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Abstract: The study of the microworld, quantum physics including the fundamental standard models
are closely related to the basis of symmetry principles. These phenomena are reduced to solving
nonlinear equations in suitable abstract spaces. Such equations are solved mostly iteratively. That is
why two-step iterative methods of the Kurchatov type for solving nonlinear operator equations are
investigated using approximation by the Fréchet derivative of an operator of a nonlinear equation by
divided differences. Local and semi-local convergence of the methods is studied under conditions
that the first-order divided differences satisfy the generalized Lipschitz conditions. The conditions
and speed of convergence of these methods are determined. Moreover, the domain of uniqueness is
found for the solution. The results of numerical experiments validate the theoretical results. The new
idea can be used on other iterative methods utilizing inverses of divided differences of order one.

Keywords: convergence; Banach spaces; Fréchet derivative; divided difference; Kurchatov’s method

MSC: 65G99; 47H99; 49M15; 65H10

1. Introduction

Let X and Y stand for Banach spaces and Ω be a convex and nonempty subset of X. A
plethora of applications from diverse disciplines can be solved if reduced to a nonlinear
equation of the form

F(x) = 0. (1)

This reduction takes place using Mathematical Modeling [1,2]. Then, a solution
denoted by x∗ ∈ Ω is to be found that answers the application. The solution may be a
number or a vector or a matrix or a function. This task is very challenging in general.
Obviously, the solution x∗ is desired in closed form. However, in practice, this is achievable
only in rare cases. That is why researchers mostly develop iterative methods convergent to
x∗ under some conditions on the initial data.

A popular method is the Newton’s method [2–5] defined, respectively, for a starting
point x0 ∈ Ω and all n = 0, 1, 2, . . . by

xn+1 = xn − F′(xn)
−1F(xn). (2)

Here, F′ is the notation for the Fréchet derivative of the operator F. The convergence
rate of Newton’s method is quadratic. However, this method requires the calculation of the
derivative of the operator F [1–3]. It is not always easy or impossible to do, in particular, in

Symmetry 2022, 14, 2548. https://doi.org/10.3390/sym14122548 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122548
https://doi.org/10.3390/sym14122548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9189-9298
https://orcid.org/0000-0002-3845-6260
https://orcid.org/0000-0003-0035-1022
https://orcid.org/0000-0002-8986-2509
https://doi.org/10.3390/sym14122548
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122548?type=check_update&version=1


Symmetry 2022, 14, 2548 2 of 12

the case when the operator is not given analytically, but only the algorithm for its calcu-
lation on the computer is known. Then, Newton’s method (2) and its modifications [4–8]
using derivatives are not suitable for solving (1). In this case, we can use difference
methods [1,3,9–11]. The simplest of them is the Secant method [2,3,6,7]

xn+1 = xn − [xn−1, xn; F]−1F(xn) (3)

for all n = 0, 1, 2, . . ., x−1, x0 are starting points. The Secant method was extended for the
solution of (1) in Banach spaces by J.W. Schmidt [9]. This method under different conditions
was studied in many papers [2,7]. The convergence order of the method (3) is equal to
1 +
√

5
2

= 1, 618 . . .. The method with a higher quadratic convergence is described for all
n = 0, 1, 2, . . . by the formula

xn+1 = xn − [xn−1, 2xn − xn−1; F]−1F(xn). (4)

This method is famous as the method of the linear interpolation or the Kurchatov’s
method. It does not interfere with Newton’s method in the convergence order, and it does
not require analytically given derivatives as the Secant method does. The method (4) was
proposed for the first time by V.A. Kurchatov in [12] for the one-dimensional case. In the
Banach space, the method (4) was first presented in the works of S.M. Shakhno [13,14]. In
addition, this method was studied by many authors I.K. Argyros, H. Ren, J.A. Ezquerro, and
M.A. Hernández [15–17]. The Kurchatov method uses only first-order divided differences
in its iterative formula. However, often the studying of its convergence additionally requires
conditions for the second-order divided differences. This ensures theoretically obtaining
the second order of convergence. Kurchatov’s two-step methods were studied by I.K.
Argyros, S. George, H. Kumar, P.K. Parida, and S.M. Shakhno [18,19].

In this article, we propose the following modification of the method (4).
Let x−1, x0 ∈ Ω . Define the two-step Kurchatov-type methods for all n = 0, 1, 2, . . . by

An = [xn−1, 2xn − xn−1; F],
yn = xn − A−1

n F(xn),
xn+1 = yn − A−1

n F(yn)
(5)

and
yn = xn − A−1

n F(xn),
Bn = [xn, 2yn − xn; F],
xn+1 = yn − B−1

n F(yn).
(6)

It is known that multi-step methods converge faster than the corresponding one-step
methods. Therefore, there is a growing interest in the development and theoretical studying
of the convergence of such algorithms. It is worth noting that the method (5) uses the
same inverse operator in both steps. This helps to reduce the total number of calculations
compared to the corresponding one-step method, especially for large scale problems.

We provide the local as well as the semi-local convergence analysis for these methods
under generalized conditions. Moreover, these conditions include only operators that
appear in methods. The local convergence is given in Section 2. The semi-local conver-
gence is presented in Section 3, followed by the examples and the concluding remarks in
Sections 4 and 5, respectively.

2. Local Convergence

It is convenient for the study of the local convergence for the methods to introduce
some parameters and real functions. Set M = [0, ∞).

Suppose:
(1) There exists a function ϕ0 : M×M → R which is continuous and nondecreasing in
both variables such that the equation
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ϕ0(t, 3t)− 1 = 0

has the smallest solution $ ∈ M− {0}.
Set M0 = [0, ρ).

(2) There exists a function ϕ : M0 ×M0 → R, which is continuous and nondecreasing in
both variables such that the equation

h1(t)− 1 = 0

has a smallest solution r1 ∈ M0 − {0}, where the function h1 : M0 → R is given by

h1(t) =
ϕ(2t, 3t)

1− ϕ0(t, 3t)
.

Define the function h2 : M0 → R by

h2(t) =
ϕ((1 + h1(t))t, 3t)

1− ϕ0(t, 3t)
h1(t).

(3) The equation
h2(t)− 1 = 0

has a smallest solution r2 ∈ M0 − {0}.
Define the parameter

r = min{tj}, j = 1, 2. (7)

This parameter will be shown to be a radius of convergence in Theorem 1 for the
method (5).

Set M1 = [0, 1). Then, follows by definition (7) that for all t ∈ M1

0 ≤ ϕ0(t, 3t) < 1 (8)

and
0 ≤ hj(t) < 1. (9)

Let U(v, d), U[v, d] stand for the open and closed ball in X, respectively, of center
v ∈ X and radius d > 0. By £(X, Y) we denote the space of bounded linear operators from
X into Y.

The convergence analysis uses the conditions (C) for both methods.
Suppose:

(C1) The equation F(x) = 0 has a simple solution x∗ ∈ Ω such that F′(x∗)−1 ∈ £(Y, X).
(C2) ‖F′(x∗)−1([u1, u2; F]− F′(x∗))‖ ≤ ϕ0(‖u1 − x∗‖, ‖u2 − x∗‖) for all u1, u2 ∈ Ω.

Set Ω0 = U(x∗, $) ∩Ω.
(C3) ‖F′(x∗)−1([u3, u4; F]− [u5, x∗; F])‖ ≤ ϕ(‖u3 − u5‖, ‖u4 − x∗‖) for all u3, u4, u5 ∈ Ω0.
(C4) U[x∗, 3r] ⊂ Ω.

Next, the local convergence is established for the method (5).

Theorem 1. Suppose that the conditions (C) hold. Moreover, if the starting points
x−1, x0 ∈ U(x∗, r)− {x∗}, then the sequence {xn} generated by Formula (5) exists in U(x∗, r),
stays in U(x∗, r) for all n = 0, 1, 2, . . . and is convergent to x∗. Moreover, the following
assertions hold

‖yn − x∗‖ ≤ h1(r)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r (10)

and
‖xn+1 − x∗‖ ≤ h2(r)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (11)

where the radius r is given by Formula (7) and the functions hj are as previously defined.
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Proof. By hypothesis x−1, x0 ∈ U(x∗, r)− {x∗}. Then, by applying conditions (C1), (C2),
the definition of the radius r and (8), we have

‖F′(x∗)−1(A0 − F′(x∗))‖ ≤ ϕ0(‖x−1 − x∗‖, 2‖x0 − x∗‖+ ‖x−1 − x∗‖)
= q0 ≤ ϕ0(r, 3r) < 1. (12)

It follows by (12) and the Banach lemma on the invertible operator [4] that A−1
0 ∈ £(Y, X)

and

‖A−1
0 F′(x∗)‖ ≤ 1

1− ϕ0(‖x−1 − x∗‖, 2‖x0 − x∗‖+ ‖x−1 − x∗‖) . (13)

Moreover, the iterates y0 and x1 are well defined by the two substeps of the method (5).
In view of that, we can write in that

y0 − x∗ = x0 − x∗ − A−1
0 (A0 − [x0, x∗; F])(x0 − x∗). (14)

Using (7) and (9) (for j = 1), (C3), (C4), (13) and (14) we obtain

‖y0 − x∗‖ ≤ p0

1− q0
‖x0 − x∗‖ ≤ h1(r)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (15)

where we also used

‖F′(x∗)−1(A0 − [x0, x∗; F])‖ ≤ ϕ(‖x−1 − x0‖, ‖2x0 − x−1 − x∗‖)
≤ ϕ(‖x−1 − x∗‖+ ‖x0 − x∗‖, 2‖x0 − x∗‖+ ‖x−1 − x∗‖)
= p0 ≤ ϕ(2r, 3r), (16)

and
‖2x0 − x−1 − x∗‖ ≤ 2‖x0 − x∗‖+ ‖x−1 − x∗‖ ≤ 3r.

Similarly, by the second substep of the method (5), we can write

x1 − x∗ = y0 − x∗ − A−1
0 F(y0) = A−1

0 (A0 − [y0, x∗; F])(y0 − x∗),

so

‖x1 − x∗‖ ≤ ϕ(‖x−1 − y0‖, ‖2‖x0 − x−1 − x∗‖)
1− q0

‖y0 − x∗‖

≤ h2(r)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (17)

Hence, the estimates (10) and (11) hold for n = 0. By simply replacing the role of
x−1, x0, y0, x1 by xm, xm+1, ym+1, xm+2, m = −1, 0, 1, . . . in the preceding calculations the
induction for the estimates (10) and (11) is terminated. It follows that

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ < r, (18)

where c = h2(r) ∈ [0, 1). Thus, we conclude lim
m→∞

xm = x∗.

Next, a unique result is presented for the solution of the equation F(x) = 0.

Proposition 1. Suppose:
(a) There exists a solution u∗ ∈ U(x∗, $1) of the equation F(x) = 0 for some $1 > 0.
(b) The conditions (C1) and (C2) hold.
(c) There exists $2 ≥ $1 such that

ϕ0($2, 0) < 1. (19)

Set Ω1 = U[x∗, $2] ∩Ω.
Then, the equation F(x) = 0 is uniquely solvable by the element x∗ in the region Ω1.
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Proof. Let T = [u∗, x∗; F]. If then follows by (a)–(c) in turn that

‖F′(x∗)−1(T − F′(x∗))‖ ≤ ϕ0(‖u∗ − x∗‖, 0) ≤ ϕ0($2, 0) < 1.

Hence, the operator T is invertible. Then, by the identity

u∗ − x∗ = T−1(F(u∗)− F(x∗)) = T−1(0− 0) = 0,

we conclude that u∗ = x∗.

Concerning the local convergence analysis of the method (6), clearly the function h1 is
the same, whereas the function h3 corresponding to h2 is given by

h3(t) =
ϕ((1 + h1(t))t, (2h1(t) + 1)t)h1(t)

1− ϕ0(t, (2h1(t) + 1)t)
. (20)

This is due to the similar computation

‖xn+1 − x∗‖ = ‖B−1
n (Bn − [yn, x∗; F])‖yn − x∗‖

≤ ‖B−1
n F′(x∗)‖‖F′(x∗)−1(Bn − [yn, x∗; F])‖yn − x∗‖

≤ ϕ(‖yn − xn‖, 2‖yn − x∗‖+ ‖xn − x∗‖)
1− ϕ0(‖xn − x∗‖, 2‖yn − x∗‖+ ‖xn − x∗‖)‖yn − x∗‖

≤ h3(r)‖xn − x∗‖, (21)

where
r̄ = min{r1, r3} (22)

and r3 is the smallest solution of the equation h3(t)− 1 = 0 in the interval [0, $̄), where
$̄ = min{$, $3} and $3 is the smallest positive solution of the equation

ϕ0(t, (2h1(t) + 1)t)− 1 = 0

(if it exists). Hence, we arrived at the corresponding semi-local convergence result for the
method (6).

Theorem 2. Suppose that the conditions (C) hold with r̄ replacing r. Then, the conclusions of
Theorem 1 hold for the method (6) with the function h2.

Clearly, the uniqueness of the solution results of Proposition 1 holds for the method (6).

3. Semi-Local Convergence

The analysis is based on majorizing sequences. Let c ≥ 0 and η ≥ 0 be given
parameters. Suppose that there exists a function ψ0 : M → R which is continuous and
nondecreasing such that the equation

ψ0(t− c, t− c)− 1 = 0

has a smallest solution $4 > c. Set M2 = [0, $4). Moreover, suppose that there exist a
function ψ : M2 → R which is continuous and nondecreasing.

Define the sequence {tn} for t−1 = 0, t0 = c, s0 = c + η and all n = 0, 1, 2, . . . by

tn+1 = sn +
ψ(sn − tn−1, tn − tn−1)(sn − tn)

1− ψ0(tn−1 − c, 2tn − tn−1 − c)
,

sn+1 = tn+1 +
bn+1

1− ψ0(tn − c, 2tn+1 − tn − c)
,

(23)

where bn+1 = (1 + ψ0(tn+1, sn))(tn+1 − sn) + αn.
Next we present a convergence result for the sequence {tn}.
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Lemma 1. Suppose that for all n = 0, 1, 2, . . .

0 ≤ ψ0(tn − c, 2tn − tn−1 − c) < 1, c ≤ tn < λ f or some λ > 0. (24)

Then, the sequence {tn} given by Formula (23) is nondecreasing and convergent to its unique
least upper bound t∗ ∈ [0, 1].

Proof. The sequence {tn} is nondecreasing and bounded from above by λ and as such it is
convergent to t∗.

The condition (H) shall be used in the semi-local convergence analysis first of the
method (5).

Suppose:
(H1) There exist points x−1, x0 ∈ Ω, parameters c ≥ 0, η ≥ 0 such that
F′(x0)

−1, A−1
0 ∈ £(Y, X), ‖x0 − x−1‖ ≤ c and ‖A−1

0 F(x0)‖ ≤ η.
(H2) ‖F′(x0)

−1([x, y; F]− F′(x0))‖ ≤ ψ0(‖x− x0‖, ‖y− x0‖) for all x, y ∈ Ω.
Set Ω2 = U(x0, $4) ∩Ω.
(H3) ‖F′(x0)

−1([x, y; F]− [z, u; F])‖ ≤ ψ(‖x− z‖, ‖y− u‖) for all x, y, z, u ∈ Ω2.
(H4) Conditions (24) holds
and
(H5) U[x0, 3t∗] ∈ Ω.

Next, the semi-local convergence of the method (5) is presented based on the conditions
(H) and the preceding terminology.

Theorem 3. Suppose that the conditions (H) hold. Then, the sequence {xn} generated by the
method (5) is well defined in U(x0, t∗), remains in U(x0, t∗) for all n = −1, 0, 1, 2, . . . and is
convergent to a solution x∗ ∈ U[x0, t∗] of the equation F(x) = 0. Moreover, the following error
estimates hold

‖x∗ − xn‖ ≤ t∗ − tn. (25)

Proof. It follows as in the proof of Theorem 1 but there are some small differences. Iterates
y0 and x0 are well defined by the condition (H1) and the first substep of the method (5) for
n = 0. We also have

‖y0 − x0‖ = ‖A−1
0 F(x0)‖ ≤ η = s0 − t0 < t∗, (26)

so the iterate y0 ∈ U(x0, t∗). Then, as in Theorem 1 but using the ′′ψ′′, x0 instead of ′′ψ′′, x∗,
we obtain the estimates

‖F′(x0)
−1(An − F′(x0))‖ ≤ ψ0(‖xn−1 − x0‖, ‖2xn − xn−1 − x0‖)

≤ ψ0(tn−1 − t0, tn − tn−1 + tn − t0) < 1, n = 1, 2, . . .

so
‖A−1

n F′(x0)‖ ≤
1

ψ0(tn−1 − c, tn − tn−1 + tn − c)
, (27)

and

‖F′(x0)
−1F(yn)‖ ≤ ‖F′(x0)

−1([yn, xn; F]− An)(yn − xn)‖
≤ ψ(‖yn − xn−1‖, ‖xn − 2xn + xn−1‖)‖yn − xn‖
≤ ψ(sn − tn−1, tn − tn−1‖)(sn − tn)
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leading to

‖xn+1 − yn‖ ≤ ‖A−1
n F′(x0)‖‖F′(x0)

−1([yn, xn; F]− An)(yn − xn)‖

≤ ψ(sn − tn−1, tn − tn−1)(sn − tn)

1− ψ0(tn−1 − c, 2tn − tn−1 − c)

=
αn

1− ψ0(tn−1 − c, 2tn − tn−1 − c)
= tn+1 − sn, (28)

and

‖xn+1 − x0‖ ≤ ‖xn+1 − yn‖+ ‖yn − x0‖ ≤ tn+1 − sn + sn − t0 = tn+1 − c < t∗,

where we also used

‖yn − xn−1‖ ≤ ‖yn − xn‖+ ‖xn − xn−1‖ ≤ sn − tn + tn − tn−1 = sn − tn−1,

‖2xn − xn−1 − x0‖ ≤ 2‖xn − x0‖+ ‖xn−1 − x0‖ ≤ 3t∗.

Moreover, we can write

F(xn+1) = F(xn+1)− F(yn) + F(yn) = [xn+1, yn; F](xn+1 − yn) + F(yn),

so

‖F′(x0)
−1F(xn+1)‖ ≤ ‖F′(x0)

−1(([xn+1, yn; F]− F′(x0)) + F′(x0))‖‖xn+1 − yn‖+ αn

≤ (1 + ψ0(‖xn+1 − x0‖, ‖yn − x0‖))‖xn+1 − yn‖+ αn

≤ (1 + ψ0(tn+1 − t0, sn − t0))(tn+1 − sn) + αn = bn+1. (29)

Thus, we obtain by (23) and the second substep of the method (5) that

‖yn+1 − xn+1‖‖ ≤ ‖A−1
n+1F′(x0)‖‖F′(x0)

−1F(xn+1)‖

≤ bn+1

1− ψ0(tn − c, 2tn+1 − tn − c)
= sn+1 − tn+1 (30)

and

‖yn+1 − x0‖ ≤ ‖yn+1 − xn+1‖+ ‖xn+1 − x0‖ ≤ sn+1 − tn+1 + tn+1 − c = sn+1 − c < t∗.

It follows from (28) and (30) that the sequence {tn} is complete (since (28) is also
complete as convergent) in a Banach space X and as such is convergence to some point
x∗ ∈ U[x0, t∗]. Furthermore, by letting n → ∞ in (29) and using the continuity of F we
conclude that F(x∗) = 0. Then, from the estimate

‖xn+i − xn‖ ≤ ‖xn+i − xn+i−1‖+ . . . + ‖xn+1 − xn‖
≤ tn+i − tn+i−1 + . . . + tn+1 − tn = tn+i − tn

and letting i→ ∞ we show (25).

Proposition 2. Suppose:
(1) There exists a solution v∗ ∈ U(x0, $6) of the equation F(x) = 0 for some $6 > 0.
(2) Conditions on F′(x0)

−1 and (H2) hold on U(x0, $6).
(3) There exist $7 > $6 such that

ψ0($7, $6) < 1. (31)

Set Ω4 = U[x0, ρ7] ∩Ω.
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Then, the equation F(x) = 0 is uniquely solvable by x∗ in the region Ω4.

Proof. Let w∗ ∈ Ω4 with F(w∗) = 0. Define the linear operator G by G = [w∗, w∗; F]. By
applying (2) and (31), we obtain

‖F′(x0)
−1(G− F′(x0))‖ ≤ ψ0(‖w∗ − x0‖, ‖v∗ − x0‖) ≤ ψ0($7, $6) < 1.

So, the linear operator G is invertible. Therefore, from the identity

w∗ − v∗ = G−1(F(w∗)− F(v∗)) = G−1(0− 0) = 0,

we conclude that w∗ = v∗.

The majorizing sequence {tn} for the method (6) is defined similarly by

tn+1 = sn +
αn

1− ψ0(tn − c, 2sn − tn − c)
and

sn+1 = tn+1 +
bn+1

1− ψ0(tn − c, 2tn+1 − tn − c)
.

(32)

Lemma 2. Suppose that for all n = −1, 0, 1, 2, . . .

0 ≤ ψ0(tn − c, 2sn − tn − c) < 1, ψ0(tn − c, 2tn+1 − tn − c) < 1,
tn ≤ µ f or some µ > 0.

(33)

Then, the sequence {tn} given by Formula (32) is nondecreasing and convergent to its unique
least upper bound t̄∗ ∈ [0, µ].

Theorem 4. Suppose that the conditions (H) hold with (32), t̄∗ replacing (24) and t∗, respectively.
Then, the conclusions of Theorem 3 hold for the method (6).

The uniqueness of the solution x∗ is given in Proposition 2.

Remark 1. (1) Proposition 2 is shown without using all the conditions of the Theorem 3; however,
if all conditions are used, we can set $6 = t∗. In this case x∗ = t∗.
(2) If Ω = X, then we have 2xn − xn−1 ∈ Ω for all xn, xn−1 ∈ Ω. Consequently, the conditions
(C4) or (H5) can be replaced by (C4)

′ U[x∗, r] ⊂ Ω for the method (5) or U[x0, t̄∗] ⊂ Ω for
the method (6) and similarly (H5)

′ U[x0, t∗] ⊂ Ω for the method (5) or U[x∗, r̄] ⊂ Ω for the
method (6).
(3) The parameter $4 given in closed form can be replaced t∗ or t̄∗ in the condition (H5) or (H5)

′.

4. Numerical Examples

In this section, we provide examples to verify the theoretical result.

Example 1. Let X = Y = R and Ω ⊆ R. Define the function F on Ω by

F(x) = x3 − q, q ≥ 0, x∗ = 3
√

q.

Then,

ϕ0(t1, t2) = A0t1 + B0t2, A0 = max
x∈Ω

|x + 2x∗|
3(x∗)2 , B0 = max

x∈Ω

|2x + x∗|
3(x∗)2 ,

ϕ(t1, t2) = A1t1 + B1t2, A1 = max
x∈Ω0

|x|
(x∗)2 , B1 = max

x∈Ω0

|2x + x∗|
3(x∗)2 ,

ψ0(t1, t2) = A0t1 + B0t2, A0 = max
x∈Ω

|x + 2x0|
3x2

0
, B0 = max

x∈Ω

|2x + x0|
3x2

0
,
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ψ(t1, t2) = A1t1 + B1t2, A1 = B1 = max
x∈Ω2

|x|
x2

0
.

Local case Let Ω = (0, 1.5) and q = 0.9. Then, x∗ ≈ 0.9655, Ω0 ≈ (0.7830, 1.1479),
r = r̄ ≈ 0.0874, U[x∗, 3r] ≈ [0.7033, 1.2277] ⊂ Ω.

Semi-local case. Let Ω = (0, 1.5), q = 0.9, x0 = 1, x−1 = 1.05. Then, Ω2 = (0.55, 1.45).
Majorizing sequences for method (5) and (6) are

{tn} = {0, 0.0500, 0.0898, 0.1084, 0.1152, 0.1164, . . . , 0.1165},

{t̄n} = {0, 0.0500, 0.0904, 0.1101, 0.1177, 0.1192, . . . , 0.1193},

respectively. So, U[x∗, 3t∗] ≈ [0.6506, 1.3494] ⊂ Ω and U[x∗, 3t̄∗] ≈ [0.6422, 1.3578] ⊂ Ω.

Example 2. Consider the system of m equations

m

∑
j=1

xj + exi − 1 = 0, i = 1, . . . , m.

Here X = Y = Rn, Ω ⊆ R and x∗ = (0, . . . , 0)T .

Then
ϕ0(t1, t2) = A0t1 + B0t2, A0 = B0 = max

x∈Ω

ex − 1
2γ

,

ϕ(t1, t2) = A1t1 + B1t2, A1 = B1 = max
x∈Ω0

ex

2γ
, γ = |(F′(x∗))−1

1,1 |,

ψ0(t1, t2) = A0t1 + B0t2, A0 = B0 = max
x∈Ω

ex

2γ
,

ψ(t1, t2) = A1t1 + B1t2, A1 = B1 = max
x∈Ω2

ex

2γ
, γ = |(F′(x0))

−1
1,1 |.

Local case. Let m = 5, Ω = U(x∗, 1). Then, Ω0 ≈ (x∗, 0.3492), r = r̄ ≈ 0.1719,
U[x∗, 3r] ≈ [−0.5157, 0.5157] ⊂ Ω.

Semi-local case. Let m = 5, Ω = U(x∗, 1), x0 = (0.02, . . . , 0.02) and x−1 = x0 + 0.0001.
Then, Ω2 ≈ (x0, 0.4502). Majorizing sequences for method (5) and (6) are

{tn} = {0, 0.0001, 0.1047, 0.1266, 0.1372, . . . , 0.1387},

{t̄n} = {0, 0.0001, 0.1064, 0.1323, 0.1460, . . . , 0.1487},

respectively. So, U[x∗, 3t∗] ≈ [−0.3962, 0.4362] ⊂ Ω and U[x∗, 3t̄∗] ≈ [−0.4260, 0.4660] ⊂ Ω.
Let us apply methods (4)–(6) for solving considered nonlinear problems under different

initial approximations x0. All these methods require addition approximation x−1. It is
computed by the rule x−1 = x0 + 10−4. The stopping conditions for the iterative process
are ‖xn+1 − xn‖ ≤ 10−8.

Tables 1 and 2 show number of iterations that are needed for solving one equation and
system of equations for m = 10.

Figures 1 and 2 demonstrate that norms F(xn) and xn − xn−1 for the two-step Kurcha-
tov’s methods (5) and (6) decrease faster than for Kurchatov’s method (4).
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Figure 1. Example 1: norm of residual—(A) and norm of correction—(B) at each iteration.
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Figure 2. Example 2: norm of residual—(A) and norm of correction—(B) at each iteration.
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Table 1. Results for Example 1.

x0 Method (4) Method (5) Method (6)

1 4 3 3
10 11 9 7

100 17 13 10

Table 2. Results for Example 2.

x0 Method (4) Method (5) Method (6)

(1,. . . ,1)T 5 4 3
(10,. . . ,10)T 13 10 8
(20,. . . ,20)T 25 19 14

5. Conclusions

The objective in this work is to develop a process for studying the convergence of
iterative methods containing inverses of linear operators under weak conditions. These
conditions involve only operators appearing in the methods. In particular, a local and a
semi-local convergence analysis of the two-step Kurchatov-type methods is provided under
the generalized Lipschitz conditions for only divided differences of order one. Regions of
convergence and uniqueness of the solution are established. The results of the numerical
experiment are given. The developed technique does not rely on the studied methods. That
is why it can also be used on other methods that contain inverses of divided differences or
inverses of linear operators in general.

The future work involves the application of this process on other single step, multi-
step iterative methods with inverses [14,15,17,20,21]. We will also study the analogs of the
studied methods when the Fréchet is replaced by the Gateaux derivative.
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