. Detects NS and NA address spoofing Consumes network resources.
[31] Uses 6 tables Limited to attacks of NS and NA packets.

Sends probe packets Changing NIC card IP address is not allowed
Unable to detect attacks from genuine IP address

Bansal et al. Improved IDS of Barbhuiya et al., [31] Consumes network resources.
[32] Detects NS and NA address spoofing Limited to NS and NA attacks.

Uses 4 tables · NIC card changing IP address is not allowed
Send probe packets Unable to detect attacks from genuine IP address

Li et al. [33] Detects NDP protocol attacks Limited to NDP attacks.
Uses fuzzy logic Uses non-consistent traffic dataset
Low false rate (2%) Few details are given

Unreliable detection accuracy (85%)

Lai et al. [34] Detects IPv6 DDoS attacks. Unreliable detection accuracy (72.2%).
Uses Apriori algorithm. Uses a small dataset for testing (5000 records).
Uses 6 packets features. Depends on irrelevant features such as IPv6 address.

Zulkiflee et al. Detects IPv6 DDoS attacks. Detects RA DoS only.
[35] Uses SVM classifier. Few datasets and experiments details are given.

High detection accuracy (99.95%). Depends on irrelevant features such as IPv6 address
Uses 5 packets features.

Redhwan et al. Detects ICMPv6 DDoS attack. Small testing dataset.
[36] Uses BBNN classifier. Limited to DDoS attacks of ICMPv6 ECHO request.

High detection accuracy (98.3%) Limited attacks’ scenarios.
Uses 10 features of packets traffic Depends on irrelevant features such as IPv6 address

Alsadhan et al. Detects NDP DDoS attacks Limited to NDP DDoS attacks.
[10] Uses flow representation of traffic Unreliable detection accuracy (84%)

Depends on 12 flow features. No features ranking was used.

Anbar et al. [17] Detects RA flooding attacks using Detects RA DoS only and relies on packets
IG and PCA for feature selection representation for detection.
and SVM as a classifier.

Elejla et al. [4] Detects ICMPv6 flooding DDoS Lacks significant flow based features that
attacks using ensemble feature selection contribute to the ICMPv6 DoS/DDoS
mechanism and LSTM. attacks detection.

Hammoodi et al. [5] Detects RA flooding attacks using Detects RA DoS only and relies on
ensemble feature selection mechanism packets representation for detection.
and RNN.

Elejla et al. [8] Detects ICMPv6 DDoS attacks Unreliable detection accuracy (85%)
Uses flow representation of traffic No features ranking is used.
Depends on 11 flow features.

Each of the proposed IDSs that aims to detect IPv6 DDoS attacks has its limitations
and drawbacks, as shown in Table 2. Flow representation has proven to be a promising
technique for detecting such attacks. However, the existing flow-based IDSs must be further
improved to detect ICMPv6 attacks accurately. Therefore, this paper aims to extend the
flow-based IDS proposed by Elejla et al. [8] by improving its detection accuracy regarding
the ICMPv6-DDoS attacks. We chose this particular IDS because it is the first flow-based
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IDS with comprehensive features to detect ICMPv6 DDoS attacks with a well-documented
systematic methodology and sufficient dataset size.

The proposed approach has three main advantages compared to the existing ap-
proaches listed in Table 2. The proposed approach (i) relies on flow-based traffic repre-
sentation, which is the most suited for today’s high-speed networks; (ii) preserves user
privacy since the flows are void of personally identifiable information, such as source and
destinations IP addresses, unlike the existing packet-based approaches that rely on the
source and destinations IP addresses for attack detection; and (iii) introduces enriched
flow-based features that significantly contribute to the detection of ICMPv6-DDoS attacks.

4. Proposed Flow-Based IDS

The proposed flow-based IDS consists of five interconnected stages that are responsible
for achieving the research objectives. Each stage consists of several steps. Generally, the IDS
works by passively capturing the network traffic and then performing a further analysis to
detect DDoS attacks that exploit ICMPv6 messages. This IDS aims to detect ICMPv6-DDoS
attacks on IPv6-link local networks. Figure 1 illustrates the architecture of the proposed
flow-based IDS.

Figure 1. The proposed flow-based IDS architecture.
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4.1. Data Collection and Preprocessing Stage

The proposed IDS starts with capturing and preprocessing the network traffic. This
stage captures the network traffic and organizes it into a suitable presentation, as well as
makes it free of noise to be ready as an input for the rest of the proposed IDS. The stage
output is a set of packet attributes needed to construct flows and extract features. In this
stage, the traffic with complete packet information is captured and collected for further
processing. The collected packets are filtered using Wireshark filtering commands (i.e.,
ip.version==6 and ipv6.nxt==58 ) to exclude any IPv4 or non-ICMPv6 packets, which
are out of the research scope. Figure 2 depicts the sequential steps for the design and
implementation of stage one.

Figure 2. The sequential steps for the design and implementation of stage one.

After the traffic is filtered using the Wireshark tool, it is exported as a CSV file for
further processing by the subsequent stages, as shown in Figure 2. This stage consists of
three steps as follows:

4.1.1. Network Packet Capturing Step

This step captures all ingress and egress traffic in a row packet format without losing
any information. The Network Interface Card (NIC) of the monitoring device is put into
“Promiscuous” mode to receive all packets in the network regardless of their source and
destination IP addresses. In addition, the switch interface attached to the monitoring
device is configured as “Mirroring mode”. Mirroring mode allows the device interface to
capture all incoming or outgoing packets that pass through the network. Let us assume
that the captured traffic in this step is Tinput, representing a series of N packets P. Each P
has a number of attributes x. Thus, the packet can be represented in terms of attributes as
P(x1, x2, x3, ..., xA). Tinput is sent to the next step for further processing. The mathematical
notation of Tinput is shown in Equation (1).

Tinput = P1(x1, x2, x3, ..., xA); P2(x1, x2, x3, ..., xA); ...; Pn(x1, x2, x3, ..., xA) (1)

where: Pi is a captured packet.
N is the length of the input traffic (number of packets).
xi is a packet attribute.
x1 and x2 are packet version and next header attributes, respectively.
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4.1.2. ICMPv6 Packet Filtering Step

The packet filtering step is critical due to the processing complexity that unnecessary
packets can add. Moreover, including such packets might confuse or complicate any
advanced processes and lead to low detection accuracy. Since the proposed IDS aims
to secure the IPv6 protocol, IPv4 messages are filtered out and dropped from the traffic.
Moreover, to extend the filtering process, all messages other than ICMPv6 are ignored from
the traffic. This step filters the captured traffic to include only IPv6 ICMPv6 packets, which
have a frame version value equal to 6, and a next header value equal to 58).

By considering the previous mathematical notation, the output from this step is a new
series Toutput with n number of packets, where n <= N. Therefore, Toutput can be defined in
Equation (2):

Toutput =
{ P1(x1, x2, x3, ..., xA); P2(x1, x2, x3, ..., xA); ...; Pn(x1, x2, x3, ..., xA)

if x1 = 6 and x2 = 58

}
(2)

4.1.3. Packets Attribute Extraction Step

This step extracts the required packet’s header fields for feature extraction or flow
construction. A vector of IPv6’s header fields identified and extracted from the input traffic,
Toutput, is used as the input for the next stage. These attributes are identified based on
their contribution to the flow construction or the next stage’s basic flow feature extraction
process. Unused attributes are filtered out and ignored. The first extracted packet feature
is the packet-receiving time, which is necessary for calculating the flow duration time
and other features. Additional features extracted include the IPv6 source and destination
addresses and ICMPv6 type due to their importance in the flow construction. Flow label,
packet length, next header, hop limit, payload length, and traffic class features are extracted
to extract basic flow features. The output of this step, τoutput, has the same packet number n
of Toutput with a smaller number of attributes. Toutput packets have A number of attributes,
whereas τoutput packets will have a number of attributes, where a < A. Equation (3) defines
the output of this step.

τoutput =
{ P1(x1, x2, x3, ..., xA); P2(x1, x2, x3, ..., xA); ...; Pn(x1, x2, x3, ..., xA)

if x1 = 6 and x2 = 58

}
(3)

4.2. Flow Construction and Basic Features Identification Stage

This stage converts the packets processed and prepared in the first stage to flows.
In addition, it prepares the flows for building the flow-based datasets and applying enrich-
ment techniques in the third stage. Moreover, it extracts flow features for attack detection
in the fifth stage.

4.2.1. Flow Construction Step

This step represents the packets in a flow representation. The flow of ICMPv6 packets
is defined as “Packets that have the same source and destination IPv6 address (IPsrc and
IPdst) and the same ICMPv6 type (ICMPv6Type) sent within the same interval of time
(T)” [8,9]. Therefore, the ICMPv6 flow can be stated as

FICMPv6 = (IPsrc, IPdst, ICMPv6Type)T
The output of this step is a new flow representation of traffic based on the defined

flow. The new represented traffic should be smaller in size than the original representation,
which is one of the good characteristics of flow representation. This compact representation
of network traffic will contribute to increasing the analysis efficiency of the flows using
the approach.

4.2.2. Flow Aggregation Step

Currently, FICMPv6 flows have three key elements (attributes): the IPv6 source address,
IPv6 destination address, and ICMPv6 type. This step adds to the FICMPv6 potential
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features by extracting attributes from the packets received from stage one. These potential
features provide each flow of new information, strengthening its representativeness in
detecting the attacks. The identification of new flow attributes, which will be used to
extract the features, is based on practical experiments and a domain understanding of the
DDoS attacks and the ICMPv6 protocol as mentioned in [8]. The selected flow attributes
are grouped based on selection justification to contribute to detecting ICMPv6-DDoS
attacks. The extracted attributes are the number of transferred packets (PacketsNumber),
number of transferred bytes (TransferredBytes), flow duration, transferred bytes ratio
(Ratio), and standard deviations of length (Length_STD), flow label (FlowLabel_STD), hop
limit (HopLimit_STD), traffic class (TrafficClass_STD), next header (NextHeader_STD), and
payload length (PayloadLength_STD). Calculations and reasons behind extracting these
attributes are explained in detail in [8,16].

4.2.3. Flow Features Extraction Step

The flow features extraction is the final step in the flow construction and basic features
identification stage. The step aims to identify and extract a number of basic features for
ICMPv6-DDoS attack detection. The ICMPv6Type flow attribute, already included in the
flow construction step, is one of the extracted features in this step. This feature is helpful
for distinguishing between ICMPv6-DDoS attack types, as well as due to their expected
contribution to detecting flows of ICMPv6-DDoS attacks. IPv6 source and destination
addresses are supposed to be two distinct patterns that identify unique flows but have
a problem distinguishing between each flow in the existing IDSs, as criticized in [16].
Therefore, this step excluded or ignored them from the flow features.

The final output of the stage is basic features derived from the flows. Each has a
different meaning and indication in the normal flow and flows of ICMPv6-DDoS attacks.
The 11 ICMPv6 basic flow features are the ICMPv6 type, packets number, transferred bytes,
flow duration, bytes ratio, standard deviation of flow labels, lengths, traffic classes, hop
limits, and payload length, as shown in [16].

4.3. Data Enrichment Stage

The required information for DDoS attack detection does not necessarily have to
come from packets exchanged between two particular nodes (attacker and victim). DDoS
attacks can also be accurately identified using more general information about the flows.
Therefore, this stage aims to add extra features to the flow’s traffic to enrich them with
general information linking the flows to the behaviors of the flows’ IP source addresses.
We believe that reasonably chosen features can significantly enrich the flows, improving
the accuracy in detecting ICMPv6-DDoS attacks. Figure 3 illustrates the proposed data
enrichment stage.

Figure 3. The proposed flow-based IDS architecture.

The enrichment stage consists of two steps to collect metadata about IP sources
addresses and the network. The first step is the flow-based enrichment step, which concerns
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the input flow traffic to collect and calculate more attributes from the traffic. The second
step is the IP behavior-based enrichment step, which aims to collect metadata about the IP
source address behaviors. The two steps are applied to benefit from their extracted features
and enrich the flow’s traffic with more valuable features. It’s assumed that these features
can improve the detection accuracy of the classifiers. The features are combined with the
basic flow features extracted in the previous stages.

4.3.1. Flow Enrichment Step

Representing the traffic in a flow format provides a broader picture of packets with the
same IP addresses and ICMPv6 type. However, DDoS attacks can be performed by sending
packets from different spoofed IP sources and destination addresses or using different types
of ICMPv6 messages. Detecting these attacks requires having a broader view of the traffic.
Therefore, this step aims to enrich the flows with more features for attack detection. These
features provide each flow with additional information, such as (i) the number of previous
flows targeting the same destination IPv6 address (Flows_Same_IPdst) and (ii) the number
of previous flows using the same ICMPv6 type (Flows_Same_ICMPv6Type). These features
provide information about attacks sent from the same IPsrc or ICMPv6type regardless of
other fields’ values.

DDoS attack packets have many similarities in several attributes because attackers
typically auto-generate attack traffic using fixed default parameters. Therefore, we can find
flow similarity by determining the similarity between the flow and its previous flows based
on their entire flow values. Flow similarity (Flow_Similarity) is the third feature added as
another enriching feature. This feature helps to recognize attacks with similar fields’ values
other than IPsrc or ICMPv6type.

4.3.2. IP Behavior-Based Enrichment Steps

The characteristics and behaviors of the IPsrc addresses can be a strong indicator of
attacks’ existence or absence. Many researchers [4,5,17] use IPsrc address characteristics or
behaviors to detect different attack types, including DDoS. Therefore, enriching the flows
with information about IPsrc address behaviors should increase the flow’s representative-
ness. This step focuses on enriching the flows with information that helps to detect attacks
from fake or spoofed addresses. Fake IPsrc addresses are used to avoid the traceback and
identification of the original attacker. The main characteristic of these IP addresses is that
they appear suddenly in the traffic since they only exist during attacks. Based on this fact,
this step determines the first-seen and last-seen times for each IP source address. We posit
that DDoS attacks’ IP source addresses are usually randomly generated fake IPsrc, which
have a recent last-seen time that is almost the same as the first-seen time. An enriching
feature that indicates how recently the IP source is seen in the network is named IP source
first-seen (IPsrc_First_Seen). Its value, calculated by measuring the difference between the
IPsrc time of first-seen and current time, represents the number of seconds that lapsed since
the IP source address was first detected.

Attackers use fake IP addresses randomly generated by replacing the host part of
the IPv6 address while the network prefix part remains the same. The generated fake IP
addresses’ network part typically remains the same but with a different host part, meaning
that the generated IP source addresses look similar in most of their bit values. This step
calculates the similarity between each flow’s IP source address and the IP source addresses
of the previous flows, which will be added as a new feature named IP source similarity
(IPsrc_Similarity). This feature shows the similarity percentage between the IPsrc of each
flow with the IPsrc of its earlier flows.

In summary, the final output of this stage is five new features that enrich the flows,
which are Flows_Same_IPdst, Flows_Same_ICMPv6Type, Flow_Similarity, IPsrc_First_Seen,
and IPsrc_Similarity. The total number of features of each flow is 16 features, comprising 11
basic features and 5 enriching features. Table 3 shows a summary of the 16 features.
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Table 3. Summary of the 16 features.

Feature Name Type Description

ICMPv6Type Basic Type of ICMPv6 packet, e.g., NA

PacketsNumber Basic Number of packets that satisfy the definition of flow

TransferredBytes Basic Number of bytes within the flow

Duration Basic Time difference between the last and first packet in the flow

Ratio Basic Ratio of number of bytes in the flow with the duration

Length_STD Basic Standard deviation of packets’ lengths

FlowLable_STD Basic Standard deviation of packets’ flow labels

HopLimit_STD Basic Standard deviation of packets’ hop limits

TraffiicClass_STD Basic Standard deviation of packets’ traffic classes

NextHeader_STD Basic Standard deviation of packets’ next headers

PayloadLength_STD Basic Standard deviation of packets’ payload lengths

Flows_Same_IPdst Enriching Number of previous flows sent to the same IPdst

Flows_Same_ICMPv6Type Enriching Number of previous flows sent with the same ICMPv6 type

Flow_Similarity Enriching Similarity percentage between the previous flows

IPsrc_First_Seen Enriching Time duration of IPsrc appearing for the first time

IPsrc_Similarity Enriching Similarity percentage between IPsrc and previous IPsrcs

This step aims to form a set of enriching flow features extracted for each flow in the
previous two steps. Five features were extracted in the previous two steps to improve the
flow’s traffic quality. This stage aims to prepare these features for the subsequent stages
by combining them with the 11 basic flow features as one set of flow-enriching features in
order to have the final set of features. However, these features might be redundant and
produce a high dimensionality that could reduce the classifier’s performance and detection
accuracy. Therefore, these redundant features are reduced using the feature selection and
ranking technique in the following stage.

4.4. Flow-Based Feature Reduction Stage

Although each feature of the 16 final flow features was chosen based on reasoning
and reasonable justifications, some might be redundant or do not contribute significantly
to the attack detection. Therefore, we must choose the most relevant features to avoid
misclassification due to the non-contributing features. Moreover, the feature reduction
aims to reduce the classifier’s training times in building their models. We used hybrid
feature ranking techniques to choose the best features that help to distinguish attack and
non-attack (normal) flows. The stage’s output is the selected features out of 16 features.

Two of the most common feature ranking algorithms were hybridized in order to
have a combination of more than one opinion. Combining two ranking schemes that
work in parallel allows us to have different points of view about the contributed features.
We combined IGR and CHI-squared technique (CHI) ranking algorithms to select the
most relevant features. The CHI ranking algorithm is a statistics feature selection method,
and IGR measures the dependence between the feature and the class label. Such feature
selection methods help to select a set of strong features that satisfy both selection aspects.
In addition, the idea of hybridizing two feature selection algorithms has been employed in
existing research to detect ICMPv6-based attacks, such as in [17], achieving an impressive
accuracy in detecting ICMPv6-DDoS attacks.

Each ranking algorithm ranks the features based on their relevance to the class label.
Therefore, the ranking algorithms give each feature a rank value between 1 to the number
of features (16). Each feature gains rank values from IGR selection (RIGR) and CHI selection
(RCHI). The feature with a high rank means that it is a significant feature and can contribute
to the detection of DDoS attacks, whereas the feature with a low rank can be neglected.
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To benefit from these ranks, a summation of the rank values was calculated to combine
the two ranking results. Thus, the maximum value that can be achieved by a feature from
the two algorithms is 32. Therefore, a feature’s RIGR+RCHI value must be larger than 16
to be selected. These selected features were assumed to be the most relevant features that
can differentiate between the flow of ICMPv6-DDoS attacks and normal flows. Therefore,
the features were passed to the next stage, which is building a detection model based
on them.

4.5. ICMPv6-DDoS Attack Detection Stage

The attack detection stage trains the classifiers to build detection models that can detect
ICMPv6-DDoS attacks based on the structured flows. The flows were combined with the
selected features to build the flow datasets. The classifiers were applied to the flow dataset
to build detection models. The dataset included various scenarios of ICMPv6-DDoS attacks
and normal traffic that allow for the classifiers to learn all of the potential possibilities.
Therefore, this stage output was the trained models to be implemented online in IPv6
networks to detect any ICMPv6 DDoS attacks. The cross-validation testing technique was
used, where the whole dataset was used to train and test the classifiers by splitting a part
of it for training and the rest for testing by a specified ratio. In addition, the supplied set
testing technique was used by training classifiers on the whole training dataset and testing
the built model on another dataset purposely created for testing purposes. In other words,
the testing dataset’s flow traffic is entirely different from the training dataset’s flow traffic.

5. Analysis of Results and Discussions

This section presents the used flow datasets represented with the selected features
(shown in Section 4.4). It also explains the metrics used to evaluate the proposed IDS,
followed by the results of feature reduction and applying the classifiers to the datasets.
Analyzing the results allows us to evaluate the efficiency of the proposed IDS.

5.1. Flow Dataset

The dataset used to evaluate the proposed IDS was obtained from [16]. The datasets
were validated to make sure that the datasets were suitable for evaluating the IDS to detect
all ICMPv6-DDoS attacks and that the given performance of the system was correct and
expressive. Moreover, the availability of good datasets requirements was ensured in the
dataset. Lastly, different classifiers were chosen and applied to the datasets to check their
ability to achieve acceptable detection accuracies. Figure 4 shows a snapshot of the used
flow-based dataset.

Five requirements of a good dataset proposed by Sperotto et al. [37] can be used to de-
fine a reliable dataset. The dataset must contain realistic traffic, diverse scenarios, complete
and correct labels, a sufficient size, and representative features. The used dataset contained
real-life IPv6 traffic from a university network comprising real IPv6-enabled nodes. It
also included diverse attack and non-attack (normal) traffic scenarios with their responses
included. We conducted three processes for dataset preparation: normalization, labeling,
and balancing. The dataset was already correctly labeled as either “attack” or “normal” for
malicious or normal packets. Balancing the dataset involves using the synthetic minority
over-sampling technique (SMOTE) to increase traffic data by replicating fewer labeled
records. Table 4 shows the characteristics of the used dataset.
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Figure 4. Snapshot of the flow-based dataset using the final flow features.

Table 4. The characteristics of the used dataset.

Dataset Total Packets Total Flows Attack Flow Normal Flows

Flow-based Training Dataset 200,854 101,088 flows 49,187 51,901

Flow-based Testing Dataset 199,137 92,640 flows 42,084 50,556

Elejla et al. [16] ensured that their dataset fulfils a good dataset’s requirements.
The dataset size was sufficient, and the oversampling balancing technique was applied.
In addition, the features were chosen based on reasonable justifications and explanations to
ensure their representativeness.

Elejla et al. [16] applied a set of classifiers to classify the built flow dataset using
two different testing approaches. Ten-fold cross-validation trained the classifiers on a
portion of the dataset and then tested the trained models on the other portion. A supplied
set test was another technique applied to train the classifiers on the dataset and then
test the trained model on another dataset. This checking confirmed that the extracted
features could differentiate between ICMPv6-DDoS and normal traffic. Elejla et al. [16]
conducted the checking using two evaluation techniques based on detection accuracy and
false positive rate evaluation metrics. The achieved detection accuracy ranged between
85.83% and 73.96% and the false positive rate ranged between 31% and 17%. These results
proved that the dataset applies to ICMPv6-DDoS attack detection. Moreover, it proved the
ability of flow representation and the extracted features in detecting ICMPv6-DDoS attacks.
However, there is still room for further enhancement to improve the classifiers’ ability to
detect attacks.

5.2. Evaluation Metrics

IDS is evaluated on its ability to classify input datasets correctly. In this work, we
evaluated the capability of the proposed flow-based IDS to detect ICMPv6-DDoS attacks
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using several common evaluation metrics in the literature, including the detection accuracy,
precision, recall, F-measure, and false-positive rate [4]. Moreover, the evaluated metrics for
this IDS were compared with the existing research to evaluate the proposed flow-based
IDS improvement. The evaluation metrics are as follows:

Detection Accuracy
The detection accuracy metric reflects the IDS’s ability to classify flows correctly from

all existing flows. It describes the ability of the IDS to raise the alarm when an attack
is detected in the network and remain silent for normal network traffic. The detection
accuracy is calculated using Equation (4).

DetectionAccuracy =
TP + TN

TP + TN + FP + FN
(4)

The average detection accuracy among all applied classifiers is calculated using
Equation (5).

AverageDetectionAccuracy =
∑c

1 DetectionAccuracyi
c

(5)

False-Positive Rate
The false-positive rate reflects the inability to correctly classify normal flows from the

total number of normal flows. It describes the weakness of the IDS in correctly classifying
the normal flows as normal. The false-positive rate is calculated using Equation (6).

FalsePositiveRate =
FP

TN + FP
(6)

The average false positive rate among the applied classifiers is calculated using
Equation (7).

AverageFalsePositiveRate = ∑c
1 FalsePositiveRatei

c
(7)

Where c is the number of classifiers.
Precision is the proportion of attacks correctly predicted vs. all samples predicted as

attacks. The precision is calculated using Equation (8).

Precision =
TP

TP + FP
(8)

Recall or the detection rate is the proportion of all samples correctly classified as
attacks vs. all attack samples. The recall is computed using Equation (9).

Recall =
TP

TP + FN
(9)

F1-Measure is the harmonic mean of precision and recall. In other words, it is a
statistical technique involving precision and recall used for examining a system’s accuracy.
The F1-measure is calculated utilizing Equation (10).

F − Measure =
2 × precision × recall

precision + recall
(10)

The description of TP, TN, FN, and FP is shown in Table 5.
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Table 5. Terms of the evaluation equations.

Short Term Description

TP (True Positive) The percentage of attack flows classified as attack

TN (True Negative) The percentage of normal flows classified as normal

FN (False Negative) The percentage of attack flows classified as normal

FP (False Positive) The percentage of normal flows classified as attack

5.3. Results

This section presents the result of the features reduction stage and the analysis of
the test results of the proposed approach by applying different ML classifiers. Then, it
discusses the impact of the selected features on the detection model.

5.3.1. Result of Flow-Based Features Reduction Stage

All of the features included in the set of final flow features do not necessarily contribute
to the detection of the attacks. Therefore, the final flow features were filtered out to have a
subset of the strongly related features. The features reduction stage (shown in Section 4.4)
of the proposed approach aims to choose the most significant set of features. Moreover,
feature reduction should help to improve the training times needed to build the detection
model since the classifiers will depend on fewer features to build their models. IGR and
the chi-squared algorithm were applied to the flow dataset to choose the best features.
Each of the algorithms gives weight to indicate the strength of the relationship between
each feature and the classification decision. Table 6 presents the results of the features
ranking algorithms that were applied to the flow dataset constructed using the 16 final flow
features set.

Table 6. Features reduction results.

Feature Name Chi-Squared Rank Information Gain Rank Summation of Ranks

ICMPv6Type 11 11 22

PacketsNumber 9 8 17

TransferredBytes 10 10 20

Duration 7 7 14

Ratio 8 9 17

Length_STD 5 5 10

FlowLable_STD 3 4 7

HopLimit_STD 2 3 5

TraffiicClass_STD 1 2 3

NextHeader_STD 4 1 5

PayloadLength_STD 6 6 12

Flows_Same_IPdst 14 15 29

Flows_Same_ICMPv6Type 12 12 24

Flow_Similarity 13 14 27

IPsrc_First_Seen 16 16 32

IPsrc_Similarity 15 13 28

As can be seen from Table 6, each of the ranking algorithms assigned rank (according
to their given weight) values to each feature, indicating the relation between the feature
and the class value. Then, the features that achieved a summation of rank greater or equal
to 16 were selected to evaluate the proposed IDS using several variant classifiers. Based
on this condition, seven features failed to meet the condition as their rank summation was
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less than 16, and were therefore excluded. The excluded features were FlowLable_STD,
Length_STD, TraffiicClass_STD, HopLimit_STD, NextHeader_STD, PayloadLength_STD
and Duration. The selected features are ICMPv6Type, PacketsNumber, TransferredBytes,
Ratio, Flows_Same_IPdst, Flows_Same_ICMPv6Type, Flow_Similarity, IPsrc_First_Seen,
and IPsrc_Similarity.

5.3.2. Result of ICMPv6-DDoS Attacks Detection Stage

The selected features were fed to the classifiers to build several prediction models.
The generated prediction models were evaluated using two evaluation approaches: the
cross-validation test and supplied set test. The classifiers were chosen, as they are well-
known classifiers, as well as provided by the WEKA tool to avoid reimplementing them
again. The chosen classifiers were decision trees, SVMs, naïve Bayes, KNNs, random
forest trees, and neural networks. The classifiers were chosen from different classification
technique categories to ensure the efficiency of the proposed IDS.

The classifiers were used with their default parameters without any parameter modifi-
cation. Table 7 presents the classifiers’ detection accuracies after applying them to the flow
dataset built with the selected features using the two evaluation techniques.

Table 7. The classifiers detection accuracy with cross-validation and supplied set.

Classifier Cross-Validation Test Supplied Set Test

Decision Trees 99.98% 99.96%

Support Vector Machines (SVMs) 98.70% 98.65%

Naïve Bayes 98.56% 98.53%

K-Nearest Neighbors (KNNs) 99.56% 99.98%

Random Forest Trees 99.99% 98.83%

Neural Networks 99.92% 99.91%

Using a selected set of flow features representing the flow-based dataset allows the
classifiers to achieve high detection accuracies in detecting the attacks. As shown in
Table 7, the classifiers have detection accuracies ranging from 98.53% to 99.99%. Moreover,
the average detection accuracy, calculated using Equation (5), is 99.45% and 99.31% for
the cross-validation test and supplied set test, respectively, with a total average of 99.38%.
These high accuracies confirm the ability of the selected flow features to differentiate normal
and attack flows. Moreover, the classifiers gave almost the same values in both approaches,
indicating that the selected features are robust regardless of the testing approach. In other
words, the selected features are descriptive and informative enough to allow the classifiers
to achieve the same results even when trained and tested using a different dataset (supplied
set test). The results in Table 7 confirm that the flow representation with the selected features
is sufficient to build a trustworthy and reliable IDS to detect ICMPv6-DDoS attacks. Figure 5
compares the detection accuracies of the proposed IDS with the IDS by Elejla et al. [8].
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Figure 5. Comparison between detection accuracy of the proposed IDS and Elejla et al. [8].

Comparing the detection accuracy of the proposed IDS and IDS by Elejla et al. [8]
showed that the enriched features considerably increase the average detection accuracy
from 83.285% (using the basic flow features) to 99.414%, which is an enhancement of 16.02%.
These enhancements will make any detection model built using the selected features more
reliable and trustworthy.

Similarly, the false-positive rates were calculated for applying the classifiers to the
dataset with the selected features. Table 8 shows the false-positive rate after applying
the classifiers using two testing techniques to the flow datasets built with the selected
flow features. The false-positive rates, which are close to zero, prove that we can build a
detection model with a low false-positive rate based on classifiers that use the selected flow
features. By calculating the average of these false-positive rates using Equation (7), they
have a significantly small total average value of 0.585%, where the average for the cross-
validation test equals 0.481% and, for the supplied set test, it equals 0.69%. Furthermore,
the total average of false-positive rates for Elejla et al. [8] is 19.76%, where the average
for the cross-validation test equals 19.71% and, for the supplied set test, it equals 19.81%.
Therefore, the enriched features considerably decrease the false positive rate to 19.17%.

These results from both experiments showing low false-positive rates indicate that
they are practical and that the built detection models are reliable and robust.

Table 8. The classifiers false positive rates with cross-validation and supplied set.

Classifier Cross-Validation Test Supplied Set Test

Decision Trees 0.02 % 0.04 %

Support Vector Machines (SVMs) 1.30 % 1.35 %

Naïve Bayes 1.44 % 1.47 %

K-Nearest Neighbors (KNNs) 0.04 % 0.02 %

Random Forest Trees 0.01 % 1.17 %

Neural Networks 0.08 % 0.09 %

Figure 6 depicts a comparison between the false-positive rates of the proposed IDS and
the achieved ones in Elejla et al. [8] in order to show the gained enhancements. By compar-
ing the classifiers’ false positive rates using the two testing techniques in the cases of using
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the basic flow features by Elejla et al. [8] and the selected flow features to represent the
datasets, it can be clearly seen that the false-positive rates drastically decreased compared to
the previous results of the basic features (shown in [8]). The false positive rates are smaller
than those achieved in [8] by 19.336%. The low false-positive rates confirm the enriching
features’ capability to provide the flow with information that is able to decrease the false-
positive rates that might be generated from the classifiers. The evaluation of the proposed
approach in terms of the precision, recall, and F-measure using the cross-validation and
supplied test are shown in Figures 7 and 8, respectively.

Figure 6. Comparison between false-positive rates of the proposed IDS and Elejla et al. [8].

Figure 7. Results of the proposed IDS in terms of precision, recall, and F-measure for
cross_validation scenario.
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Figure 8. Results of the proposed IDS in terms of precision, recall, and F-measure for supplied_test scenario.

As shown in Figures 7 and 8, the total average precision equals 99.53% and 99.33% for
the cross-validation test and supplied set test, respectively, with a total average of 99.38%.
Meanwhile, the total average recalls are 99.53% and 99.31% for the cross-validation test and
supplied set test, respectively, with a total average equalling 99.4%. Furthermore, the total
average F-measure equals 99.30% and 99.40% for the cross-validation test and supplied set
test, respectively, with the total average equal to 99.40%. The high precision percentage
means that the proposed approach has a lower false-positive value. Meanwhile, the high
recall percentage indicates that the proposed approach has a lower false-negative value.

5.4. Discussion

The improvement that occurs when enriching the basic features proves the efficiency
of the added set of informative features. The classifiers’ detection accuracies and the
false-positive rates improved by 16.25% and 19.33%, respectively, after combining the
enriched flow with the basic flow features. The improvement of adding the enriched
features was further evaluated using the T-test, with the α value equal to 0.05. The T-test
was applied to the 12 accuracy values of Elejla et al. [8] compared to the 12 accuracy values
shown in Table 7. The p-value of the T-test between the accuracy of the selected and basic
features of Elejla et al. [8] is 2.9986 × 10−10 The T-test result is smaller than α, showing a
significant improvement in the classifiers’ accuracies using the proposed enriched features
compared to the basic features. These improvements indicate that enriching features add
more information to the flows that help classifiers to achieve a better detection accuracy.
Applying the similar T-test to the false positive results achieved a p-value of 2.2895 × 10−10,
which is smaller than the α value, confirming a significant improvement by adding the
enriched features. The enriched flow features successfully help classifiers to detect attacks
more accurately.

The robustness of the proposed flow-based IDS was evaluated using the supplied set
test, where the test data do not exist in the training dataset. This mechanism allows the
IDS to detect attacks in traffic seen for the first time and not in the training dataset. Thus, it
simulates the online implementation of the IDS, where the trained model is set up to detect
attacks from traffic that are different from the training traffic. The results achieved by the
proposed flow-based IDS on the two testing techniques prove its efficiency in detecting
attacks. This approach is limited to detecting ICMPv6-based DoS/DDoS attacks. However,
other attacks that exploit the security vulnerabilities of ICMPv6, such as man-in-the-middle
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attacks (e.g., RA fake router attack), were ignored because they only involve the exchange
of a few ICMPv6 messages and, thus, are not considered as DoS or DDoS attacks.

6. Conclusions

This paper proposed a solution to some IPv6 security problems related to the ICMPv6
protocol. The ICMPv6 protocol is susceptible to several attacks, such as DDoS attacks,
which are the most popular among adversaries. Therefore, we proposed an IDS to detect
DDoS attacks that exploit ICMPv6 messages by attempting to improve the accuracy of the
previously proposed IDS to be more reliable with a better detection accuracy and a lower
error rate. The proposed IDS extracts enriched features linking the flows to the behavior of
the flows’ IP source addresses. The combination of the enriched features and the basic flow
features resulted in 16 flow features. The whole feature set was ranked to select the most
contributing features in detecting ICMPv6-based DoS and DDoS attacks. The experimental
results reveal that the enriched features significantly improved the IDS’s detection accuracy
by 16.02%, and that the false positive rate decreased by 19.17% compared with state-of-the-
art IDSs. For future research directions, deep-learning algorithms can be used as classifiers
to evaluate the impact of the newly proposed flow-based feature on detection accuracy.
Furthermore, the applicability of the proposed enriched features in detecting DoS and DDoS
attacks on other modern network architectures, such as Software-Defined Networking
(SDN), can be explored. Lastly, the proposed approach can be enhanced to detect other
ICMPv6-based attacks, such as man-in-the-middle.
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