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Abstract: The extent of failure evaluation depends on the complexity and significance of electronic
products. However, traditional failure mode and effect analysis (FMEA) has many shortcomings,
which brings large difficulty to failure evaluating work. This paper uses the double hierarchy
hesitant fuzzy linguistic term set (DHHFLTS) and the K-means clustering algorithm to improve the
shortcomings of traditional FMEA. The DHHFLTS is a set of language terms based on the symmetry
method and uniform language granularity. Firstly, we determine the product failure mode and set
up an evaluation team after formulating an evaluation symmetrical language set. The psychological
changes of the evaluators can be truly expressed by using the DHHFLTS. Secondly, the entropy
weight method is used to calculate the weight of the evaluation members. The evaluation information
of the evaluation personnel on the failure mode is aggregated based on the weight of the evaluation
members. Then, the K-means clustering algorithm is used to calculate the distance between failure
modes and each cluster center point by using the normalized weight of influencing factors and the
evaluation distance of each evaluator. Finally, the evaluation of an electromagnet failure mode is
taken as an example to prove the objectivity and practicability of the new method.

Keywords: failure evaluation; DHHFLTS; K-means clustering algorithm; FMEA; entropy weight method

1. Introduction

With the increasing competition for electronic products, people’s consumption ideas
are becoming pragmatic, and quality and reliability have become the main factors for
products to occupy the market share. The failure evaluation quality of the judges directly
affects the working performance of electronic products. An accurate and comprehensive
failure evaluation has proven to be the best measure of success for product design and
development. Thus, in order to achieve the goal of improving the quality and reliability of
products, the first important measure for identifying and sorting the potential failure modes
is the correct prevention and optimization method. Most importantly, many evaluation
methods and their tools provide instant feedback so that we can react in real time to the
quality parameters of electronic products. At present, the research on reliability analysis
has produced a lot of achievements. Zhang et al. [1] proposed a reliability model based on
the Bayesian network and Marshall–Olkin Weibull distribution to analyze the reliability of
product dynamics. These research results provide new ideas for the research of reliability
analysis, but these methods are not suitable for the actual use of enterprises because of
their large amount of data processing and complex calculation [2].

As a common method of reliability analysis, FMEA is widely used in the design
and production stage of various products, such as offshore wind turbines [3], furniture
manufacturing [4], semiconductor design [5], and other industries. FMEA identifies all
potential failure modes by analyzing the subsystems and parts that make up the product
and each step of the product’s design process. It is a systematic activity to analyze its
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possible consequences and take necessary measures in advance to improve the quality and
reliability of products [6]. Compared with other reliability analysis methods, the calculation
process is simple and suitable for the actual production process of enterprises [7]. With
the increase in FMEA frequency and scene, its own problems are also exposed. Firstly,
the FMEA evaluation process uses accurate numbers to evaluate the failure mode, which
does not conform to people’s language habits when evaluating. Secondly, the weight of
the influencing factors in the FMEA evaluation is equally divided, without considering the
relative importance of the influencing factors. In addition, the weight of the evaluation
members is also subjectively specified, which will lead to unreal evaluation results. Thirdly,
the risk priority number (RPN) is used to sort the final results. RPN includes severity (S),
occurrence (O), and detection (D), which will lead to the same RPN value, and the values
of each influencing factor may be different. However, for enterprises, compared with the
failure mode with high frequency and a low detection degree, the failure mode with high
severity needs more preventive measures in advance, so traditional FMEA cannot guide
the production of enterprises well.

In view of the shortcomings of traditional FMEA, many scholars have made improve-
ments. On the one hand, intuitionistic fuzzy sets (IFSs) can replace accurate numbers in
the evaluation language and better express people’s fuzzy psychology in the evaluation
process. Chang et al. [8] used IFSs to evaluate the reliability of an octane system and to
some extent improve the evaluation language, but IFSs can only describe the members’
fuzzy psychology. They cannot express the hesitation of evaluation members; for example,
some evaluators believe that the severity should be between high and high language sets,
which is impossible to express for the IFS. The rest, such as trapezoidal [9] and triangular
fuzzy numbers [10], can only express ambiguity, but they cannot express hesitation very
well. Relative to fuzzy linguistic sets (FLSs), hesitation fuzzy linguistic sets (HFLSs) can
not only express the fuzziness of evaluation, but also the hesitation of evaluation. Zhang
et al. [11] used probabilistic interval-valued hesitant fuzzy sets (PIV-HFSs) to express the
evaluation information of evaluation members, and using interval-valued fuzzy sets can
include the real thoughts of evaluation members. Liu et al. [12] added two-tuple semantics
to an HFLS. When they were used to process the HFLS for integration, the integration
results exceeded the linguistic terms set, and language information was lost. In addition,
triangular hesitant fuzzy sets [13], hesitant Z-numbers [14], and intermediate two-tuple
fuzzy sets [15] can express the hesitant mentality of the evaluators, which is particularly
important for reliability analysis in the context of dynamic production [16]. However,
these methods are very large for the partition interval of language sets and cannot express
sentences that are a little higher. In addition, more data are needed to express language
sets, such as triangular hesitant fuzzy numbers, which need a, b, and c data to determine
triangular fuzzy numbers. The DHHFLTS is composed of double hierarchy linguistic
term sets (DHLTSs) and HFLTSs. It divides the first hierarchy linguistic set by using the
second hierarchy linguistic set to shorten the interval length of the linguistic set. Its double
hierarchy language set is based on the concept of symmetry, so it can really depict bipolar
psychology during the evaluation process. The final evaluation information is to select a
limited and orderly continuous linguistic term set from the DHHFLTS to form a hesitant
interval [17]. So far, based on the existing FMEA evaluation forms and research back-
ground, this paper holds that the DHHFLTS can concisely express the complex psychology
of the evaluator [18].

On the other hand, there are many ways to confirm the influencing factors and the
weight of evaluation members in many research fields. Pang et al. [19] used the similarity
measure method to calculate the distance between evaluation information and its center
point, normalized it to obtain the weight of evaluation members, and constructed a nonlin-
ear programming model to solve the weight of influencing factors according to the pairwise
comparison matrix of influencing factors. Boral et al. [20] used the fuzzy analytic hierar-
chy process (FAHP) and modified fuzzy multi-attribute ideal real comparative analysis
(modified FMAIRCA) to calculate the fuzzy relative importance among the influencing
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factors so as to obtain the weight of the influencing factors. Tian et al. [21] used fuzzy
best-worst and relative entropy methods to calculate the weight of influencing factors and
evaluation members. Firstly, the fuzzy best difference of the interval evaluation value of
influencing factors was calculated to obtain the weight of influencing factors. Then, based
on fuzzy proximity and fuzzy similarity entropy methods, the fuzzy distance between the
evaluation method of each evaluation member and the central scheme was calculated to
obtain the weight of FMEA team members. In addition, the entropy weight method [22],
fuzzy metric [23], the multi-objective optimization model [24], and other methods can cal-
culate the influencing factors and evaluate the weight of members. However, by observing
these methods, it is found that it is quite common to find the evaluation information center
point and calculate the distance between the evaluation information and the center point
to obtain the weight information. Therefore, when choosing the weight solution method,
it should be close to the mainstream idea and simple calculation process. The K-means
clustering algorithm determines the center point of each clutter through calculation and
calculates the distance between each evaluation information and the center point by using
the weight. The calculation process is simple, and it can also avoid the situation that the
evaluation result is not true due to the large gap in evaluation information [25]. Therefore,
this paper is based on the K-means clustering algorithm and entropy weight method to
solve the influencing factors and evaluate the weight of members.

The K-means clustering algorithm was first proposed in 1967 and has been widely
studied and applied in different disciplines. It has the advantages of simplicity, high
efficiency, and is suitable for dealing with large data sets. It is the most widely used and
mature clustering analysis method so far [26]. It is widely used in data processing [27],
image processing [28], market analysis [29], and many other research fields [30]. The
K-average clustering algorithm is the core thought in the center of the data set to choose
K-class data clustering and the clustering center according to the calculated attribute
value, and the value of the minimum Euclidean distance principle can be divided into
K classes. The average of each category data is calculated as a new clustering center
for the next iteration until the clustering center is no longer changed. The value of
each cluster center is redivided and updated successively until the optimal clustering
result is obtained [31]. Clustering the evaluation information of failure modes can find
the central point around the evaluation process of all evaluation members. Then, by
calculating the distance between the evaluation information and the final center point,
it is easy to obtain the weight of the influencing factors. Compared with other weight
calculation methods, the K-means clustering algorithm is simpler, and the data needed for
solving are all from the data collected, so the results are more reliable [32]. As mentioned
above, the K-means clustering algorithm is an iterative clustering analysis algorithm.
Compared with other weight-solving methods, it can not only calculate the weight based
on current failure modes, but also predict the weight of influencing factors of future
failure modes [33]. Since the DHHFLTS sets language granularity based on symmetric
concepts, it may lead to a large gap in evaluation information among evaluators by using
the DHHFLTS. Furthermore, the K-means clustering algorithm can reduce the gap between
the evaluating variables.

The rest of this paper is organized as follows. In Section 2, we introduce the definition
and calculation rules of the DHHFLTS. In Section 3, we introduce the calculation flow of
the K-means clustering algorithm and the calculation idea of the entropy weight method
combined with the cluster center to solve the influencing factors with the weight of the
evaluators. In Section 4, we expound on the whole context of the new method. An
example of an electromagnet is used to prove the objectivity and applicability of the
method, and the final calculation results are analyzed in Section 5. In Section 6, we
summarize the advantages of the proposed new method in the context of work and point
out future research directions.
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2. Double Hierarchy Hesitant Fuzzy Linguistic Term Set

According to classical theory, the DHHFLTS is composed of DHLTSs and HFLTSs.
Therefore, it can not only express complex semantics like the DHLTS, but also express fuzzy
and hesitant semantics like the HFLTSs [34]. In this part, we introduce the definition, form
and calculation rules of the DHLTSs, HFLTSs and DHHFLTSs in turn.

2.1. Double Hierarchy Linguistic Term Set

As in our daily life, when we need to express the good or bad of a thing, we will use
the needs of “good”, “bad”, and “general”. We assume that the existing linguistic term set
(LTS) S is as follows, and the language granularity of LTS is symmetric and uniform.

S = {s−3 =none, s−2 = very low, s−1 = low, s0 = medium, s1 = high, s2

= very high, s3 = per f ect}

However, when we want to express “a little good” or “excellent”, the LTS cannot
accurately express such semantics. Therefore, some scholars have defined a DHLTS, and
the specific expression form is as follows.

S =
{ .

S
t〈

..
Sk〉
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ξ, . . . ,−1, 0, 1, . . . , ξ

}
(1)

where
.
st and

..
sk are the first and second LTS, respectively, and t and k is the subscript

symmetry number of LTS.
For a DHLTS, you can express φ× ϕ kinds of semantics, φ = 2τ, ϕ = 2ξ. Let t =

k = 3,
.
st =

{ .
s−3 =none,

.
s−2 = very low,

.
s−1 = low,

.
s0 = medium,

.
s1 = high,

.
s2= very high,

.
s3 = per f ect

}
.

..
Sk =

{ ..
S−3 = f ar f rom,

..
S−2 = only a little,

..
S−1 = a little,

..
S0 = just right,

..
S1 = much,

..
S2 = very much,

..
S3 = entirely

}
and a little good can be expressed as

.
S

1〈
..
S−2〉

.
In order to ensure the logic of the evaluation language, the subscript symmetric

number is specified as follows.

(1). If t ≥ 0, then
..
Sk =

{ ..
S−3 = f ar f rom,

..
S−2 = only a little,

..
S−1 = a little,

..
S0 = just right,

..
S1 = much,

..
S2 = very much,

..
S3 = entirely

}
.

(2). If t < 0, then
..
Sk =

{ ..
S−3 = entirely,

..
S−2 = very much,

..
S−1 = much,

..
S0 = just right,

..
S1 = a little,

..
S2 = only a little,

..
S3 = f ar f rom

}
.

(3). If t = τ, then
..
Sk =

{ ..
S−3 = f ar f rom,

..
S−2 = onlyalittle,

..
S−1 = alittle,

..
S0 = justright

}
.

(4). If t = −τ, then
..
Sk =

{ ..
S0 = just right,

..
S1 = a little,

..
S2 = only a little,

..
S3 = f ar f rom

}
.

2.2. Hesitant Fuzzy Linguistic Terms Set

Torra proposed the concept of intuitionistic fuzzy sets in 2010 [35]. If U is the uni-
verse, finite and non-empty, A = {〈x, hA(x)〉 | x ∈ X} is said to be a hesitant fuzzy set
on U, where hA(x) is a hesitant fuzzy element (HFE), consisting of some values in [0, 1]
interval [36].

For example, U =
{

y1, y2, y3
}

, hA(y1) = {0.9, 0.3}, hA(y2) = {0.1, 0.4, 0.6},
hA
(
y3
)
= {0.3, 0.2, 0.7, 0.8}, then the hesitation fuzzy set (HFS) A can be expressed as

A = {y1, {0.9, 0.3}, y2, {0.1, 0.4, 0.6}, y3, {0.3, 0.2, 0.7, 0.8}
}

. On this basis, some schol-
ars put forward the concept of HFLTS by marking U as a continuous and orderly language
set [37]. Let xi ∈ U be fixed and S = {st | t = −τ, . . . ,−1, 0, 1, . . . , τ} be LTS. So, HFLTS
can be expressed as

HS = {〈xi, hS(xi)〉 | xi ∈ U} (2)
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hS(xi) =
{

sφl (xi) | sφl (xi) ∈ S; l = 1, . . . , L; φl

∈ {−τ, . . . ,−1, 0, 1, . . . , τ}}
(3)

where L is the number of linguistic terms in hS(xi) and sφl in each hS(xi) is the continuous
terms in S [38], and hS(xi) indicates the possibility, xi belongs to U and hS(xi) is called a
hesitant fuzzy linguistic element (HFLE).

Moreover, the expression mechanism of the HFLE is closer to people’s logical thinking,
and can clearly express fuzzy semantics. Generally, it participates in the confirmation of
the final result in two ways: one is through direct participation in fuzzy language, and the
other is through the transformation of fuzzy language into digital form [39]. In this paper,
we convert the language set into numerical values to participate in the determination of
the final results because this will make our final evaluation results more intuitive. The
2-tuple linguistic model and the linguistic alphabet are common methods to transform
language sets [40,41]. In order to hesitate about the rationality of fuzzy language set
transformation, Gou et al. developed the concept of equivalent function, and the specific
calculation formula is as follows [42].

Let S = {st | t = −τ, . . . ,−1, 0, 1, . . . , τ} be LTS, hS(xi) =
{

sφl (xi) | sφl (xi) ∈ S;
l = 1, . . . , L; φl ∈ [−τ, τ]} be an HFLE with L is the number of linguistic terms in hS(xi).
Suppose hσ = {σl | σl ∈ [0, 1]; l = 1, . . . , L} is an HFE. If σl and φl of the linguistic term sφl

express the same meaning at symmetric language granularity, the mutual transformation
functions between them are f and f−1. The specific expression is given as follows.

f : [−τ, τ]→ [0, 1], f (φl) =
φl + τ

2τ
= σl (4)

f−1 : [0, 1]→ [− τ, τ], f−1(σl) = (2σl − 1)τ = φl (5)

where φl is a linguistic term, and σl is the membership degree.
Based on Equations (4) and (5), the transformation functions between HFLTS hS and

HFE hσ are as follows.

F : φ→ Θ, F(hS) = F
({

sφl | sφl ∈ S; l = 1, . . . , L; φl ∈ [−τ, τ]
})

= {σl | σl = f (φl)} = hσ

(6)

F−1 : Θ→ φ, F−1(hσ) = F−1({σl | σl ∈ [0, 1]; l = 1, . . . , L})
=
{

sφl | φl = f−1(σl)
}
= hS

(7)

where φ is LTS and Θ is the set of all HFLEs.
The basic following functions and the operation formula of the HFLTS are as follows.
Let hS1 =

{
s1

φl
| s1

φl
∈ S; l = 1, 2, . . . , L; φl ∈ [−τ, τ]

}
and hS2 =

{
s2

φl
| s2

φl
∈ S; l = 1,

2, . . . , L; φl ∈ [−τ, τ]} are two HFLTSs.

(1). hS1 ⊕ hS2 = F−1
(

∪
γ1 ∈ F

(
hS1

)
, γ2 ∈ F

(
hS2

) γ1 + γ2 − γ1γ2

)
;

(2). hS1 ⊗ hS2 = F−1
(

∪
γ1 ∈ F

(
hS1

)
, γ2 ∈ F

(
hS2

) γ1γ2

)
;

(3). λhS1 = F−1
(

∪
γ1 ∈ F

(
hS1

){1− (1− γ1)
λ
})

;

(4).
(
hS1

)λ
= F−1

(
∪

γ1 ∈ F
(
hS1

){γλ
1
})

.

In the formula, γ represents a real number.



Symmetry 2022, 14, 2555 6 of 18

2.3. Double Hierarchy Hesitant Fuzzy Linguistic Term Set

On this basis, we propose the DHHFLTS, Hs =

{
.
S

φl〈
..
Sϕl 〉
|

.
S

φl〈
..
Sϕl 〉
∈ S; l = 1, · · · L;

t = [−τ, τ]; k = [−ξ, ξ]}, S =
{ .

S
t〈

..
Sk〉
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ξ, . . . ,−1, 0,

1, . . . , ξ}. It also divides language granularity based on symmetric concepts, with L being
the subscript symmetry number of LTS in Hs, as shown in Figure 1.
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Figure 1. The second hierarchy LTS subscript symmetry number of
.
s2 (very high).

In Figure 1, let t = k = 3, then the first hierarchy LTS is
.
Sτ , the second hierarchy LTS

is
..
Sk, and the second hierarchy LTS is a supplement to the first hierarchy LTS.

Next, based on the transformation functions and operation formula of the HFLTS,
we formulate the transformation functions and operation formula of the DHHFLTS. Let

Hs =

{
.
S

φl〈
..
Sϕl 〉
|

.
S

φl〈
..
Sϕl 〉
∈ S; l = 1, · · · L; t = [−τ, τ]; k = [−ξ, ξ]

}
is DHHFLTS,

S =
{ .

S
t〈

..
Sk〉
| t = −τ, . . . ,−1, 0, 1, . . . , τ; k = −ξ, . . . ,−1, 0, 1, . . . , ξ

}
. Suppose

hµ = {µl | µl ∈ [0, 1]; l = 1, . . . , L} is an HFE. If µl and φl〈ϕl〉 of the linguistic term
.
S

φl〈
..
Sϕl 〉

express the same meaning, the mutual transformation functions between them are q and
q−1. The specific expression is as follows.

q : [−τ, τ]× [−ξ, ξ]→ [0, 1], f (φl , ϕl)
1
τ ×

ϕl+ξ
2ξ + τ+φl−1

2τ = ϕl+(τ+φl)ξ
2ξτ = µl , if− τ + 1 ≤ φl ≤ τ − 1

1
2τ ×

ϕl+ξ
ξ + τ+φl−1

2τ = ϕl+(τ+φl)ξ
2ξτ = µl , if φl = τ

1
2τ ×

ϕl
ξ = ϕl

2ξτ = µl , if φl = −τ

(8)

q−1 : [0, 1]→ [−τ, τ]× [−ξ, ξ]
[2τµl − τ] + 1 <

..
Sξ((2τµl−τ−[2τµl−τ])−1) >, if 1− τ ≤ 2τµl − τ ≤ τ − 1

τ <
..
Sξ(2τµl−τ−[2τµl−τ])−ξ >, if τ − 1 ≤ 2τµl − τ ≤ τ

1− τ <
..
Sξ((2τµl−τ−[2τµl−τ])−1) >, if − τ ≤ 2τµl − τ ≤ 1− τ

(9)

where φl and ϕl are the subscript numbers of the first hierarchy LTS and the second
hierarchy LTS, respectively, and represents the rounding symbol.
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Based on Equations (8) and (9), the transformation functions between DHHFLTS HS
and HFE hµ is as follows.

Q : φ× ϕ→ Θ, Q(HS) = {µ | µl = q(φl , ϕl)} = hµ (10)

Q−1 : Θ→ φ× ϕ =
{

sφ1〈oϕ1 〉
| φl
〈
oϕ1

〉
= q−1(µl)

}
= HS (11)

where φ and ϕ is LTS and Θ is the set of all HFLEs.

The operation formula of the DHHFLTS is as follows. Let HS1 =

{
.
S

1

φl〈
..
S

1
ϕl 〉
|

.
S

1

φl〈
..
S

1
ϕl 〉
∈ S; l = 1, · · · L; t = [−τ, τ]; k = [−ξ, ξ]

}
and HS2 =

{
.
S

2

φl〈
..
S

2
ϕl 〉
|

.
S

2

φl〈
..
S

2
ϕl 〉
∈ S;

l = 1, 2, . . . , L2; φl ∈ [−τ, τ]} are two DHHFLTSs, with S =
{ .

S
t〈

..
Sk〉
| t = −τ, . . . ,−1, 0,

1, . . . , τ; k = −ξ, . . . ,−1, 0, 1, . . . , ξ}.

HS1 ⊕ HS2 = Q−1
(

∪
η1 ∈ Q

(
HS1

)
, η2 ∈ Q

(
HS2

) η1 + η2 − η1η2

)
(12)

HS1 ⊗ HS2 = Q−1
(

∪
η1 ∈ Q

(
HS1

)
, η2 ∈ Q

(
HS2

) η1η2

)
(13)

λHS1 = Q−1
(

∪
η1 ∈ Q

(
HS1

){1− (1− η1)
λ
})

(14)

(
HS1

)λ
= Q−1

(
∪

η1 ∈ Q
(

HS1

){ηλ
1

})
(15)

where Q−1 of calculation rule refers to the calculation of Equation (11), λ represents the
weight in the actual calculation process of this paper, η1 and η2 are the HFLEs of the
DHHFLTSs HS1 and HS2 , respectively.

3. Weight of Evaluation Members and Influencing Factors
3.1. Entropy Weight Method for Evaluating Personnel Weight

According to the definition of information entropy, the entropy value of an index
can be determined by using the dispersion of the index. The smaller the information
entropy value included, the greater the influence of the index on the comprehensive
evaluation. If the values of an index are all equal, the index will not play a role in the
comprehensive evaluation [43].

The idea of the entropy weight method is presented in this paper. There is a big differ-
ence between the evaluation results of evaluation members and those of other evaluation
members when evaluating an influencing factor. According to the definition of information
entropy, it can be determined that the evaluation dispersion of this evaluation member
is large. Therefore, the greater the impact of evaluation members on the comprehensive
evaluation, the greater the weight. Based on this idea, we obtain the formula for calculating
the weight of evaluation members as follows.

λp =
∑b

q=1;q 6=p ∑m
j=1 ∑n

i=1 d
(

Hp
Sij

, Hq
Sij

)
∑b

p=1 ∑b
q=1;q 6=p ∑m

i=1 ∑n
j=1 d

(
Hp

Sij
, Hq

Sij

) (16)

d
(

H1j
.
ss

, H2j
.
ss

)
=

1
L

L

∑
l=1

(∣∣∣∣Q( .
s1j

φl〈
..
sϕl 〉

)
−Q

(
.
s2j

φl〈
..
Sϕl 〉

)∣∣∣∣) (17)

In Equation (16), i is the number of influencing factors, i = 1 · · · n, j is the number of
failure modes, j = 1 · · ·m, and q is the number of evaluation members, q = 1, · · · p · · · b.

In Equation (17), L is the number of LTS.



Symmetry 2022, 14, 2555 8 of 18

3.2. Using K-Means Clustering Algorithm to Calculate the Weight of Influencing Factors

K-means clustering is a clustering algorithm based on sample set partition. K-means
clustering divides the sample set into K subsets to form K classes. n samples are divided
into K classes. The center distance from each sample to its class is the smallest. Each sample
belongs to only one class [44].

Let X = {x1, x2, . . . , xi, . . . , xn} is a given dataset containing D-dimensional data,
where xi ∈ Rd. The K-means clustering algorithm to the data object for the class K
clusters, namely C1 =

{
c1

r , r = 1, 2, . . . , K
}

. For dividing cluster c1
r , the initial cluster

center is µ1
r . The Euclidean distance between data object and cluster center in space is

calculated as follows:
J
(

c1
r

)
= ∑

xi∈X
d
(

xi − µ1
r

)2
(18)

where r = 1, 2, . . . , K is number of clusters. Similarly, calculate the distance from the data
point to the center point of each cluster. According to the principle of minimum distance,
the center point of the cluster is obtained from the new cluster division. Assuming that the
new cluster is C2 =

{
c2

r , r = 1, 2, . . . , K
}

, the calculation formula of the new cluster center
µ2

r is as follows.

µ2
r =

1
N ∑

xi∈c2
r

xi (19)

where N is the number of new cluster r data.
This process will be repeated until the termination conditions are met to obtain the

final cluster Cn = {cn
r , r = 1, 2, . . . , K}. Assuming that the final cluster center point of

cluster R is cn
r = {Sr, Or, Dr}, the formula for calculating the weight of influencing factors

is as follows.
Firstly, the evaluation information of influencing factor S of all evaluation members of

j failure mode in the cluster is normalized.

ΓHj
S(S) =

∑b
q=1 λq

∧Q
(

Hj
S(S)

)
∑m

j=1 ∑b
q=1 λq∧Q

(
Hj

S(S)
) (20)

where λq is the weight of the evaluation member q, Hi
S(S) is the evaluation of the evaluation

member on the influence factor S of the failure mode j by the DHHFLTS, and j is the number
of failure modes, j = 1 · · ·m.

Then calculate the distance between the normalized evaluation information and the
cluster center point Sr.

ls =
m

∑
j=1

∑
j,rεCr

|d(Q−1(ΓHj
S(S))− Sr)| (21)

Finally, calculate the ratio between the ls and L. L is the distance between the evalua-
tion information of each influencing factor of the evaluator and the center point cn

r .

L = ls + lO + lD (22)

ωs =
ls
L

(23)

In Equation (23), ls is the distance from the S evaluation data to the final cluster point
of S in each cluster. Similarly, where lO is the distance between the evaluator’s evaluation
of occurrence and the center point Or.
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Based on the idea of traditional FMEA to calculate the RPN value and sort it, we
calculate the failure mode score value. The calculation formula is as follows.

score = ωS
∧ΓHj

S(S) + ωO
∧ΓHj

S(O) + ωD
∧ΓHj

S(D) (24)

where j is the failure mode.

4. The Proposed FMEA Model

In the previous section, we described the definitions and calculation formulas of the
DHHFLTS and the K-means clustering algorithm. This section mainly introduces the
calculation steps of the new method proposed in this paper.

Step 1: Preparation in advance
Firstly, we collect failure modes and establish an evaluation team and determine

the evaluation language set. Then, the evaluator uses the DHHFLTS to evaluate the
failure mode.

Step 2: Solving the weight of evaluation members
The DHHFLTS given by evaluation members is standardized, and its information

entropy is calculated. The entropy weight method is used to calculate the weight of
evaluation personnel.

Step 3: Using the K-means clustering algorithm by finding the center of evalua-
tion information.

Step 3.1: The aggregated evaluation information is taken as the sample of the K-means
clustering algorithm, and the K initial center values are randomly selected.

Step 3.2: We initialize the algorithm by using random K initial center values, and
calculate the distance between each failure mode evaluation information and the ini-
tial center point.

Step 3.3: The failure mode with the shortest distance from the initial center point is
selected to be classified into one category. The average value of evaluation information in
each category is calculated, and the center point is updated.

Step 3.4: We judge whether the center point changes. If it changes, return to Step 3.2.
If it does not change, output the final center point.

Step 4: Calculating the weight of influencing factors
We calculate the distance between the failure mode assessment information and

the final center point, and normalize to obtain the weight of the influencing factors. If
the weight calculation of influencing factors does not reach the consensus of evaluation
members, return to Step 2.

Step 5: Obtaining the evaluation results
The evaluation information of the failure mode is aggregated, the evaluation informa-

tion of the failure mode is accumulated, and the risk is sorted.
The detailed calculation process is shown in Figure 2.
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5. A Case Study

This section is divided into two: Section 5.1 shows that an electronic technology
company used the new method to analyze the design process of an electromagnet product.
The results calculated by this method and compared with other methods are analyzed
in Section 5.2.

5.1. A Case Analysis

An electronic technology company plans to produce a batch of electromagnet products
for blood collection equipment. The design diagram of the product is shown in Figure 3.
The design scheme of the product is analyzed from three aspects: structure, function, and
failure. Nine failure modes are sorted out based on the consensus points of the three aspects,
FM1–FM9, as shown in Table 1. The company selects three engineers from R&D, production,
sales, and three parts to form an evaluation team, which is recorded as TM1–TM3, and
analyzes nine failure modes.
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The first step is to determine the evaluation DLS, making t = k = 3, so the set of double
hesitation fuzzy languages is

.
st =

{ .
s−3 =none,

.
s−2 = very low,

.
s−1 = low,

.
s0 = medium,

.
s1 = high,

.
s2 = very high,

.
s3 = per f ect

}
,

..
Sk =

{ ..
S−3 = f ar f rom,

..
S−2 = only a little,

..
S−1 = a little,

..
S0 = just right,

..
S1 = much,

..
S2 = very much,

..
S3 = entirely

}
. The assessment

members use DHHFLTS to assess the failure mode according to the assessment criteria.
The results are shown in Table 2. The first hierarchy LTS determines the evaluation range,
while the second hierarchy LTS is a supplement to the first hierarchy LTS, that is, a fine
delimitation of the large range of the first-level language. Therefore, the first hierarchy
LTS is more important than the second hierarchy LTS in the evaluation process, so the
evaluation criteria given in this paper are based on the first hierarchy LTS. The evaluation
criteria of severity S, occurrence O, and detection D are shown in Tables 3–5.

Table 2 is transformed into a membership degree through Equations (8) and (10).
For example,

.
S

3〈
..
S−1〉

= −1+(3+3)3
2×3×3 = 17

18 = 0.944. Similarly, all DHHFLTSs in Table 2 are
calculated, as shown in Table 6.

According to the calculation Equations (12)–(17), the weights of three evaluation
members are λ1 = 0.31, λ2 = 0.342, and λ3 = 0.348. Table 3 is aggregated based on the
weight of evaluation members. For example, the aggregation of influencing factors S of
failure mode F1 is 0.994∧0.310 + 0.833∧0.342 + 0.778∧0.348 = 2.838 . The aggregated data are
normalized to obtain the input samples of K-means clustering, as shown in Table 7.

Table 1. Failure Mode Summary.

No. Failure Mode Failure Consequence Failure Reason

FM1 Poor insulation Product leakage Insufficient material insulation grade

FM2
The reel is not
strong enough

Product leakage
(a) Low strength of plastic raw materials
(b) Improper design of spool structure
(c) Excessive tension design

FM3 Short circuit of product
after power on

Unable to drive the action of
the customer organization

Insufficient temperature resistance
grade of materials

FM4 Insufficient strength of
end pin Affect customer installation Improper soldering and assembly design

FM5 Poor surface roughness Impact on product life Improper design of dimensional tolerance
FM6 Poor concentricity Customer cannot install Improper design of dimensional tolerance

FM7 Insufficient magnetic force Customer cannot use it
(a) The magnetic permeability of the material is
insufficient
(b) Improper designs

FM8 Residual magnetism Customer cannot use it
(a) The magnetic permeability of the material is
insufficient
(b) Improper designs

FM9 Insufficient retention Blood backflow during use Insufficient winding and improper process
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Table 2. DHHFLTS to evaluate the failure mode.

Failure
Mode

TM1 TM2 TM3

S O D S O D S O D

FM1
.
S

3〈
..

S−1〉

.
S−2〈

..
S1〉

.
S−3〈

..
S1〉

.
S

2〈
..
S0〉

.
S−3〈

..
S2〉

.
S−2〈

..
S−1〉

.
S

2〈
..
S−1〉

.
S−2〈

..
S1〉

.
S−3〈

..
S1〉

FM2
.
S

3〈
..
S0〉

.
S−2〈

..
S−1〉

.
S−3〈

..
S2〉

.
S

3〈
..
S1〉

.
S−1〈

..
S1〉

.
S−3〈

..
S2〉

.
S

1〈
..
S−1〉

.
S−2〈

..
S−1〉

.
S−2〈

..
S0〉

FM3
.
S

1〈
..
S−1〉

.
S−2〈

..
S0〉

.
S−3〈

..
S2〉

.
S

2〈
..
S−2〉

.
S−2〈

..
S2〉

.
S−2〈

..
S−2〉

.
S

2〈
..
S0〉

.
S−2〈

..
S−2〉

.
S−2〈

..
S1〉

FM4
.
S

3〈
..
S−1〉

.
S−2〈

..
S3〉

.
S−3〈

..
S3〉

.
S

1〈
..
S2〉

.
S−2〈

..
S−2〉

.
S−3〈

..
S1〉

.
S

2〈
..
S1〉

.
S−1〈

..
S3〉

.
S−3〈

..
S2〉

FM5
.
S

0〈
..
S1〉

.
S−2〈

..
S−1〉

.
S−2〈

..
S−1〉

.
S

1〈
..
S−1〉

.
S−1〈

..
S−2〉

.
S−3〈

..
S1〉

.
S

1〈
..
S1〉

.
S−1〈

..
S0〉

.
S−1〈

..
S−2〉

FM6
.
S

1〈
..
S1〉

.
S−2〈

..
S−3〉

.
S−3〈

..
S0〉

.
S

2〈
..
S0〉

.
S−2〈

..
S2〉

.
S−3〈

..
S2〉

.
S

3〈
..

S−1〉

.
S−3〈

..
S0〉

.
S−3〈

..
S1〉

FM7
.
S

1〈
..
S2〉

.
S−1〈

..
S2〉

.
S−2〈

..
S0〉

.
S

1〈
..
S1〉

.
S−1〈

..
S−2〉

.
S−1〈

..
S0〉

.
S

1〈
..
S2〉

.
S−1〈

..
S2〉

.
S−1〈

..
S0〉

FM8
.
S

1〈
..
S−1〉

.
S−2〈

..
S−1〉

.
S−3〈

..
S1〉

.
S

1〈
..
S3〉

.
S−3〈

..
S0〉

.
S−3〈

..
S3〉

.
S

1〈
..
S1〉

.
S−2〈

..
S−3〉

.
S−2〈

..
S2〉

FM9
.
S

0〈
..
S−2〉

.
S−2〈

..
S2〉

.
S−2〈

..
S−2〉

.
S

0〈
..
S−2〉

.
S−2〈

..
S1〉

.
S−2〈

..
S−2〉

.
S

0〈
..
S−1〉

.
S−3〈

..
S2〉

.
S−2〈

..
S3〉

Table 3. Severity assessment criteria.

Influence Severity Grade (First
Hierarchy LTS)

Failure of laws and
regulations affecting safety

or government

Affects work safety or does not comply with government
regulations without any warning Perfect

Impact on work safety or non-compliance with government
regulations in case of warning Very high

Loss or reduction of
expected functions

Loss of basic functions (electromagnet cannot work, which will
not affect safety) High

Loss or decrease of
secondary functions

Loss of secondary function (loss of comfort and
convenience function) Medium

Customer feedback

Electromagnet can work, most customers (>75%) perceive
noise and appearance Low

Electromagnet can work, and most customers (50%) perceive
noise and appearance Very low

No impact No detectable impact None

Table 4. Occurrence assessment criteria.

Familiarity with
Design Occurrence of Cause Grade (First

Hierarchy LTS)

Very low New technology and new design without corresponding history Perfect

Low

Inevitable failure due to new design, new application or change of
operating conditions Very high

New design, new application or change of operating conditions may
lead to failure High

Medium
Frequent failures in similar designs and design tests Medium

Occasional failures in similar designs and design tests Low

High Isolated failures in almost identical designs and design tests Very low

Very high By preventing controllable failures None
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Table 5. Detection assessment criteria.

Difficulty of
Survey Possibility of Discovery through Design Control Grade (First

Hierarchy LTS)

Very high No current design control, cannot be found or analyzed VVL
High Weak discovery ability in design analysis VL

Medium
Verification using tested products prior to product release L

Verification of products using failure test before product release M

Low
Use failure test to confirm products before design freezing H

Use the old test to confirm the product before design freezing VH
Very low Failure modes cannot occur because of a fully preventable design EH

Table 6. Membership to evaluate the failure mode.

Failure
Mode

Evaluation Information

TM1 TM2 TM3

S O D S O D S O D

FM1 0.944 0.222 0.056 0.833 0.111 0.111 0.778 0.222 0.056
FM2 0.611 0.111 0.056 0.833 0.000 0.167 0.722 0.000 0.278
FM3 0.611 0.167 0.111 0.722 0.278 0.056 0.833 0.056 0.222
FM4 0.556 0.111 0.111 0.611 0.222 0.056 0.722 0.333 0.222
FM5 0.944 0.333 0.167 0.778 0.056 0.056 0.889 0.500 0.111
FM6 0.722 0.000 0.000 0.833 0.278 0.111 0.944 0.000 0.056
FM7 0.389 0.278 0.056 0.389 0.222 0.056 0.444 0.111 0.333
FM8 1.000 0.111 0.111 1.056 0.389 0.111 0.611 0.111 0.167
FM9 0.778 0.444 0.167 0.722 0.222 0.333 0.778 0.444 0.333

Table 7. Clustering initial sample data.

Failure Mode
Evaluation Information

S O D

FM1 0.117 0.124 0.096
FM2 0.111 0.037 0.123
FM3 0.111 0.116 0.114
FM4 0.106 0.131 0.114
FM5 0.118 0.137 0.109
FM6 0.116 0.047 0.065
FM7 0.092 0.127 0.113
FM8 0.111 0.037 0.123
FM9 0.118 0.124 0.117

We classify data into two categories: one is high-risk failure mode, and the other is
low-risk failure mode. According to Equations (18) and (19), after 5 times, two types of final
cluster centers are obtained, namely high-risk cluster center Ch = {CS = 0.094, CO = 0.042,
CD = 0.114} and low-risk cluster center Cl = {CS = 0.116, CO = 0.131, CD = 0.110}, as
shown in Figure 4.

According to Equations (20)–(23), the weight of the influencing factors is
ω = {ωS = 0.501, ωO = 0.289, ωD = 0.211}. Then, the score of FM1 is score = 0.117∧0.501 +
0.124∧0.289 + 0.096∧0.211 = 1.499. Similarly, we calculate the scores of other failure modes,
as shown in Table 8.

According to the analysis results, the top three failure modes of risk ranking are
optimized. In order to eliminate the harm caused by insufficient retention force, we use a
tensile machine to spot check the retention force of finished products in the laboratory to
ensure that the retention force of each outgoing product meets the requirements. Firstly, we
use the upper and lower collect to fix the test parts, use the console to control the hydraulic
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stay rod to squeeze the test sample, and read the retention force of the parts on the monitor.
The product test diagram is shown in Figure 5.
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In order to eliminate residual magnetism, we use the heating method, which is to
heat the parts to a certain temperature and keep them warm for a certain time to realize
demagnetization. In order to improve the processing accuracy of products, we use a CMM
to measure the surface roughness of the product. Firstly, we use the thermostat to heat and
insulate the product. The specific steps are to put the product into the storage box, switch
on the power, adjust the temperature to 600◦, and heat it for one hour. After heating, keep
the temperature for one hour and take out the product. Then, we send the product to the
CMM to start the roughness test. Next, we fix the product on the support plate, operate the
test probe, evenly select five points on the measuring surface for testing, and monitor the
product surface roughness in real time to facilitate product screening. The test platform is
shown in Figure 6.
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Through the analysis results of the newly proposed method, we formulate optimiza-
tion measures for high-risk failure modes in advance to minimize the possibility of failure
in the enterprise product design and production stage.

5.2. Comparative Analysis and Discussion

In order to show the advantages of the proposed method, FMEA is proposed for
comparative analysis. For these nine failure modes, we use the calculation results of three
methods for comparison. The first is the new method proposed in this paper, the second is
the method used in Reference [19], and the last is traditional FMEA. They are, respectively,
recorded as Sort 1, Sort 2, and Sort 3, as shown in Figure 7.

Based on Figure 7, we analyze Sorting 1 and Sorting 2. These two methods have the
same sorting for the four failure modes 9, 5, 8, and 2. Failure Modes 9, 5, and 8 are high-risk
failure modes. This proves that these two methods can analyze the failure modes that
need to be prevented most. As for the ranking of the later failure modes, the reason is that
the weights of the influencing factors calculated by the two methods are different [19] by
comparing the matrix of influencing factors in pairs. In this case, we compared the new
proposed method.
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The results of traditional FMEA calculation are quite different whether compared
with the results of the new method or the results of the literature. This is mainly be-
cause when traditional FMEA calculates the RPN, the default influencing factors and the
weight of evaluation members are equally divided. In the actual evaluation process, the
weight of severity S is far greater than that of occurrence O and detection D. For exam-
ple, the calculation result of the influence factor weight of the newly proposed method
is ωsort1 = {ωS = 0.501, ωO = 0.289, ωD = 0.211}, and the calculation result of the influ-
ence factor weight is ωsort2 = {ωS = 0.684, ωO = 0.182, ωD = 0.134}. Therefore, there
is a big difference between the calculation results of traditional FMEA and those of the
other two methods.

6. Conclusions

In order to reflect the evaluation psychology of evaluation members, the symmetrical
concepts of the DHHFLTS are used to construct evaluation language sets. Based on the
idea of the entropy weight method and the K-means clustering algorithm, this paper also
solves the influencing factors and weights of evaluation members. We know that the
entropy weight method and the K-means clustering algorithm are the most commonly used
methods to solve weights. The high-frequency utilization rate proves the practicability of
these two methods. In addition, the calculation process of these two methods is relatively
simple, which is more suitable for promotion in electronic enterprises.

In addition, this paper borrows the idea of traditional FMEA to sort the failure modes
by calculating the RPN, and then comprehensively calculates the risk ranking of failure
modes based on the influencing factors and evaluation member weights. This does not only
lose objectivity, but can also avoid the disadvantage of inaccurate risk ranking of failure
models due to repeated calculation results to the greatest extent. This paper evaluates a
single value based on the evaluation of double-level hesitant fuzzy sets, and whether it
can be evaluated by two values in the future. If such an evaluation form is adopted, its
corresponding calculation rules, and the calculation formulas of other related methods
need to be innovated. Breakthroughs can be found in all these aspects in the future.

In the future, we will further optimize the application using the model revision
technology to the new method. The next step in our research is to focus on the computing
platform software system of data process and complex computation by using familiar
tools. Moreover, the approved method is extended to other electronic products to increase
research and application in this area, and further research of the DHHFLTS and the K-means
clustering algorithm will have great theoretical value and practical significance.
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