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Abstract: In this paper, we propose a shift-deflation technique for the generalized eigenvalue prob-
lems. This technique consists of the following two stages: the shift of converged eigenvalues to zeros,
and the deflation of these shifted eigenvalues. By performing the above technique, we construct a
new generalized eigenvalue problem with a lower dimension which shares the same eigenvalues
with the original generalized eigenvalue problem except for the converged ones. In addition, we con-
sider the relations of the eigenvectors before and after performing the technique. Finally, numerical
experiments show the effectiveness and robustness of the proposed method.
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1. Introduction

In this paper, we consider the computation of a large quantity of eigenpairs of a
large-scale generalized eigenvalue problem (GEP)

Ax = λBx and y∗A = λy∗B, (1)

where A, B ∈ Cn×n are the coefficient matrices, and the notation ∗ denotes the conjugate
transposition. The scalar λ is an eigenvalue of the GEP (1) if and only if λ is a root of
det(A− λB), where det(·) denotes the determinant of a matrix. The nonzero vectors x and
y are called the right and left eigenvectors corresponding to λ, respectively. Together, (λ, x)
or (λ, x, y) is called an eigenpair of the GEP (1). (λi, xi, yi)(1 ≤ i ≤ r ≤ n) are r eigenpairs
of the GEP (1), and let

Λ1 = diag(λ1, λ2, . . . , λr), X1 = [x1, x2, . . . , xr] and Y1 = [y1, y2, . . . , yr], (2)

where diag(λ1, λ2, . . . , λr) denotes a diagonal matrix with diagonal entries λ1, λ2, . . . , λr,
then the pair (Λ1, X1, Y1) ∈ Cr×r ×Cn×r ×Cn×r is also called an eigenpair of the GEP (1),
which satisfies

AX1 = BX1Λ1 and Y∗1 A = Λ1Y∗1 B. (3)

The GEP (1) arises in a number of applications, such as structural analysis [1], magneto-
hydrodynamics [2], fluid–structure interaction [3] and the boundary integral equation [4].
For the small and medium-sized GEP, we can compute the eigenpairs using the QZ al-
gorithm [5], the Riemannian nonlinear conjugate gradient method [6] and so on. For
the large-scale GEP, the methods in [7–13] only find a few extreme eigenpairs or interior
eigenpairs with eigenvalues close to a given shift. In order to compute a cluster of eigen-
values and associated eigenvectors successively, it is necessary to develop a shift-deflation
technique for the GEP (1).

Assume that we have already computed some eigenvalues λi (1 ≤ i ≤ r) of the GEP (1),
our goal is to construct a new GEP with coefficient matrices (Â, B̂) whose eigenvalues are
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just those of the GEP (1) except for the computed eigenvalues {λi}r
i=1. To do this, there are

two stages, namely, shift and deflation. In the shift stage, we shift the converged eigenvalues
{λi}r

i=1 to zeros while keeping the remaining eigenvalues unchanged. To this purpose,
we define a new GEP with coefficient matrices (Ã, B̃) whose eigenvalues are r zeros and
{λi}n

i=r+1. In the deflation stage, we deflate the shifted r zeros of the shifted GEP with
coefficient matrices (Ã, B̃). For this purpose, we construct a new GEP with coefficient matrices
(Â, B̂) whose eigenvalues are just {λi}n

i=r+1. The relationship between the eigenvectors of
the two GEPs with coefficient matrices (A, B) and (Â, B̂) are also shown in this paper.

Throughout this paper, we use the following notations. In denotes the n× n identity
matrix. ej and Ej denote the j-th column and the first j columns of the identity matrix,
respectively. The superscript ∗ denotes the conjugate transpose for a vector or a matrix.
‖ · ‖2 denotes the Euclidean vector norm, and ‖ · ‖F denotes the Frobenius matrix norm.
We also adopt the following MATLAB notations: A(i : j, k : l) denotes the submatrix of the
matrix A that consists of the inrersection of the rows i to j and the columns k to l, A(i : j, :)
and A(:, k : l) select the rows i to j and the columns k to l of A, respectively.

2. Shift Technique

In this section, we describe how to move the eigenvalues of the GEP (1) to zeros and
keep the corresponding eigenvectors and the remaining eigenvalues unchanged.

Theorem 1. Assume that (λi, xi, yi) (1 ≤ i ≤ n) are the eigenpairs of the GEP (1) with λi 6= 0,
the pair (Λ1, X1, Y1) is defined as (2) with Y∗1 X1 = Ir and λi 6= λj where 1 ≤ i ≤ r and r < j ≤ n.
Construct a new GEP

Ãx̃ = λ̃B̃x̃ and ỹ∗ Ã = λ̃ỹ∗ B̃, (4)

where the coefficient matrices Ã and B̃ are defined as{
Ã = A− BX1Λ1Y∗1 ,
B̃ = B,

(5)

and (λ̃i, x̃i, ỹi) (1 ≤ i ≤ n) are the eigenpairs of the shifted GEP (4) with

λ̃i =

{
0, 1 ≤ i ≤ r,
λi, r < i ≤ n,

x̃i =

{
xi, 1 ≤ i ≤ r,
(In − λ−1

i X1Λ1Y∗1 )xi, r < i ≤ n,
and ỹi =

{
ỹi, 1 ≤ i ≤ r,
yi, r < i ≤ n.

(6)

Proof. We first verify the case of 1 ≤ i ≤ r. From the assumption Y∗1 X1 = Ir, we have
Y∗1 xi = ei and

Ãxi = (A− BX1Λ1Y∗1 )xi = Axi − BX1Λ1ei = Axi − λiBxi = 0.

Therefore, (0, xi, ỹi)(1 ≤ i ≤ r) are the eigenpairs of the shifted GEP (4) which implies
that the shift technique (5) indeed moves the nonzero eigenvalues {λi}r

i=1 to zeros while
keeping the corresponding right eigenvectors {xi}r

i=1 unchanged.
Next, we consider the case of r < i ≤ n. In fact, by using (3) we obtain

(Ã− λi B̃)x̃i = (A− BX1Λ1Y∗1 − λiB)(In − λ−1
i X1Λ1Y∗1 )xi

= (A− λ−1
i AX1Λ1Y∗1 + λ−1

i BX1Λ2
1Y∗1 − λiB)xi

= (A− λiB)xi − λ−1
i (AX1 − BX1Λ1)Λ1Y∗1 xi

= 0

(7)
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and
ỹ∗i (Ã− λi B̃) = y∗i (A− BX1Λ1Y∗1 − λiB)

= y∗i (A− λi)B− y∗i BX1(λi Ir −Λ1)Λ1(λi Ir −Λ1)
−1Y∗1

= y∗i (A− λi)B + y∗i (A− λiB)X1Λ1(λi Ir −Λ1)
−1Y∗1

= y∗i (A− λi)B
(

In + X1Λ1(λi Ir −Λ1)
−1Y∗1

)
= 0

(8)

A combination of (7) and (8) indicates that (λi, x̃i, ỹi) (r < i ≤ n) are the eigenpairs
of the shifted GEP (4), which implies that the shift technique (5) indeed keeps the re-
maining eigenvalues {λi}n

i=r+1 along with the corresponding left eigenvectors {yi}n
i=r+1

unchanged.

Remark 1. Some remarks of Theorem 1 are illustrated as follows.

(1) From (6), we can see that the eigenvalues {λi}r
i=1, the right eigenvectors {xi}n

i=r+1 and the left
eigenvectors {yi}r

i=1 have changed after implementing the shift technique (5). Moreover, the
new right eigenvectors {x̃i}n

i=r+1 are explicitly available in (6), and the new left eigenvectors
{ỹi}r

i=1 can be obtained by solving ỹ∗i A = 0.
(2) A similar shift technique can be observed where the coefficient matrix Ã in (5) is defined

by Ã = A− X1Λ1Y∗1 B. At this moment, the changes of the left eigenvectors {yi}r
i=1 are

available while those of the right eigenvectors {xi}r
i=1 are unavailable. Moreover, we need to

solve a homogeneous system using a certain numerical method if we want both the left and
right eigenvectors.

(3) A similar shift technique can be observed where the coefficient matrix Ã in (5) is defined by
Ã = A − BX1Λ1X∗1 . At this moment, the left eigenvectors {yi}r

i=1 are not needed, and
Y1 in both the condition Y∗1 X1 = Ir and the relation x̃i = (In − λ−1

i X1Λ1Y∗1 )xi should be
replaced by X1.

The above theorem and remarks lead to the following corollary directly.

Corollary 1. Assume that (λi, xi) (1 ≤ i ≤ n) are the eigenpairs of the GEP (1) with λi 6= 0, and
(λ1, x1) is a converged eigenpair with x∗1 x1 = 1 and λ1 6= λj, where 2 ≤ j ≤ n. Construct the
new GEP (4) where the coefficient matrices Ã and B̃ are defined as{

Ã = A− λ1Bx1x∗1 ,
B̃ = B,

(9)

then (λ̃i, x̃i) (1 ≤ i ≤ n) are the eigenpairs of the new GEP (4) with

λ̃i =

{
0, i = 1,
λi, 2 ≤ i ≤ n,

and x̃i =

{
xi, i = 1,
(In − λ1

λi
x1x∗1)xi, 2 ≤ i ≤ n.

(10)

Remark 2. Some remarks of Corollary 1 are shown as follows.

(1) If λ1 = 0, then the shift technique (9) is not needed. If λ1 = ∞, then the shift technique
(9) will fail due to the fact Bx1 = 0. In practice, eigenvalues can be sorted into modules
ascending order, i.e., |λ1| ≤ |λ2| ≤ · · · ≤ |λn|, and we are interested in finding the smallest
eigenvalues of the GEP (1).

(2) The relation of the left eigenvectors yi and ỹi can also be given as yi = (In − λ1
λ1−λi

y1y∗1)ỹi
when 2 ≤ i ≤ n. However, it will fail if λi = λ1 for a certain i. In order to remedy this
issue, we should shift this eigenpair (λi, xi) together with the converged eigenpair (λ1, x1) by
applying the shift technique referred to in Remark 1 (3).
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(3) We can also shift λ1 to infinity by using the following shift technique{
Ã = A,
B̃ = B− Bx1x∗1 ,

(11)

while keeping the corresponding right eigenvector x1 and the remained eigenvalues {λi}n
i=2 un-

changed. Moreover, we have the relation that x̃i = (In− λi
λ1

x1x∗1)xi and xi = (In − λi
λ1−λi

x1x∗1)x̃i
when 2 ≤ i ≤ n.

3. Deflation Technique

In this section, we deflate the shifted r zeros. To this end, we construct a new GEP
with dimension (n − r) × (n − r) whose eigenvalues are the remaining eigenvalues of
the shifted GEP (4) except for zeros. The following theorem shows the feasibility of the
deflation technique under certain assumptions.

Theorem 2. Assume that (λi, xi, yi) (1 ≤ i ≤ n) are the eigenpairs of the GEP (1) with λi = 0
and λj 6= 0 where 1 ≤ i ≤ r and r < j ≤ n, X, Y ∈ Cn×r are both full column rank matrices with
AX = 0 and Y∗A = 0, H and K are both nonsingular matrices with HEr = Y and KEr = X, and
R = Y∗BX is nonsingular. Construct a new GEP

Âx̂ = λ̂B̂x̂ and ŷ∗ Â = λ̂ŷ∗ B̂, (12)

where the coefficient matrices Â and B̂ are defined as

Â = A1(r + 1 : n, r + 1 : n), B̂ = B1(r + 1 : n, r + 1 : n),

with {
A1 = H∗AK,
B1 = H∗(In − BXR−1Y∗)BK,

then, (λi, x̂i, ŷi) (r < i ≤ n) are the eigenpairs of the new GEP (12) with

xi = K
(
−R−1Sx̂i

x̂i

)
, yi = H

(
−(R−1)∗T∗ŷi

ŷi

)
, (13)

where S = S1(:, r + 1 : n) ∈ Cr×(n−r), S1 = Y∗BK, T = T1(r + 1 : n, :) ∈ C(n−r)×r and
T1 = H∗BX.

Proof. We first prove that λi (r < i ≤ n) are the eigenvalues of the deflated GEP (12).
Let L(λ) = A− λB, L1(λ) = H∗L(λ)K and V(λ) = L1(λ)(r + 1 : n, r + 1 : n). We can
easily verify that L1(λ) shares the same spectrum with L(λ). Moreover, we can have the
following relations,

ET
r L1(λ)Er = Y∗(A− λB)X = −λR,

ET
r L1(λ)ej = Y∗(A− λB)Kej = −λY∗BKej,

eT
j L1(λ)Er = eT

j H∗(A− λB)X = −λeT
j H∗BX,

(14)

where r < j ≤ n. Based on (14), we obtain

L1(λ) =

(
λIr

In−r

)(
−R −S
−λT V(λ)

)
.
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Let D(λ) = V(λ) + λTR−1S, then det(L1(λ)) = (−1)rλrdet(R)det(D(λ)). Therefore,
λi (r < i ≤ n) are the roots of det(D(λ)). Denote L2(λ) = A1 − λB1, then we have

L2(λ) = H∗AK− λH∗BK + λ(H∗BX)R−1(Y∗BK)

= L1(λ) + λ

(
R
T

)
R−1( R S

)
= L1(λ) + λ

(
R S
T TR−1S

)
=

(
0 0
0 D(λ)

)
,

which implies D(λ) = Â− λB̂.
Now, we prove the relations (13). Denote

ωi = K−1xi =

(
ωi1
ωi2

)
,

where ωi1 ∈ C, ωi2 ∈ Cn−1 and r < i ≤ n. Since L1(λi)ωi = H∗L(λi)xi = 0, we have{
−λiRωi1 − λiSωi2 = 0,
−λiTωi1 + V(λi)ωi2 = 0.

(15)

According to the assumption that λi 6= 0 and R is nonsingular, we have ωi1 = −R−1Sωi2
from the first equation of (15). Therefore, we have (V(λi) + λiTR−1S)ωi2 = D(λi)ωi2 = 0,
which implies ωi2 is a right eigenvector with respect to λi. Without loss of generality, we let
ωi2 = x̂i; then, the first relation in (13) is obtained. The rest of the proof of the second relation
in (13) can be given analogously.

Remark 3. Some remarks of Theorem 2 are shown below.

(1) If we apply the shift technique (5) and solve a homogeneous system y∗A = 0 for columns of Y
as suggested by Remark 1 (1), the full column rank matrices X, Y ∈ Cn×r are obtained with
AX = 0 and Y∗A = 0.

(2) The nonsingularity of R = Y∗BX is essential in Theorem 2. If R is singular, then the deflation
technique fails.

From the above theorem, we can obtain the following corollary directly.

Corollary 2. Assume that (λi, xi, yi) (1 ≤ i ≤ n) are the eigenpairs of the GEP (1) with λ1 = 0
and λi 6= 0 (2 ≤ i ≤ n), x, y ∈ Cn are both nonzero vectors with Ax = 0, y∗A = 0, H and K
are both nonsingular and matrices with He1 = y, Ke1 = x, and γ = y∗Bx 6= 0. Construct a new
GEP (12) where the coefficient matrices Â and B̂ are defined as

Â = A1(2 : n, 2 : n), B̂ = B1(2 : n, 2 : n), (16)

with {
A1 = H∗AK,
B1 = H∗(In − 1

γ Bxy∗)BK, (17)

then (λi, x̂i, ŷi) (2 ≤ i ≤ n) are the eigenpairs of the new GEP (12) with

xi = K

(
− 1

γ sx̂i

x̂i

)
, yi = H

(
− 1

γ̄ t∗ŷi

ŷi

)
, (18)

where s = s1(:, 2 : n) ∈ C1×(n−1), s1 = y∗BK, t = t1(2 : n, :) ∈ Cn−1 t1 = H∗Bx and γ̄ denotes
the conjugation of γ.
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Remark 4. Some remarks of Corollary 2 are given below.

(1) There are a lot of choices of the matrices H and K. In actual computation, we choose the
nonsingular matrices H and K to be the Householder matrices such that Hy = ‖y‖2e1 and
Kx = ‖x‖2e1, which guarantees the low computational cost and the numerical stability.

(2) The condition γ = y∗Bx 6= 0 is needed in Corollary 2. If γ = 0, the deflation technique
fails. To circumvent this problem, we can shift λ1 to infinity by using the shift technique (11)
without deflation, and continue to compute the next eigenvalue of interest.

4. Shift-Deflation Technique

In this section, we synthesize the shift technique in Section 2 and the deflation tech-
nique in Section 3 to deflate some known eigenpairs (Λ1, X1, Y1) ∈ Cr×r × Cn×r × Cn×r,
and to find a large number of eigenpairs corresponding to the smallest eigenvalues in the
module of the GEP (1).

We first consider the situation that r = 1. Assume that (λ1, x1) is a simple eigenpair of
the GEP (1) with λ1 6= 0 and ‖x1‖2 = 1. Define the matrices Ã and B̃ as (9); then, Ãx1 = 0.
Solve y∗ Ã = 0 for seeking the vector ỹ1 with ‖ỹ1‖2 = 1, choose Householder matrices H
and K such that Ke1 = x1, He1 = ỹ1, and define the matrices Â and B̂ as (16) and (17) where
the matrices A and B in (17) are replaced by Ã and B̃, respectively. If γ = ỹ∗1 B̃x1 6= 0, the
shift-deflation technique can be completed, otherwise we shift λ1 to infinity by using the
shift technique (11).

If λ1 is not a simple eigenvalue, that is r > 1, we should shift all eigenvalues which
are equal to λ1 by using the shift technique referred to in Remark 1 (3). Moreover, we
may obtain more than one converged set of eigenpairs by a certain numerical method at
one iteration. Due to the advantage that a low computational cost and numerical stability
can be guaranteed if we choose H and K as Householder matrices when r = 1, we try to
deflate these eigenpairs one by one with the relations (10) and (18). A numerical algorithm
is summarized as follows.

The first step in Algorithm 1 can be seen as an inner iteration; therefore, it should have
its own stopping criterion; for example,

αi =
‖Axi − λiBxi‖2

‖A‖F + |λi|‖B‖F
< τ1, (19)

where A and B are the coefficient matrices after implementing the shift-deflation technique,
and τ1 is a given tolerance. Then, we can denote αi as the shift-deflated relative residual
norm of the shift-deflated GEP. If we are interested in the accuracy of the approximation λi
of the original GEP, that is, the coefficient matrices are the input matrices A and B, we can
simply test the following stopping criterion:

σi = σmin(A− λiB) < τ2, (20)

where τ2 is also a given tolerance. If we are also interested in the accuracy of the approxi-
mation xi corresponding to λi, we can repeat using the recursions (18) and (10) to backtrack
with the computed eigenpair of the shift-deflated GEP during the iterations in Algorithm 1.
To this end, we should save all the converged eigenpairs, the scalars γ, the vectors s, and
the nonsingular matrices H and K. If we choose H and K as Householder matrices, we also
need to save two vectors. With the backtracked eigenvector xi, we can test the accuracy of
approximation xi with the following stopping criterion

βi =
‖Axi − λiBxi‖2

‖A‖F + |λi|‖B‖F
< τ3, (21)

where A and B are the input matrices, and τ3 is a given tolerance. Then, we can denote βi
as the original relative residual norm of the GEP (1) with the input matrices A and B.
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Algorithm 1 Shift-deflationtechnique for the GEP.

Input: matrices A, B and the number k of the desired eigenpairs.
Output: k approximate eigenpairs and their relative residuals.

1: Seek some (denoted by r ≥ 1) eigenpairs {(λi, xi)}r
i=1 with smallest eigenvalues in

modules of the GEP with coefficient matrices A and B by a certain numerical method;
2: Backtrack the original eigenvectors by using the recursions (18) and (10) and compute

their original relative residuals if necessary;
3: If k, approximate eigenpairs are obtained, then stop; otherwise, set l = 1;
4: Compute x1 = xl

‖xl‖2
. If λl is a multiple (denoted by m ≥ 2) eigenvalue, shift all

eigenvalues which are equal to λl by using the shift technique referred in Remark 1 (3),
and go to (6); otherwise, set m = 1;

5: If λl 6= 0, compute the shifted matrices Ã and B̃ as (9); otherwise, set Ã = A and B̃ = B;
6: Compute the eigenvectors x̃i (l + m ≤ i ≤ r) as (10);
7: Solve a homogeneous system y∗ Ã = 0 for seeking the m independent unit vectors
{ỹi}m

i=1, and set j = 1;
8: Choose Householder matrices H and K such that Ke1 = x1, He1 = ỹj;
9: Compute γ = ỹ∗j B̃x1. If γ = 0, shift this eigenvalue λl+j−1 to infinity by using the shift

technique (11), and set A = Ã, B = B̃; otherwise, compute matrices Â and B̂ as (16)
and (17) and eigenvectors x̂i (l + j ≤ i ≤ r) as (18), and set A = Â, B = B̂;

10: If j < m, set j = j + 1 and go to (8);
11: If l < r, set l = l + 1 and go to (4); otherwise, go to (1).

5. Numerical Results

In this section, we report some numerical examples to illustrate the effectiveness of the
shift-deflation technique for the GEP. All examples are performed in Matlab R2015b on an
Intel Core 2.9 GHz PC with 4 GB memory under a Windows 7 system. For simplicity, we
use the Matlab built-in function ‘eigs’ to seek some eigenpairs, with the smallest modulus
eigenvalues in the first iteration of Algorithm 1, and ‘svds’ to compute σmin. The integer
r in Algorithm 1 is randomly chosen but does not exceed a given threshold rmax due to
using the Matlab built-in function ‘eigs’. We denote n by the dimension of the GEP (1), and
denote k by the number of the desired eigenpairs.

Example 1. We consider the GEP (1) where the coefficient matrices are given as

A =



3 −1 0 −2 0 −9
0 1 0 0 0 0
0 0 −1 0 0 3
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

, B =



1 −1 −1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

We can easily obtain all eigenpairs by using the MATLAB built-in function ‘eig’, which
are shown in Table 1.
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Table 1. The eigenpairs of Example 1.

i 1 2 3 4 5 6

λi 0 1 1 2 3 ∞

xi


0
0
0
0
1
0




0
1
0
0
1
0




1
0
0
1
0
0





1
0
0
1
2
0
0





0
0
−1
0
1
− 1

3




−1
0
−1
0
0
0



yi


0
−1
0
0
1
0




0
1
0
0
0
0





1
4
0
1
− 1

2
0
3
4





1
5
1
5
1
− 1

5
0
3
5




0
0
−1
0
0
−1




0
0
1
0
0
0



From Table 1, we can see that it is not necessary to apply the shift technique to λ1. Thus,
the deflation condition scalar is γ = y∗1 Bx1 = 1 if we deflate this to zero. By performing
Algorithm 1 for seeking all the six eigenpairs, we can obtain the following numerical results
in Table 2. We find that our proposed deflation technique is highly accurate from the first
and last columns of Table 2.

Table 2. Numerical results of Example 1.

Computed Eigenvalues αi σi

0 0 0
1.0000 0.7476× 10−16 0.4342× 10−16

1.0000 0.6000× 10−16 0.1462× 10−15

2.0000 0.7793× 10−16 0.7610× 10−16

3.0000 0.9278× 10−16 0.6686× 10−15

0.6525× 10+16 0 0.1083× 10−15

Example 2. We consider the GEP (1) where the coefficient matrices come from the Harwell-Boeing
test matrices [14] bcsstk07 and bcsstm07. These matrices are 420× 420.

We implement Algorithm 1 with k = 10 and rmax = 4, and show the numerical results
in Table 3. We can see that the computed eigenpairs are quite accurate from the last two
columns of Table 3.

Table 3. Numerical results of Example 2.

r αi βi σi

1 0.3041× 10−18 0.3041× 10−18 0.6831× 10−7

0.5173× 10−17 0.3549× 10−17 0.4019× 10−7

4
0.9864× 10−17 0.2849× 10−16 0.9069× 10−7

0.4854× 10−17 0.1315× 10−16 0.2009× 10−7

0.6373× 10−17 0.1133× 10−16 0.6716× 10−7

0.1214× 10−16 0.1419× 10−16 0.5347× 10−9

3 0.4649× 10−17 0.9685× 10−17 0.1777× 10−6

0.1473× 10−16 0.2073× 10−16 0.1500× 10−6

2 0.1525× 10−16 0.2238× 10−16 0.9081× 10−7

0.1005× 10−16 0.1829× 10−16 0.3821× 10−7
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Example 3. In this example, the coefficient matrices A and B are symmetric and sparse, and
given by

A =


1 1

−1 2
. . .

. . . . . . 1
−1 n

, B =


1 −1 1

−1 1
. . .

. . . . . . −1
1 −1 1

.

It is obvious that some structural properties of coefficient matrices will no longer hold
after performing the shift-deflation technique, such as symmetry and sparsity. However, we
can still use some properties of the input coefficient matrices implicitly. In the above case,
we can keep implementing sparse operations even after preforming several shift-deflation
techniques as long as all converged eigenpairs, the scalars γ (or the matrices R), the vectors
s (or the matrices S) and the nonsingular matrices H and K are saved during the iterations.
The numerical results for Algorithm 1 with the parameters n = 10,000, rmax = 10 and
k = 200 are shown in Figure 1.

0 20 40 60 80 100 120 140 160 180 200

Number of converged eigenpairs

-22
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-14
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-10

-8
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lo
g(

R
el
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iv

e 
er

ro
rs

)

i

i

i

Figure 1. Numerical results of Example 3.

From Figure 1, we can see that both the original smallest singular values σi and the
original relative residual norms βi have a high accuracy even though the shift-deflation
technique is performed 200 times. Moreover, the original relative residual norm βi has a
similar (slightly larger in most cases) accuracy to the shift-deflated relative residual norm αi
which is obtained with the Matlab built-in function ‘eigs’. Therefore, the numerical results
show that the shift-deflation technique for the large-scale GEP is effective and robust.
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