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Abstract: This paper considers the classes of the first-order fractional differential systems containing
a finite number n of sinusoidal terms. The fractional derivative employs the Riemann–Liouville
fractional definition. As a method of solution, the Laplace transform is an efficient tool to solve linear
fractional differential equations. However, this method requires to express the initial conditions
in certain fractional forms which have no physical meaning currently. This issue formulated a
challenge to solve fractional systems under real/physical conditions when applying the Riemann–
Liouville fractional definition. The principal incentive of this work is to overcome such difficulties
via presenting a simple but effective approach. The proposed approach is successfully applied
in this paper to solve linear fractional systems of an oscillatory nature. The exact solutions of
the present fractional systems under physical initial conditions are derived in a straightforward
manner. In addition, the obtained solutions are given in terms of the entire exponential and periodic
functions with arguments of a fractional order. The symmetric/asymmetric behaviors/properties of
the obtained solutions are illustrated. Moreover, the exact solutions of the classical/ordinary versions
of the undertaken fractional systems are determined smoothly. In addition, the properties and the
behaviors of the present solutions are discussed and interpreted.

Keywords: Riemann–Liouville fractional derivative; fractional differential equation; sinusoidal; exact
solution

1. Introduction

Unlike the classical calculus (CC) with integer derivatives, the fractional calculus
(FC) implements the derivatives of an arbitrary order (non-integer) [1–3]. So, the FC is
considered as a generalization of the CC. During the past decades, numerous physical, engi-
neering, and biological problems have been investigated by means of the FC ([4–9]). There
are several definitions for the derivatives of an arbitrary order, such as the Caputo frac-
tional derivative (CFD) [10–22], the Riemann–Liouville fractional derivative (RLFD) [23–25],
and the conformable derivative [26–29]. However, some difficulties arise when applying
the RLFD to solve fractional models under real physical conditions. The present paper is
an attempt to face such an issue by considering the following class of first-order fractional
ordinary equations (FODEs):

RL
−∞Dα

t y(t) + ω2y(t) = b1 sin(Ω1t) + b2 sin(Ω2t) + · · ·+ bn sin(Ωnt),

=
n

∑
j=1

bj sin(Ωjt), y(0) = A, α ∈ (0, 1], (1)
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where α is the non-integer order of the RLFD. The constant A is real while ω, bj, and Ωj
may be real or complex ∀ j = 1, 2, 3, . . . , n.

The applications of the class (1) may arise in oscillatory models in engineering when
the FC is incorporated. This class splits to other physical classes. As examples, for complex
ω, i.e., ω = iµ (µ is real), where i is the imaginary number, the model (1) becomes

RL
−∞Dα

t y(t)− µ2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A, α ∈ (0, 1]. (2)

In addition, if Ωj = iσj and bj = −idj, the classes (1) and (2) take the form:

RL
−∞Dα

t y(t) + ω2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A, α ∈ (0, 1], (3)

and
RL
−∞Dα

t y(t)− µ2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A, α ∈ (0, 1], (4)

in terms of hyperbolic functions, respectively.
In Refs. [1–3], the RLFD of order α ∈ R+

0 of function f : [c, d]→ R (−∞ < c < d < ∞)
is defined as

RL
c Dα

t f (t) =
1

Γ(n− α)

dn

dtn

(∫ t

c

f (τ)

(t− τ)α−n+1 dτ

)
, n = [α] + 1, t > c, (5)

where [α] is the integral part of α. If 0 < α ≤ 1 and c→ −∞, then

RL
−∞Dα

t f (t) =
1

Γ(1− α)

d
dt

(∫ t

−∞

f (τ)
(t− τ)α dτ

)
. (6)

It is important to refer to the initial condition (IC) y(0) = A being physical, unlike
the nonphysical condition Dα−1

t y(0) = A that has been considered by the authors [30]. In
fact, the IC in the last fractional form is required when solving an FODE via the Laplace
transform (LT). This is, simply, because the LT of the RLFD as c→ 0, i.e., RL

0 Dα
t , is [1–3,23,30]

L
[

RL
0 Dα

t y(t)
]
= sαY(s)− Dα−1

t y(0), (7)

which is given in terms of Dα−1
t y(0). Really, the main difference between RL

−∞Dα
t and RL

0 Dα
t

lies in the nature of the considered IC of the problem. In the literature, one can see that
the obtained solutions of the physical models depend on both the nature of the given
classical/fractional ICs along with the implemented method of solution.

In this regard, Ebaid and Al-Jeaid [30] applied the RLFDs RL
−∞Dα

t and RL
0 Dα

t to obtain
a dual solution for a similar model under the nonphysical IC Dα−1

t y(0) using the LT. Al-
though the LT was shown as an effective tool to exactly investigate several models [31–37],
it may not be appropriate to deal with the class (1) under the physical IC y(0) = A by
means of the RLFD operator RL

0 Dα
t . However, the solution is still available under this

physical condition via the RLFD operator RL
−∞Dα

t along with avoiding the LT, as will be
shown through this paper.
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Therefore, the main incentive of the present work is to introduce a new approach to
obtain the real solution of the current model under the physical IC y(0) = A through the
following properties (see Refs. [30,38]):

RL
−∞Dα

t eiωt = (iω)αeiωt, (8)
RL
−∞Dα

t cos(ωt) = ωα cos
(

ωt +
απ

2

)
, (9)

RL
−∞Dα

t sin(ωt) = ωα sin
(

ωt +
απ

2

)
. (10)

By using the above properties, it will be shown that the real solution of class (1) exists at
specific values of the fractional-order α. The symmetric/asymmetric behaviors/properties
of the obtained solutions will be demonstrated. Furthermore, it will be declared that
the solution of the class (2) is real at any arbitrary value α. In addition, the solutions of
the corresponding classes with the classical/ordinary derivative, i.e., as α → 1, will be
evaluated.

A brief description of the structure of this paper is as follows. In Section 2, an anal-
ysis of the complementary and particular solutions is presented. Section 3 is devoted to
obtaining the exact solutions for the fractional classes. In Section 4, the exact solutions for
the ordinary classes are obtained. The behaviors/properties of the solution are introduced
in Section 5. The paper is concluded in Section 6.

2. Analysis

The complementary solution yc(t) of Equation (1) can be obtained in the form, see [30]:

yc(t) = c eiδt, δ = −i
(
−ω2

)1/α
, (11)

which satisfies the homogeneous equation:

RL
−∞Dα

t y(t) + ω2y(t) = 0. (12)

In order to evaluate the constant c, the given IC will be applied on the general solution
y(t) = yc(t) + yp(t) in a subsequent section where yp(t) is a particular solution of the
non-homogeneous Equation (1). A simple method to calculate yp(t) is explained through
the following theorem.

Theorem 1. The yp(t) of the class (1) is in the form:

yp(t) =
n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

, (13)

Proof. Let us assume that

yp(t) =
n

∑
j=1

(ρ1j cos(Ωjt) + ρ2j sin(Ωjt)). (14)

Using the preceding properties of the RLFD operator RL
−∞Dα

t , we have

RL
−∞Dα

t yp =
n

∑
j=1

(
ρ1j

RL
−∞Dα

t cos(Ωjt) + ρ2j(α)
RL
−∞Dα

t sin(Ωjt)
)

,

=
n

∑
j=1

Ωα
j cos

(
Ωjt
)(

ρ1j cos
(πα

2

)
+ ρ2j sin

(πα

2

))
+

n

∑
j=1

Ωα
j sin

(
Ωjt
)(

ρ2j cos
(πα

2

)
− ρ1j sin

(πα

2

))
. (15)
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Thus,

RL
−∞Dα

t yp + ω2yp =
n

∑
j=1

[(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ1j + Ωα

j sin
(πα

2

)
ρ2j

]
cos
(
Ωjt
)
+

n

∑
j=1

[(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ2j −Ωα

j sin
(πα

2

)
ρ1j

]
sin
(
Ωjt
)
. (16)

Inserting the last result into Equation (1) yields(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ1j + Ωα

j sin
(πα

2

)
ρ2i = 0,(

Ωα
j cos

(πα

2

)
+ ω2

)
ρ2j −Ωα

j sin
(πα

2

)
ρ1j = bj,

(17)

which can be easily solved to obtain ρ1j and ρ2j in the forms:

ρ1j = −
Ωαbj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) , ρ2j =

bjω
2 + Ωα

j bj cos
(

πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) . (18)

Employing (18) into (14), we find

yp(t) =
n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

, (19)

which completes the proof.

3. Solution of the Fractional Models: α ∈ (0, 1)

Lemma 1. The solution of the fractional class (1) is

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
))e(−ω2)

1
α t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (20)

Proof. The preceding analysis reveals that the general solution of the class (1) is in the
form:

y(t) = c eiδt +
n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (21)

From this equation, at t = 0, we obtain

y(0) = c−
n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) , (22)

and hence the IC can be applied to give

c = A +
n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) . (23)

Substituting (23) into (21), the solution reads

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
))e(−ω2)

1
α t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (24)

It can be seen that the above solution satisfies the IC. In addition, the solution (24) is
real at specific values of α; this point will be discussed later.
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Lemma 2. The solution of the fractional class (2) is

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
))eµ

2
α t −

n

∑
j=1

bj

(
µ2 sin

(
Ωjt
)
−Ωα

j sin
(
Ωjt− πα

2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
) )

. (25)

Proof. As mentioned in Section 1, the class (2) is a transformed version of the class (1)
when ω = iµ. Hence, the solution of the class (2) can be directly obtained from the solution
of the class (1), given in lemma 1, with the aide of the substitution ω = iµ, which yields

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
))eµ

2
α t +

n

∑
j=1

bj

(
−µ2 sin

(
Ωjt
)
+ Ωα

j sin
(
Ωjt− πα

2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
) )

, (26)

or

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
))eµ

2
α t −

n

∑
j=1

bj

(
µ2 sin

(
Ωjt
)
−Ωα

j sin
(
Ωjt− πα

2
)

µ4 + Ω2α
j − 2µ2Ωα

j cos
(

πα
2
) )

, (27)

which completes the proof.

Remark 1. The analytic method used to obtain the exact solutions of the fractional classes (1) and
(2) is shown in this section. The other fractional classes (3) and (4) can also be obtained similarly. It
can be seen from the solution (20) of the fractional class (1) that it is not always a real solution for
α ∈ (0, 1). This is simply because (−ω2)1/α 6∈ R ∀ α ∈ (0, 1), but there are certain values of the
fractional-order α at which the solution (20) is real, y(t) ∈ R. Such values of α will be addressed in
a subsequent section.

However, the solution (25) of the fractional class (2) is always a real solution ∀ α ∈ (0, 1)
where µ2/α ∈ R for µ ∈ R. In the case of the ordinary/classical derivative, i.e., as α→ 1, then the
solutions (20) and (25) are real. The solution of the fractional classes (3) and (4) can be obtained
via substituting Ωj = iσj and bj = −idj into the solutions (20) and (25), respectively. Although,
the resulting solutions of fractional classes (3) and (4) are not real at any value of α. In fact, the
solutions of classes (3) and (4) are only real when α→ 1. The solutions of the four classes (1)–(4),
as α→ 1, are determined in the next section.

4. Solution of the Classical/Ordinary Models: α → 1

This section focuses on obtaining the exact solutions of the classical/ordinary versions
of the classes (1)–(4) when α→ 1,

4.1. Class (1)

As α→ 1, the class (1) is transformed to the following class of ODEs:

y′(t) + ω2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A. (28)

The solution of this class can be derived from Equation (20) by letting α → 1, and
accordingly, we have

y(t) =

(
A +

n

∑
j=1

Ωjbj

ω4 + Ω2
j

)
e−ω2t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
+ Ωj sin

(
Ωjt− π

2
)

ω4 + Ω2
j

)
, (29)

which is equivalent to

y(t) =

(
A +

n

∑
j=1

Ωjbj

ω4 + Ω2
j

)
e−ω2t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt
)
−Ωj cos

(
Ωjt
)

ω4 + Ω2
j

)
. (30)
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The validity of the solution (30) can be easily verified by direct substitution into (28).
Moreover, this solution satisfies the given IC.

4.2. Class (2)

The class (2), as α→ 1, reduces to ODEs:

y′(t)− µ2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A. (31)

From Equation (24), we obtain as α→ 1 that

y(t) =

(
A +

n

∑
j=1

Ωjbj

µ4 + Ω2
j

)
eµ2t −

n

∑
j=1

bj

(
µ2 sin

(
Ωjt
)
−Ωj sin

(
Ωjt− π

2
)

µ4 + Ω2
j

)
, (32)

or

y(t) =

(
A +

n

∑
j=1

Ωjbj

µ4 + Ω2
j

)
eµ2t −

n

∑
j=1

bj

(
µ2 sin

(
Ωjt
)
+ Ωj cos

(
Ωjt
)

µ4 + Ω2
j

)
. (33)

4.3. Class (3)

The class (3) as α→ 1 becomes

y′(t) + ω2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A. (34)

Because this class is transformed from the class (1) when Ωj = iσj, and bj = −idj, then
the solution of the current class is determined from Equation (30) as

y(t) =

(
A +

n

∑
j=1

σjdj

ω4 − σ2
j

)
e−ω2t −

n

∑
j=1

idj

(
ω2 sin

(
iσjt
)
− iσj cos

(
iσjt
)

ω4 − σ2
j

)
, (35)

i.e.,

y(t) =

(
A +

n

∑
j=1

σjdj

ω4 − σ2
j

)
e−ω2t +

n

∑
j=1

dj

(
ω2 sinh

(
σjt
)
− σj cosh

(
σjt
)

ω4 − σ2
j

)
. (36)

4.4. Class (4)

If ω = iµ, Ωj = iσj, and bj = −idj, then the class (1) as α → 1 is equivalent to the
following class of ODEs:

y′(t)− µ2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A. (37)

In this case, we have three possible ways to obtain the solution of the current class.
The first way is to substitute ω = iµ, Ωj = iσj, and bj = −idj into Equation (30). The second
is to substitute Ωj = iσj and bj = −idj into Equation (33). The third way is the simplest
one, by substituting only ω = iµ into Equation (36). Following the third option, one can
obtain the exact solution:

y(t) =

(
A +

n

∑
j=1

σjdj

µ4 − σ2
j

)
eµ2t +

n

∑
j=1

dj

(
−µ2 sinh

(
σjt
)
− σj cosh

(
σjt
)

µ4 − σ2
j

)
, (38)

or

y(t) =

(
A +

n

∑
j=1

σjdj

µ4 − σ2
j

)
eµ2t −

n

∑
j=1

dj

(
µ2 sinh

(
σjt
)
+ σj cosh

(
σjt
)

µ4 − σ2
j

)
, (39)
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for the present class of ODEs.

Remark 2. The obtained exact solutions for the four classes of ODEs satisfy the condition y(0) = A.
On the other hand, the validity of the obtained solutions can be easily checked through direct
substitutions into the governing ODEs of these classes. We can say that the FC is of great importance
and benefits. This is because the FC not only gives the solutions of fractional models but also helps
in deriving the solutions of corresponding classical/ordinary models.

5. Behavior of Solution

It is seen from the previous sections that the fractional systems (1) and (2) have the exact
solutions given by Equation (20) and Equation (24), respectively. The main observation is
that the solution (20) of the class (1) is real if the quantity (−ω2)1/α is real. For real ω, we
note that (−ω2)1/α = νω2/α where ν = (−1)1/α. So, the solution (20) is real when ν is real.
The authors [31] were able to specify the α-values such that ν = (−1)1/α is real and this
occurs that the α-values follow the next theorem [30].

Theorem 2. For n, k ∈ N+, the solution (20) is real when α = 2n−1
2(k+n−1) (ν = 1) and α =

2n−1
2(k+n)−1 (ν = −1).

Based on the above theorem, the solution (20) for the fractional class (1) is plotted in
Figure 1 for α = 1

2 at different numbers of the sinusoidal terms. Figure 2 shows the variation
in the solution (20) for the fractional class (1) with two sinusoidal terms at different values
of the initial condition A. In addition, Figure 3 indicates the behavior of the solution at
various values of the fractional-order α when ten sinusoidal terms are incorporated in the
fractional class (1). Furthermore, the solution is depicted in Figure 4 at some selected values
α close to unity. This figure declares that the fractional solution becomes identical to the
ordinary/classical solution as α→ 1 which validates the present results.

For the fractional class (2), the solution (25) is displayed in Figure 5 when α = 1
2 at

different numbers of the sinusoidal terms. The behavior of the solution of this class is
similar to Figure 1 but with a slightly higher magnitude of the oscillations for the same
numbers of the sinusoidal terms. Figure 6 gives us a picture of the solution profile as the
fractional-order α varies regarding the fractional class (2). Moreover, Figure 7 displays the
profile of the solution (25) at various values of the parameter µ. The current results reveal
the oscillatory nature of the obtained solutions for the fractional systems (1) and (2). Finally,
the present analysis may be extended to effectively analyze higher-order fractional systems
containing a finite number of sinusoidal terms.

5 10 15 20
t

5

10

15

20

25

yHtL
Solution of the fractional class H1L at Α=1�2

n=7

n=5

n=3

n=1

Figure 1. Plots of the solution for the fractional class (1) when α = 1
2 , A = 0, ω = 1

2 , bj = j,
and Ωj = jπ/2 at different values of n (number of sinusoidal terms).
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5 10 15 20
t

-5

5

10

yHtL
Solution of the fractional class H1L at Α=1�2 and n=2

A=+2

A=+1

A= 0

A=-1

A=-2

Figure 2. Plots of the solution for the fractional class (1) when α = 1
2 , ω = 1

2 , bj = j, and Ωj = jπ/2
at different values of A = −2,−1, 0, 1, 2 for two sinusoidal terms (n = 2).

5 10 15 20
t

-20

20

40

60

yHtL
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Figure 3. Plots of the solution for the fractional class (1) when α = 1
2 , A = 0, ω = 1

5 , bj = j,
and Ωj = jπ/10 at different values of α = 1

4 , 1
2 , 3

4 , 7
8 for ten sinusoidal terms (n = 10).
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Solution of the fractional class H1L as Α ® 1 at n=10
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Figure 4. Plots of the solution for the fractional class (1) when A = 0, ω = 1
5 , bj = j, and Ωj = jπ/10

at different values of α = 27
29 , 45

47 , 61
63 , 81

83 , 1 for ten sinusoidal terms (n = 10).
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Figure 5. Plots of the solution for the fractional class (2) when α = 1
2 , A = 0, µ = 1

2 , bj = j,
and Ωj = jπ/2 at different values of n (number of sinusoidal terms).
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Figure 6. Plots of the solution for the fractional class (2) when µ = 1
2 , A = 0, bj = j, and Ωj = jπ/2

at different values of α for five sinusoidal terms (n = 5).
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Figure 7. Plots of the solution for the fractional class (2) when α = 1
2 , A = 0, bj = j, and Ωj = jπ/2

at different values of µ.

6. Conclusions

In this paper, a class of first-order fractional differential systems containing a finite
number n of sinusoidal terms was analyzed by means of the Riemann–Liouville fractional
definition. The difficulties in solving fractional systems under real/physical initial condi-
tions using the Riemann–Liouville fractional definition are overcome in this paper. This
task was achieved via a straightforward method. The suggested method was successfully
applied to extract the exact solutions of the considered fractional systems. In addition,
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the corresponding exact solutions of the classical/ordinary versions were determined.
The obtained results reveal the oscillatory nature of the present fractional systems. More-
over, the properties/behaviors of the obtained solutions were investigated graphically and
hence interpreted. Accordingly, the current approach may deserve a further extension to in-
clude fractional systems of a higher order when the sinusoidal terms of a finite number are
incorporated. Finally, the current approach may be applied to include other ideas [39–47].
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