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Abstract: Due to the fact that there is no symmetry in the division of cancer cells, it is important to
consider this asymmetrical behavior. Because of this heterogeneity during any therapy, not every
cancer cell that is killed only is abolished, which is sensitive to the particular treatment chosen.
Mathematical models that describe these pathways are critical for predicting cancer cell proliferation
behavior. The literature on the mathematical modeling of cancer onset, growth, and metastasis is
extensive. Both deterministic and stochastic factors were used to develop mathematical models to
mimic the development rate of cancer cells. We focus on the cell’s heterogeneity in our model so
that the cells generally responsible for spreading cancer, which are called stem cells, can be killed.
Aggregation operators (AOs) play an important role in decision making, especially when there
are several competing factors. A key issue in the case of uncertain data is to develop appropriate
solutions for the aggregation process. We presented two novel Einstein AOs: q-rung picture fuzzy
dynamic Einstein weighted averaging (q-RPFDEWA) operator and q-rung picture fuzzy dynamic
Einstein weighted geometric (q-RPFDEWG) operator. Several enticing aspects of these AOs are
thoroughly discussed. Furthermore, we provide a method for dealing with multi-period decision-
making (MPDM) issues by applying optimal solutions. A numerical example is presented to explain
how the recommended technique can be used in cancer therapy assessment. Authenticity analysis
is also presented to demonstrate the efficacy of the proposed technique. The suggested AOs and
decision-making methodologies are generally applicable in real-world multi-stage and dynamic
decision analysis.

Keywords: cancer risk assessment; heterogeneity; CODAS approach; q-rung orthopair fuzzy
numbers; MCDM

MSC: 03E72; 94D05; 90B50

1. Introduction

Cancer is the second most serious health problem worldwide, currently causing an
estimated 9.6 million deaths every year. Cancer took the lives of 9.56 million people in 2017,
according to the Global Burden of Disease (GBD). Cancer is also the reason for one in every
six deaths. Various kind of cancers including lung, colorectal, stomach, and liver cancers
mostly affect men, while breast, colorectal, lung, cervical, and thyroid cancers mostly affect
women. In recent years, cancer has become a very frequent disease around the world.
It causes significant emotional, physical, and financial strains on individuals and their
families, communities, and health systems. Many middle-to-low income countries’ health
systems are unable to properly deal with this disease, and cancer patients worldwide lack
immediate access to good quality treatment.

In advanced economies, where people are much less likely to succumb to contagious
diseases and other fatal conditions causing premature death, cancer is a highly common
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cause of death. Among all diseases, research on cancer is important as this disease emo-
tionally affects humans and a person can become completely convinced that they definitely
will not survive for long. In a general sense, research provides us all with a plethora of data
regarding the basic mechanisms involved in the onset, growth, and spread of cancer in the
body [1]. To conduct in cancer treatment is important because as mentioned earlier cancer
is one of the main cause of deaths in the world. The Figure 1 present that cancer is the
second main cause of deaths in the world.

Figure 1. Number of deaths by cause 2019 (https://ourworldindata.org/causes-of-death) accessed
on 2 September 2021.

The main purpose of conducting research on cancer treatment is to produce safe and
effective strategies for screening, detecting, curing, and, ultimately, cancer-related disorders.
These will enable us to control the effects of cancer spread which are costly in terms of
precious human life. Due to the fact that cancer is currently a popular research topic, we
have gained a lot of understanding about what biological mechanisms are involved in
cancer genesis, growth, and spread in the body. As a result of such work, more effective
and targeted treatments and prevention strategies have been introduced.

People who are diagnosed with cancer earlier experience more timely and effective
care lower healthcare morbidity, and a better quality of life than those who are diagnosed
later. Early cancer identification is a complex and multifaceted matter that has dominated
global strategy and charity initiatives. Two different patient behaviors can assist in early
cancer detection. Attending cancer screenings (e.g., a mammography for breast cancer) and
disclosing suspected symptoms to primary care as soon as feasible are two examples.

Such different survival rates push us to make progress in cancer research to control
its effects as well as its spread and ultimately remove it from the human body. All forms
of control are possible if the cancer has been diagnosed at a very early stage of its spread.
The Figure 2 and the Figure 3 display the fact that the survival rate is greater when the
cancer in the stomach and pancreas is at a comparatively earlier stage. The early detection
and treatment of cancer can be encouraged by activities such as promoting screening,

https://ourworldindata.org/causes-of-death)
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providing education and community outreach activities, aiding patient navigators and
health personnel in their efforts to reduce obstacles to cancer information, resources, and
treatment, and working within wellness systems to improve service quality.

Figure 2. Stomach cancer survival vs. stages.

Figure 3. Pancreatic cancer survival vs. stages.

Literature Review

Human questioning is heavily based on imprecisely defined lessons. Most natural
lessons and conceptions are fuzzy as opposed to crisp, which offers upward push to fuzzy
set theory. People, on the other hand, can nicely approximate lessons which is sufficient
to perform a large variety of activities . Humans can summarize massive quantities of
statistics and use these to successfully carry out activities. Because of its tolerance for such
imprecision, fuzzy common sense is well suited for complicated systems. The predominant
contributions that fuzzy control, estimation, and measuring generation have made in each
of the identified problems were identified during the scientific literature search [2].

Colorectal cancer (CRC) is the most common digestive system-associated cancer and
has become one of the deadliest illnesses in the world. Given the negative diagnosis of
CRC, it is of paramount importance that the prediction and detection of this disease are
made more accurate. Early CRC detection using computational technology can notably
enhance the general survival probability of patients. As a result, the study in [3] aimed to
increase the accuracy of CRC detection methods by a fuzzy common sense-based totally
clinical decision assist system (FL-based totally CDSS).

Furthermore, a modified intuitionistic fuzzy clustering method is developed for seg-
menting a lesion/tumor in mammogram pictures. A singular intuitionistic fuzzy generator
is used to compute the non-club degree of the bushy picture and an intuitionistic fuzzy
image is created. From an intuitionistic fuzzy club characteristic, two club stages are
computed using a fuzzy hedge. These two club levels are combined by the use of Zadeh’s
t norm and an interval kind 2 fuzzy image is acquired. The photo is then clustered in
different areas where four fuzzy features are used. The styles of distance capabilities—fuzzy
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divergence and fuzzy exponential kind distance capabilities—are used in the clustering
algorithm [4].

Decision making is an important component of daily life, and it is applied in so-
phisticated and organization-wide decisions. These acts require aggregation processes,
which aggregate the many preferences into a general value, taking into consideration all
individual aspects. Aggregation is defined as the process of merging numerical values into
a single number that represents the collection of numbers. Decision-making problems are
prevalent in a variety of fields, including engineering, accounting, and communications.
Historically, it has been assumed that all information about accessible alternatives will be
presented in the form of quantitative data, because dealing with imprecision and ambiguity
in data is crucial in real-world circumstances.

In 1965, Zadeh [5] introduced the concept of fuzzy set (FS) as a strategy for coping with
uncertainty. There is a function in FS that returns an object’s degree of membership to a
non-empty set from the closed unit interval [0, 1]. FSs have several uses in business strategy,
pattern recognition, and other areas. As an extension of FS theory, Atanassov [6] devised
the innovative idea of “intuitionistic fuzzy set” (IFS) theory. It is crucial to understand
that FS may be characterized in terms of membership elements, but IFS can be described
in terms of both membership and non-membership aspects. While IFS has been widely
used to address major difficulties, there are some circumstances under which it cannot be
used. Assume that, while voting, the human viewpoint contains more replies than classic
FS and IFS can effectively portray, such as yes, abstain, no, and refuse. Cuong pioneered
the notion of a “picture fuzzy set” (PFS) to solve these issues [7]. Each element in the set
has a “positive membership grade” (PMSG), a “neutral membership grade” (NuMSG), and
a “negative membership grade” (NgMSG) with values in the range of [0, 1].

Cuong [8] investigated several PFS features and developed a method for measuring
the distance between PFSs. Wei et al. offered the “projection model” [9], “generalized
dice similarity measurements” [10], and “similarity measures” [11] for PFS. Cuong and
Hai [12] established essential logic operators, disjunctions, conjunctions, and negations, as
well as the main operations for fuzzy derivation forms for PFSs. Phong et al. [13] looked
into a variety of PF-related configurations. Riaz et al. [14] updated numerous basic PFS
operations.

Over the last two decades, there has been a lot of emphasis on information fusion
and enhanced AOs. The efficiency and limitations of AO have been engrained in decision
making. It is evident that AO provides a range of operational rules for merging a finite
set of fuzzy numbers into a single fuzzy number. Data aggregation is vital in strategic
planning, marketing, finance, medicine, science, and investigations. Many AOs have been
developed in terms of functions and operational laws for PFNs. Wang et al. [15] pioneered
the use of “Muirhead mean AOs” for PFNs. Garg [16] proposes a significant number of
averaging and ordered averaging AOs for PFNs. Tian et al. [17] defined some “picture
fuzzy power Choquet-ordered geometric AOs” and “picture fuzzy power Shapley Choquet-
ordered geometric AOs” with Shapley fuzzy measure-based multi-criteria decision making
(MCDM). Wei [18] pioneered the notion of Hamacher AOs, while Jana et al. [19] suggested
Dombi AOs for PFNs. Wang et al. [20] suggested a hotel building energy efficiency rehabil-
itation project selection under PFSs. Riaz and Farid [21] proposed a hierarchical medical
diagnosis approach for COVID-19 with the help of picture-fuzzy fairly AOs. Naeem et
al. [22] proposed the Aczel–Alsina picture fuzzy AOs with MCDM. Farid and Riaz [23]
proposed some new Einstein interactive geometric AOs for q-rung orthopair fuzzy sets
(q-ROFSs). Saha et al. [24] presented novel hybrid hesitant fuzzy weighted AOs for MCDM
based on Archimedean and Dombi operations. MCDM employing q-ROF weighted fairly
AOs was suggested by Saha et al. [25]. Akram et al. [26] proposed an extension relating to
competition graphs. Karaaslan and Ozlu, [27] proposed correlation coefficients for dual
type-2 hesitant fuzzy sets. Alcantud [28] provided some information about the relationships
between fuzzy soft and soft topologies. Decision making is an effective process to provide
the most appropriate solution to real-world decision-making scenarios by considering and
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merging the opinions of various individuals on the problem [29]. Feng et al. [30] presented
several intuitionistic fuzzy soft sets.

In actual life, we may encounter various situations that cannot be solved by PFS, such
as when the sum of PMSD, NuMSD, and NgMSD > 1. In such a situation, PFS is unable
to produce a suitable outcome. Mahmood et al. [31], Ashraf et al. [32], and Gundogdu
and Kahraman [33] proposed the idea of a spherical fuzzy set (SFS) independently in their
articles. SFS offers the DM more latitude in dealing with uncertainty in decision-making
situations. Parimala et al. [34] introduced the Bellman–Ford algorithm in regard to SFSs. Li
et al. [35] proposed a novel concept of a q-rung picture fuzzy set (q-RPFS) as an extension
of SFS. Akram et al. [36] proposed some Einstein AOs for q-RPFSs. Pinar and Boran [37]
introduced some distance measure for q-RPFSs. He et al. [38] proposed some Dombi Hamy
mean AOs for q-RPFSs. Liu et al. [39] proposed Yager AOs for q-RPFSs.

In general, previous works have focused on developing models for collecting SF
information across the same time span. However, many complicated decision-making
situations need to consider the performances of alternatives over time. Such challenges are
referred to as multi-period decision-making (MPDM) problems, since they collect data at
discrete time intervals within a period. Numerous scholars have explored the temporal
generalized variants (commonly referred to as dynamic) of existing fuzzy AOs and analyzed
their effectiveness in the MPDM in recent decades. Kamaci et al. [40] proposed the idea of
dynamic AOs for interval-valued picture-hesitant fuzzy information and their applications
in MPDM. Yang et al. [41] initiated the concept of dynamic intuitionistic fuzzy normal
AOs. Jana et al. [42] introduced the concept of dynamic AOs for complex q-ROFSs. Peng
and Wang [43] proposed some dynamic AOs for a hesitant fuzzy set with applications to
MPDM. Gumus and Bali [44] proposed the novel idea of Einstein dynamic AOs for IFSs
with applications to period-based decision making.

Einstein’s t-norms and t-conorms are excellent choices for establishing the product
and sum of q-RPFSs, respectively. The Einstein product and sum, which are described in
terms of Einstein t-norms and t-conorms, respectively, provide fluent algebraic product
and sum approaches. Additionally, these operations define the intersection and union of
q-RPFSs, which is a good approximation of the intersection and union structure of q-RPFSs.
Additionally, several MCDM approaches incorporate alternative assessments within that
time span. Indeed, the evaluation process should take into consideration not just the
present performance of alternatives, but also their historical performance. The optimal
selection is contingent upon the alternatives’ previous and current performance in certain
MCDM issues.

Riaz and Farid proposed hybrid picture fuzzy aggregation operators with applica-
tions [45], Saha et al. introduced some distance measures for a picture fuzzy set [46],
and Vojinovic et al. introduced a hybrid technique for decision making [47]. Peng and
Yang gave some results related to Phytagorean fuzzy sets [48]. Jana et al. proposed some
Dombi aggregation operators for the bipolar fuzzy set [49]. Feng et al. [50], Yager and
Abbasov [51], and Yager [52] gave some important results for Pythagorean fuzzy sets and
q-rung orthopair fuzzy sets. There are many aggregation operators related to different
extensions of fuzzy sets, [52–55].

The remainder of this paper is organized as follows. Section 2 gives some details
related to the heterogeneity of cancer cells. Section 3 presents the mathematical modeling of
the proposed method. Section 4 provides the basics of q-RPFSs as well as other important
ideas. Section 5 explores some dynamic q-RPF Einstein AOs and their appealing features.
In Section 6, we used the presented AOs to construct an MCDM method. Section 7 goes
into detail about the case study, including numerical examples and an authenticity test.
Section 8 outlines the important findings of the study paper.

2. Heterogeneity of Cancer Cells

The heterogeneity of cancer cells makes developing successful treatment techniques
extremely difficult. Different cancer cells have different morphological and phenotypic
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characteristics. Higher efficacy is expected from refined treatment options that incorporate
the knowledge of heterogeneity. Heterogeneity in cancer cells can be caused by a variety of
factors. Among them, the tumor micro-environment exerts diverse selective pressures on
tumor cells and leads to a wider range of dominant sub-clones in different geographical
locations of the tumor. Beyond the variety that can be attributed to clonal evolution or
environmental changes, cancer stem cell differentiation (see details in Section 2.1) provides
a mechanism for producing phenotypic and functional heterogeneity. However, hetero-
geneity by itself does not rule out the possibility of a cancer stem cell (CSC) hierarchy,
according to [56].

The ability to spread is not the same for all cancer cells. Similarly, not all cancer
cells respond to treatment in the same way. Any therapy’s outcome is determined by
the cell’s characteristics: chemotherapy is more sensitive to some cells than radiotherapy,
and vice versa. These treatments can be used separately or in combination. To improve
treatment outcomes, radiation can be given before, during, or after chemotherapy. In
general, radiation is a highly effective treatment for a wide range of cancers, allowing for a
variety of therapeutic goals to be met. However, despite its efficiency, cancer stem cells (see
details in Section 2.1) that are considered elements of heterogeneous tumors are relatively
insensitive to radiotherapy. Due of their distinct properties, studies have revealed that these
cells may be primarily responsible for cancer spread. The total dose specification is critical
in radiation interval applications. In addition, the total dose is fractionated (over time) for
a variety of reasons: normal cells have more time to heal, but malignant cells have less
time to mend between fractions. This also permits tumor cells that were in a radio-resistant
phase of the cell cycle during one treatment to develop into a sensitive phase before the
next dose is given [57]. Furthermore, the dose of radiotherapy to be provided is determined
by a variety of criteria, including the location, size, and kind of cancer. The treatment
plan is created by considering the aforementioned factors. Long therapy programs are
sometimes recommended, with daily treatment sessions lasting a certain amount of time.
Irradiations are required once or twice a day in some treatment plans. Before planning
radiation, the issue of tumor heterogeneity must be addressed. Ignoring this could lead
to the development of cancer stem cells. Their radiation sensitivity may cause a delay in
cancer elimination.

2.1. Theory of Cancer Stem Cells and Differentiated Cancer Cells

Cancer stem cell theory is extremely useful because it elucidates not only the com-
plexity of tumor onset and growth and its capability to metastasize and reoccur, but also
the ineffectiveness of traditional cancer remedies. This evaluation examines stem cell
residences, inclusive of self-renewal, heterogeneity, and resistance to apoptosis. Because of
some similarities between these cells and stem cells (SCs), the former have been named
cancer stem cells (CSCs). The CSC model assumes that these cells have the following
characteristics: (1) self-renewal; (2) heterogeneity in their capability for multidirectional
differentiation; and (3) resistance to apoptosis. It is assumed that these CSC residence
decreases the effectiveness of conventional treatment plans that act especially on the differ-
entiated or differentiating tumor cells. The population of undifferentiated CSCs, forming a
minor fraction of the tumor mass, is spared [58].

It is thought that a key element regulating the biology of stem cells is their micro-
environment cells, such as those of the extracellular matrix, which facilitate self-renewal
and survival. As we begin to recognize the pathways that are probably crucial for the CSC
environment, we will optimistically be able to correctly goal this cellular population. The
precise mobile is related to the identification of CSCs. When inferring a mutation, authentic
cells are able to offer upward thrust to a tumor. A cancer stem cell is a self-renewing cell
within a tumor that has the capacity to regenerate the phenotypic diversity of the original
tumor. Cancer differentiation refers to the degree of development of the cancer cells in a
tumor. Well-differentiated tumor cells resemble normal cells and tend to grow and spread
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at a slower rate than undifferentiated or poorly differentiated tumor cells, which lack the
structure and function of normal cells and grow uncontrollably.

2.2. Hypothesis: CSCs Are Responsible for Tumor Growth

There is no symmetry in cancer cell division, which is called asymmetric division. The
two most important observations conclude that cancer stem cells are responsible for the
growth and persistence of the tumor in the body. Most tumors begin with a single cell,
however, not all cells inside a tumor are exactly the same. A tumor, in fact, has many distinct
types of cells. Some are cancerous, while others infiltrate normal cells and are thought to
guide the growth of cancer cells. Although tumors are produced from a single altered cell,
the cells within tumors may exhibit unique phenotypes, reflecting the normal tissue from
whence they originate, and have varying proliferation potential. The observed cellular
heterogeneity in tumors can be attributed to genetic instability and the selection of cells
that can adapt to the tumor micro-environment, providing an affordable explanation for
the aforementioned facts. Recent evidence significantly supports the notion that the cancer
stem cell model also plays an important role in tumor heterogeneity. Another observation
upon which the maximum cancer stem cellular principle is founded was drawn from
studies demonstrating that a massive range including most cancer cells had been required
to grow a tumor. Tumors have a mobile gradient wherein only a tiny population of tumor
stem cells may self-renew and then be transformed into a cell that is definitely capable of
successfully regenerating a tumor. Other cancer cells may have a more limited ability to
replicate, and as a result, they contribute to the tumor bulk but not to tumor safety [59].

Now, to move towards our treatment strategy, first we will explain the definition of
mathematical modeling which is based on the idea of converting real-world problems into
mathematical equations.

3. Mathematical Modeling

Mathematical modeling is the technique in which numerous mathematical structures—
graphs, equations, diagrams, scatter plots, tree diagrams, and so on—are used to represent
real global situations. This offers an abstraction that reduces a problem to its important traits.
The flow chart below shows the typical mathematical modeling process [60]. Firstly, the
abstract real-world problem is converted into to a well-defined mathematical problem. After
making some assumption and introducing some parameters, the mathematical equations
that describe the real-world dynamics of the problem are constructed. Subsequently, the
mathematical solution or construction numerical simulation solution behavior of the real-
world problem is found at the end of the validation by comparing the solution behavior of
the mathematical model with the observed real-world solution. There are many different
methods that can model the spread of cancer. Here, our main focus is to propose a treatment
strategy which can more effectively kill cancer cells.

3.1. Mathematical Modeling Using Stochastic Differential Equations

In this section, we will construct mathematical models for the interaction between
cancer stem cells (C) and differentiated cancer cells (D) in the framework of stochastic
differential equations (SDEs). We will consider the three following modeling approaches:

• An SDE model without treatment.
• An SDE model with chemotherapy.
• An SDDE model with chemotherapy and radiotherapy with delay.

An SDE Model for Interaction between Cancer Stem Cells (C) and Differentiated Cells (D)

Let C(t), D(t) be the populations of cancer stem cells (C) and differentiated cells (D)
at time t, respectively. Let µ > 0 be the division rate of cancer stem cells (C) and f denote
the fraction of CSCs dividing again into two CSCs, where 0 < f < 1. The dynamics of C
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and D can be those of a system of ordinary differential equations (ODEs) using a birth and
death model [61]:

dC
dt

= 2µ f C− µC− κCC,

dD
dt

= 2µ(1− f )C + δD− κDD.
(1)

The Figure 4 shows a compartmental analysis of all possible divisions of CSCs (C)
and DCs (D). Here, 2µ f is the fraction of C cells after the division that remained in the
compartment of C cells, and 2 µ(1− f ) is the fraction of D cells after the division that went
into the compartment of D cells.

Figure 4. Interaction between cancer stem cells (C) and differentiated cancer cells (D).

We assume here that δ < κD. Let δ (δ� 1) denotes the birth rate of D cells. Assume
that κC and κD denote the generic death rates of the C and D cells, respectively.

We deduce an SDE model that shows the interaction between C and D cells. For every
change, corresponding probabilities are given in Table 1. We assumed that C cells are
either divided into two new C cells or two new D cells. The asymmetric division of C cells
into one C cell and one D cell is not considered, as it does not affect the model [62]. Here,
m21 = 0 expresses the fact that D cells cannot move into the compartment of C cells.

Table 1. Table of probabilities corresponding to each change.

X = (C, D)T Corresponding Probability of Each Change (Pi)

∆X1 = (−1, 2)t P1 = µ(1− f )C4t

∆X2 = (−1, 0)t P2 = κCC4t

∆X3 = (1, 0)t P3 = µ f C4t

∆X4 = (0,−1)t P4 = κDD4t

∆X5 = (0, 1)t P5 = δD4t, δ� 1

∆X6 = (1,−1)t P6 = m21 = 0

∆X7 = (0, 0)t
P7 = 1−

6
∑

i=1
Pi (all other cases)

Equation (1) represents the conversion of observed heterogeneity and the spread
of cancer cells in a real problem into stochastic differential equations according to the
probabilities given in Table 1.
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4. Preliminaries

Over the universal set X, this section of the paper introduces several fundamental
concepts associated with q-RPFSs.

Definition 1 ([35]). A “q-rung picture fuzzy set” (q-RPFS) in X is defined as

χ = {〈ğ, δχ(ğ), νχ(ğ), λχ(ğ)|ğ ∈ X〉} (2)

where δχ(ğ), νχ(ğ), λχ(ğ) ∈ [0, 1], such that 0 ≤ δ
q
χ(ğ) + ν

q
χ(ğ) + λ

q
χ(ğ) ≤ 1 for all ğ ∈ X.

δχ(ğ), νχ(ğ), λχ(ğ) denote PMSG, NuMSG, and NgMSG, respectively, for some ğ ∈ X.
We denote this pair as αh̄ = (δαh̄ , ναh̄ , λαh̄) throughout this study, and employ q-RPFN to

denote represent the conditions δαh̄ , ναh̄ , λαh̄ ∈ [0, 1] and δ
q
αh̄ + ν

q
αh̄ + λ

q
αh̄ ≤ 1.

Definition 2 ([39]). It is vital to rank the q-RPFNs when applying them to real problems. For this,
the “score function” (SF) corresponding to q-RPFN αh̄ = (δαh̄ , ναh̄ , λαh̄) can be defined as

S(αh̄) = δ
q
αh̄ − ν

q
αh̄ − λ

q
αh̄ (3)

The range of SF is [−1, 1]. However, the aforementioned function appears to be incapable of
classifying q-RPFNs in a variety of situations. For this, an accuracy function (AF) H of αh̄ is
defined as

H(αh̄) = δ
q
αh̄ + ν

q
αh̄ + λ

q
αh̄ (4)

The range of AF is [0, 1].

Now, we discuss some Einstein operational rules for aggregating q-RPFNs.

Definition 3 ([36]). Let αh̄
1 = 〈δ1, ν1, λ1〉 and αh̄

2 = 〈δ2, ν2, λ2〉 be two q-RPFNs, i > 0, then

(i) αh̄
1 = 〈λ1, ν1, δ1〉

(ii) αh̄
1 ∨ε αh̄

2 = 〈max{δ1, δ2}, min{ν1, ν2}, min{λ1, λ2}〉
(iii) αh̄

1 ∧ε αh̄
2 = 〈min{δ1, δ2}, max{ν1, ν2}, max{λ1, λ2}〉

(iv) αh̄
1 ⊗ε αh̄

2 =

〈
δ1.εδ2

q
√

1+(1−δ
q
1).ε(1−δ

q
2)

, q

√
ν

q
1+ν

q
2

1+ν
q
1 .εν

q
2

, q

√
λ

q
1+λ

q
2

1+λ
q
1.ελ

q
2

〉

(v) αh̄
1 ⊕ε αh̄

2 =

〈
q

√
δ

q
1+ν

q
2

1+δ
q
1 .εδ

q
2
, ν1.εν2

q
√

1+(1−ν
q
1).ε(1−ν

q
2)

, λ1.ελ2
q
√

1+(1−λ
q
1).ε(1−λ

q
2)

〉
(vi) i.εαh̄

1 =

〈
q

√
(1+(δ1)

q)i−(1−(δ1)
q)i

(1+(δ1)
q)i+(1−(δ1)

q)i
,

q√2(ν1)
i

q
√

(2−(δ1)
q)i+((ν1)

q)i
,

q√2(λ1)
i

q
√

(2−(δ1)
q)i+((λ1)

q)i

〉
(vii) αh̄i

1 =

〈
q√2(δ1)

i

q
√

(2−(δ1)
q)i+((δ1)

q)i
, q

√
(1+(ν1)

q)i−(1−(ν1)
q)i

(1+(ν1)
q)i+(1−(ν1)

q)i
, q

√
(1+(λ1)

q)i−(1−(λ1)
q)i

(1+(λ1)
q)i+(1−(λ1)

q)i

〉
Definition 4 ([39]). Let αh̄

1 =
〈
δ1, ν1, λ1

〉
and αh̄

2 =
〈
δ2, ν2, λ2

〉
be two q-RPFNs andi,i1,i2 >

0 be the real numbers, then we have

1. αh̄
1 ⊕ αh̄

2 = αh̄
2 ⊕ αh̄

1

2. αh̄
1 ⊗ αh̄

2 = αh̄
2 ⊗ αh̄

1

3. i
(

αh̄
1 ⊕ αh̄

2

)
=
(
iαh̄

1

)
⊕
(
iαh̄

2

)
4.

(
αh̄

1 ⊗ αh̄
2

)i
= αh̄i

1 ⊗ αh̄i
2

5. (i1 +i2)α
h̄

1 =
(
i1αh̄

1

)
⊕
(
i2αh̄

2

)
6. αh̄i1+i2

1 = αh̄i1
1 ⊗ αh̄i2

2
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5. q-Rung Picture Fuzzy Dynamic Einstein AOs

The following section discusses certain dynamic q-RPF Einstein AOs and their appeal-
ing features.

5.1. q-Rung Picture Fuzzy Dynamic Einstein-Weighted Averaging Operator

Definition 5. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d). ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]
T is the weight

vector (WV) of the periods, where ∑d
k=1 ζ(mk) = 1 and let q-RPFDEWA : Xn → X. If

q-RPFDEWA
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)

=
d⊕

g=1

(
ζ
(
mg
)
·ε αh̄(mg

))
= ζ(m1) ·ε αh̄(m1)⊕ε ζ(m2) ·ε αh̄(m2)⊕ε, . . . ,⊕εζ(md) ·ε αh̄(md)

then q-RPFDEWA is called “q-rung picture fuzzy dynamic Einstein-weighted averaging (q-RPFDEWA)
operator”.

Theorem 1. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d). We can also find the q-RPFDEWA operator by
q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)

=

 q

√√√√√√√√√
∏d

g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏d

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏d
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏d
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏d

g=1

(
2− νq

αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
νq

αh̄(mg)

)ζ(mg)
, (5)

q
√

2 ∏d
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏d

g=1

(
2− λq

αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
λq

αh̄(mg)

)ζ(mg)


Here, ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]

T is the WV of the d different periods and ∑d
k=1 ζ(mk) = 1.

Proof. This theorem is proven using mathematical induction.
For g = 2

q-RPFDEWA(αh̄(m1), αh̄(m2)) = ζ(m1).εαh̄(m1)⊕ε ζ(m2).εαh̄(m2)

As we know that both ζ(m1).εαh̄(m1) and ζ(m2).εαh̄(m2) are q-RPFNs, and also ζ(m1).εαh̄

(m1)⊕ε ζ(m2).εαh̄(m2) is q-RPFN.
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ζ(m1).εαh̄(m1) =

 q

√√√√√ (1 + δ
q
αh̄(m1)

)ζ(m1) − (1− δ
q
αh̄(m1)

)ζ(m1)

(1 + δ
q
αh̄(m1)

)ζ(m1) + (1− δ
q
αh̄(m1)

)ζ(m1)
,

q
√

2(ν1)
ζ(m1)

q
√
(2− νq

αh̄(m1)
)ζ(m1) + (νq

αh̄(m1)
)ζ(m1)

,
q
√

2(λ1)
ζ(m1)

q
√
(2− λq

αh̄(m1)
)ζ(m1) + (λq

αh̄(m1)
)ζ(m1)



ζ(m2).εαh̄(m2) =

 q

√√√√√ (1 + δ
q
αh̄(m2)

)ζ(m2) − (1− δ
q
αh̄(m2)

)ζ(m2)

(1 + δ
q
αh̄(m2)

)ζ(m2) + (1− δ
q
αh̄(m2)

)ζ(m2)
,

q
√

2(ν2)
ζ(m2)

q
√
(2− νq

αh̄(m2)
)ζ(m2) + (νq

αh̄(m2)
)ζ(m2)

,
q
√

2(λ2)
ζ(m2)

q
√
(2− λq

αh̄(m2)
)ζ(m2) + (λq

αh̄(m2)
)ζ(m2)


Then, q-RPFDEWA(αh̄

1, αh̄
2)

= ζ(m1).εαh̄
1 ⊕ε ζ(m2).εαh̄

2

=

 q

√√√√√ (1 + δ
q
αh̄(m1)

)ζ(m1) − (1− δ
q
αh̄(m1)

)ζ(m1)

(1 + δ
q
αh̄(m1)

)ζ(m1) + (1− δ
q
αh̄(m1)

)ζ(m1)
,

q
√

2(ν1)
ζ(m1)

q
√
(2− νq

αh̄(m1)
)ζ(m1) + (νq

αh̄(m1)
)ζ(m1)

,

q
√

2(λ1)
ζ(m1)

q
√
(2− λq

αh̄(m1)
)ζ(m1) + (λq

αh̄(m1)
)ζ(m1)

⊕ε

 q

√√√√√ (1 + δ
q
αh̄(m2)

)ζ(m2) − (1− δ
q
αh̄(m2)

)ζ(m2)

(1 + δ
q
αh̄(m2)

)ζ(m2) + (1− δ
q
αh̄(m2)

)ζ(m2)
,

q
√

2(ν2)
ζ(m2)

q
√
(2− νq

αh̄(m2)
)ζ(m2) + (νq

αh̄(m2)
)ζ(m2)

,
q
√

2(λ2)
ζ(m2)

q
√
(2− λq

αh̄(m2)
)ζ(m2) + (λq

αh̄(m2)
)ζ(m2)



=


q

√√√√√√√√√√
(1+δ

q
αh̄(m1)

)ζ(m1)−(1−δ
q
αh̄(m1)

)ζ(m1)

(1+δ
q
αh̄(m1)

)ζ(m1)+(1−δ
q
αh̄(m1)

)ζ(m1)
+

(1+δ
q
αh̄(m2)

)ζ(m2)−(1−δ
q
αh̄(m2)

)ζ(m2)

(1+δ
q
αh̄(m2)

)ζ(m2)+(1−δ
q
αh̄(m2)

)ζ(m2)

1 +

(
(1+δ

q
αh̄(m1)

)ζ(m1)−(1−δ
q
αh̄(m1)

)ζ(m1)

(1+δ
q
αh̄(m1)

)ζ(m1)+(1−δ
q
αh̄(m1)

)ζ(m1)

)
.ε

(
(1+δ

q
αh̄(m2)

)ζ(m2)−(1−δ
q
αh̄(m2)

)ζ(m2)

(1+δ
q
αh̄(m2)

)ζ(m2)+(1−δ
q
αh̄(m2)

)ζ(m2)

) ,

(
q√2(ν1)

ζ(m1)

q
√
(2−νq

αh̄(m1)
)ζ(m1)+(νq

αh̄(m1)
)ζ(m1)

)
.ε

(
q√2(ν2)

ζ(m2)

q
√
(2−ν

q
αh̄(m2)

)ζ(m2)+(νq
αh̄(m2)

)ζ(m2)

)

q

√√√√1 +

(
1−

2(νq
αh̄(m1)

)ζ(m1)

(2−νq
αh̄(m1)

)ζ(m1)+(νq
αh̄(m1)

)ζ(m1)

)
.ε

(
1−

2(νq
αh̄(m2)

)ζ(m2)

(2−νq
αh̄(m2)

)ζ(m2)+(νq
αh̄(m2)

)ζ(m2)

) ,

(
q√2(λ1)

ζ(m1)

q
√
(2−νq

αh̄(m1)
)ζ(m1)+(νq

αh̄(m1)
)ζ(m1)

)
.ε

(
q√2(λ2)

ζ(m2)

q
√
(2−λ

q
αh̄(m2)

)ζ(m2)+(λq
αh̄(m2)

)ζ(m2)

)

q

√√√√1 +

(
1−

2(λq
αh̄(m1)

)ζ(m1)

(2−λq
αh̄(m1)

)ζ(m1)+(λq
αh̄(m1)

)ζ(m1)

)
.ε

(
1−

2(λq
αh̄(m2)

)ζ(m2)

(2−λq
αh̄(m2)

)ζ(m2)+(λq
αh̄(m2)

)ζ(m2)

)
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=

 q

√√√√√ (1 + δ
q
αh̄(m1)

)ζ(m1).ε(1 + δ
q
αh̄(m2)

)ζ(m2) − (1− δ
q
αh̄(m1)

)ζ(m1).ε(1− δ
q
αh̄(m2)

)ζ(m2)

(1 + δ
q
αh̄(m1)

)ζ(m1).ε(1 + δ
q
αh̄(m2)

)ζ(m2) + (1− δ
q
αh̄(m1)

)ζ(m1).ε(1− δ
q
αh̄(m2)

)ζ(m2)
,

q
√

2(νζ(m1)
1 ν

ζ(m2)
2 )√

(2− νq
αh̄(m1)

)ζ(m1).ε(2− νq
αh̄(m2)

)ζ(m2) + (νq
αh̄(m1)

)ζ(m1).ε(νq
αh̄(m2)

)ζ(m2)
,

q
√

2(λqζ(m1)
1 λqζ(m2)

2 )

q
√
(2− λq

αh̄(m1)
)ζ(m1).ε(2− λq

αh̄(m2)
)ζ(m2) + (λq

αh̄(m1)
)ζ(m1).ε(λq

αh̄(m2)
)ζ(m2)



=

 q

√√√√√√√√√
∏

q
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏

q
g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏
q
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏

q
g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏
q
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏

q
g=1

(
2− νq

αh̄(mg)

)ζ(mg)
+ ∏

q
g=1

(
νq

αh̄(mg)

)ζ(mg)
,

q
√

2 ∏
q
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏

q
g=1

(
2− λq

αh̄(mg)

)ζ(mg)
+ ∏

q
g=1

(
λq

αh̄(mg)

)ζ(mg)


which proves for g = 2.

Assuming that the result is true for g = r, we have
q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(mr)

)

=

 q

√√√√√√√√√
∏r

g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏r

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏r
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏r

g=1

(
2− νq

αh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
νq

αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏r

g=1

(
2− λq

αh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
λq

αh̄(mg)

)ζ(mg)


Now, we will prove for g = r + 1, q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(mr+1)

)
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= q-RPFDEWA
(

αh̄(m1), αh̄(m2), · · · , αh̄(mr)
)
⊕ ζ(mr+1).εαh̄(mr+1)

=

 q

√√√√√√√√√
∏r

g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏r

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏r
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏r

g=1

(
2− νq

αh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
νq

αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏r

g=1

(
2− λαh̄(mg)

)ζ(mg)
+ ∏r

g=1

(
λq

αh̄(mg)

)ζ(mg)



⊕

 q

√√√√√√
(

1 + δ
q
αh̄(mr+1)

)ζ(mr+1) −
(

1− δ
q
αh̄(mr+1)

)ζ(mr+1)

(
1 + δ

q
αh̄(mr+1)

)ζ(mr+1)
+
(

1− δ
q
αh̄(mr+1)

)ζ(mr+1)
,

q
√

2
(

ναh̄(mr+1)

)ζ(mr+1)

q

√(
2− νq

αh̄(mr+1)

)ζ(mr+1)
+
(

νq
αh̄(mr+1)

)ζ(mr+1)
,

q
√

2
(

λαh̄(mr+1)

)ζ(mr+1)

q

√(
2− λq

αh̄(mr+1)

)ζ(mr+1)
+
(

λq
αh̄(mr+1)

)ζ(mr+1)



=

 q

√√√√√√√√√
∏r+1

g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏r+1

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏r+1
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏r+1

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r+1
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏r+1

g=1

(
2− νq

αh̄(mg)

)ζ(mg)
+ ∏r+1

g=1

(
νq

αh̄(mg)

)ζ(mg)
,

q
√

2 ∏r+1
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏r+1

g=1

(
2− λq

αh̄(mg)

)ζ(mg)
+ ∏r+1

g=1

(
λq

αh̄(mg)

)ζ(mg)


and thus, the result holds for g = r + 1. This proves the required result.

Theorem 2. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
be the family of q-RPFNs. The aggregated

value using q-RPFDEWA operator is q-RPFN.

We can easily show the following properties.
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Theorem 3. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d) and all αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) are equal, i.e., αh̄(mk) = αh̄ for all k, then

q-RPFDEWA
(

αh̄(m1), αh̄(m2), · · · , αh̄(mr)
)
= αh̄.

Proof. Since αh̄(mk) = αh̄, for all k = 1, . . . , p, i.e., δαh̄(mk)
= δαh̄ and ναh̄(mk)

= ναh̄ , (k =

1, · · · , p), then

q-RPFDEWA
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)

=

 q

√√√√√√√√√
∏d

g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
−∏d

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)

∏d
g=1

(
1 + δ

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
1− δ

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏d
g=1

(
ναh̄(mg)

)ζ(mg)

q

√
∏d

g=1

(
2− ν

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
ν

q
αh̄(mg)

)ζ(mg)
,

q
√

2 ∏d
g=1

(
λαh̄(mg)

)ζ(mg)

q

√
∏d

g=1

(
2− λ

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
λ

q
αh̄(mg)

)ζ(mg)



=

 q

√√√√√√√√√
(

1 + δ
q
αh̄(mg)

)∑d
g=1 ζ(mg)

−
(

1− δ
q
αh̄(mg)

)∑d
g=1 ζ(mg〉

(
1 + δ

q
αh̄(mg)

)∑d
g=1 ζ(mg)

+

(
1− δ

q
αh̄(mg)

)∑d
g=1 ζ(mg)

,

q
√

2
(

ναh̄(mg)

)∑d
g=1 ζ(mg)

q

√(
2− ν

q
αh̄(mg)

)∑d
g=1 ζ(mg)

+

(
ν

q
αh̄(mg)

)∑d
g=1 ζ(mg)

,

q
√

2
(

λαh̄(mg)

)∑d
g=1 ζ(mg)

q

√(
2− λ

q
αh̄(mg)

)∑d
g=1 ζ(mg)

+

(
λ

q
αh̄(mg)

)∑d
g=1 ζ(mg)



=

 q

√√√√√√√
(

1 + δ
q
αh̄(mg)

)
−
(

1− δ
q
αh̄(mg)

)
(

1 + δ
q
αh̄(mg)

)
+

(
1− δ

q
αh̄(mg)

) ,

q
√

2
(

ναh̄(mg)

)
q

√(
2− ν

q
αh̄(mg)

)
+

(
ν

q
αh̄(mg)

) ,

q
√

2
(

λαh̄(mg)

)
q

√(
2− λ

q
αh̄(mg)

)
+

(
λ

q
αh̄(mg)

)


=
(

δαh̄(mg) , ναh̄(mg) , λαh̄(mg)

)
= αh̄ .

Theorem 4. Assume that αh̄(mk) = 〈δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)
〉 are the family of q-RPFNs, then

αh̄
min ≤ q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)
≤ αh̄

max (6)

where
αh̄

min = min(αh̄(mk)), αh̄
max = max(αh̄(mk))

Proof. Let f (y) = q
√

2−yq

yq , y ∈ (0, 1]. Then, f ′(y) < 0. Thus, f (y) is a decreasing function
on (0, 1]. Since δαh̄

min
≤ δαh̄(mk)

≤ δαh̄max
, then, f (δαh̄max

) ≤ f (δαh̄(mk)
) ≤ f (δαh̄

min
), i.e.,

q

√
2− δq

αh̄max

δq
αh̄max

≤ q

√√√√2− δq
αh̄(mk)

δq
αh̄(mk)

≤ q

√
2− δq

αh̄
min

δq
αh̄

min

(j = 1, 2, . . . , n)

Here, ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]
T is the WV of the periods and ∑d

k=1 ζ(mk) = 1.
Now,
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q

√√√√ d

∏
k=1

(
2− δq

αh̄max

δq
αh̄max

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
2− δq

αh̄(mk)

δq
αh̄(mk)

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
2− δq

αh̄
min

δq
αh̄

min

)ζ(k)

⇔ q

√√√√(2− δq
αh̄max

δq
αh̄max

)
≤ q

√√√√ d

∏
k=1

(
2− δq

αh̄(mk)

δq
αh̄(mk)

)ζ(k)

≤ q

√√√√(2− δq
αh̄

min

δq
αh̄

min

)

⇔ q

√√√√(2− δq
αh̄max

δq
αh̄max

)
+ 1 ≤ q

√√√√ d

∏
k=1

(
2− δq

αh̄(mk)

δq
αh̄(mk)

)ζ(k)

+ 1 ≤ q

√√√√(2− δq
αh̄

min

δq
αh̄

min

)
+ 1

⇔
q
√

2
q
√

δq
αh̄ max

≤ q

√√√√ d

∏
k=1

(
2− δq

αh̄(mk)

δq
αh̄(mk)

)ζ(k)

+ 1 ≤
q
√

δq
αh̄

min
q
√

2

⇔ δαh̄
min

≤
q
√

2

q

√√√√∏d
k=1

(
2−δq

αh̄(mk)

)ζ(k)

∏d
k=1

(
δq

αh̄(mk)

)ζ(k) + 1

≤ δαh̄ max

⇔ δαh̄
min

≤
q
√

2

q

√√√√∏d
k=1

(
2−δq

αh̄(mk)

)ζ(k)
+∏d

k=1

(
δq

αh̄(mk)

)ζ(k)

∏d
k=1

(
δq

αh̄(mk)

)ζ(k)

≤ δαh̄max

⇔ δαh̄
min

≤
q

√
2 ∏d

k=1

(
δq

αh̄(mk)

)ζ(k)

q

√
∏d

k=1

(
2− δq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
δq

αh̄(mk)

)ζ(k)
≤ δαh̄max

(7)

Let M(t) = q
√

1−tq

1+tq , t ∈ [0, 1]. Then, M′(t) < 0. Thus, M(t) is a decreasing function on
(0, 1]. Since ναh̄max

≤ ναh̄(mk)
≤ ναh̄

min
, then M(ναh̄

min
) ≤ M(ναh̄(mk)

) ≤ M(ναh̄max
), i.e.,

q

√
1− νq

αh̄
min

1 + νq
αh̄

min

≤ q

√√√√1− νq
αh̄(mk)

1 + νq
αh̄(mk)

≤ q

√
1− νq

αh̄max

1 + νq
αh̄max

(j = 1, 2, . . . , n)

Let ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]
T be the WV of the periods of

αh̄(mk) = 〈δαh̄(mk)
, νq

αh̄(mk)
, λαh̄(mk)

〉, s.t.

d

∑
k=1

ζ(k) = 1

Now,
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q

√√√√( 1− νq
αh̄

min

1 + νq
αh̄

min

)ζ(k)

≤ q

√√√√( 1− νq
αh̄(mk)

1 + νq
αh̄(mk)

)ζ(k)

≤ q

√√√√( 1− νq
αh̄max

1 + νq
αh̄max

)ζ(k)

⇔ q

√√√√ d

∏
k=1

(
1− νq

αh̄
min

1 + νq
αh̄

min

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− νq

αh̄(mk)

1 + νq
αh̄(mk)

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− νq

αh̄max

1 + νq
αh̄max

)ζ(k)

⇔ q

√√√√√( 1− νq
αh̄

min

1 + νq
αh̄

min

)∑d
k=1 ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− νq

αh̄(mk)

1 + νq
αh̄(mk)

)ζ(k)

≤ q

√√√√√( 1− νq
αh̄max

1 + νq
αh̄max

)∑d
k=1 ζ(k)

⇔
q√2

q
√

1 + νq
αh̄

min

≤ q

√√√√ d

∏
k=1

(
1− νq

αh̄(mk)

1 + νq
αh̄(mk)

)ζ(k)

+ 1 ≤
q√2

q
√

1 + νq
αh̄ max

⇔ q
√

1 + νq
αh̄ max

≤
q√2

q

√√√√√√∏d
k=1

(
1−νq

αh̄(mk)

)ζ(k)
+∏d

k=1

(
1+νq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1+νq

αh̄(mk)

)ζ(k)

≤ q
√

1 + νq
αh̄

min

⇔ q
√

1 + νq
αh̄ max

≤ q

√√√√√√ 2 ∏d
k=1

(
1 + νq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1− νq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1 + νq

αh̄(mk)

)ζ(k)
≤ q

√
1 + νq

αh̄
min

⇔ q
√

1 + νq
αh̄ max

− 1 ≤ q

√√√√√√ 2 ∏d
k=1

(
1 + νq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1− νq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1 + νq

αh̄(mk)

)ζ(k)
− 1 ≤ q

√
1 + νq

αh̄
min
− 1

⇔ ναh̄max
≤ q

√√√√√√∏d
k=1

(
1 + νq

αh̄(mk)

)ζ(k)
−∏d

k=1

(
1− νq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1 + νq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1− νq

αh̄(mk)

)ζ(k)
≤ ναh̄

min
(8)

Again let M(t) = q
√

1−tq

1+tq , t ∈ [0, 1]. Then, M′(t) < 0. Thus, M(t) is a decreasing function
on (0, 1]. Since λαh̄max

≤ λαh̄(mk)
≤ λαh̄

min
, then M(λαh̄

min
) ≤ M(λαh̄(mk)

) ≤ M(λαh̄max
), i.e.,

q

√
1− λq

αh̄
min

1 + λq
αh̄

min

≤ q

√√√√1− λq
αh̄(mk)

1 + λq
αh̄(mk)

≤ q

√
1− λq

αh̄max

1 + λq
αh̄max

(j = 1, 2, . . . , n)

Let ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]
T be the WV of the periods of

αh̄(mk) = 〈δαh̄(mk)
, λq

αh̄(mk)
, λαh̄(mk)

〉, s.t.

d

∑
k=1

ζ(k) = 1

Now,
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q

√√√√(1− λq
αh̄

min

1 + λq
αh̄

min

)ζ(k)

≤ q

√√√√(1− λq
αh̄(mk)

1 + λq
αh̄(mk)

)ζ(k)

≤ q

√√√√(1− λq
αh̄max

1 + λq
αh̄max

)ζ(k)

⇔ q

√√√√ d

∏
k=1

(
1− λq

αh̄
min

1 + λq
αh̄

min

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− λq

αh̄(mk)

1 + λq
αh̄(mk)

)ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− λq

αh̄max

1 + λq
αh̄max

)ζ(k)

⇔ q

√√√√√(1− λq
αh̄

min

1 + λq
αh̄

min

)∑d
k=1 ζ(k)

≤ q

√√√√ d

∏
k=1

(
1− λq

αh̄(mk)

1 + λq
αh̄(mk)

)ζ(k)

≤ q

√√√√√(1− λq
αh̄max

1 + λq
αh̄max

)∑d
k=1 ζ(k)

⇔ q

√√√√(1− λq
αh̄

min

1 + λq
αh̄

min

)
+ 1 ≤ q

√√√√ d

∏
k=1

(
1− λq

αh̄(mk)

1 + λq
αh̄(mk)

)ζ(k)

+ 1 ≤ q

√√√√(1− λq
αh̄max

1 + λq
αh̄max

)
+ 1

⇔ q
√

1 + λq
αh̄max

≤
q
√

2

q

√
∏d

k=1

(
1−λq

αh̄(mk)
1+λq

αh̄(mk)

)ζ(k)
+ 1

≤ q
√

1 + λq
αh̄

min

⇔ q
√

1 + λq
αh̄max

≤
q
√

2

q

√√√√√√∏d
k=1

(
1−λq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1+λq

αh̄(mk)

)ζ(k) + 1

≤ q
√

1 + λq
αh̄

min

⇔ q
√

1 + λq
αh̄max

≤ q

√√√√√√ 2 ∏d
k=1

(
1 + λq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1− λq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1 + λq

αh̄(mk)

)ζ(k)
≤ q

√
1 + λq

αh̄
min

⇔ q
√

1 + λq
αh̄ max

− 1 ≤ q

√√√√√√ 2 ∏d
k=1

(
1 + λq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1− λq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1 + λq

αh̄(mk)

)ζ(k)
− 1 ≤ q

√
1 + λq

αh̄
min
− 1

⇔ λαh̄ max
≤ q

√√√√√√∏d
k=1

(
1 + λq

αh̄(mk)

)ζ(k)
−∏d

k=1

(
1− λq

αh̄(mk)

)ζ(k)

∏d
k=1

(
1 + λq

αh̄(mk)

)ζ(k)
+ ∏d

k=1

(
1− λq

αh̄(mk)

)ζ(k)
≤ λαh̄

min
(9)

Assume that
q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)
= αh̄

By Equations (7)–(9), we can write ναh̄max
≤ ναh̄ ≤ ναh̄

min
, λαh̄max

≤ λαh̄ ≤ λαh̄
min

and
δαh̄

min
≤ δαh̄ ≤ δαh̄max

, we have

αh̄
min ≤ q-RPFDEWA

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)
≤ αh̄

max (10)

Theorem 5. (Monotonicity) Assume that αh̄(mk) = 〈δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)
〉 and

αh̄∗(mk) = 〈δ∗αh̄(mk)
, ν∗

αh̄(mk)
, λ∗

αh̄(mk)
〉 are the families of q-RPFNs. If δ∗

αh̄(mk)
≥ δαh̄(mk)

, ν∗
αh̄(mk)

≤
ναh̄(mk)

and λ∗
αh̄(mk)

≤ λαh̄(mk)
for all j, then



Symmetry 2022, 14, 2538 18 of 40

q-RPFDEWA
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)
≤ q-RPFDEWA

(
αh̄∗(m1), αh̄∗(m2), · · · , αh̄∗(md)

)
Proof. The proof is trivial.

5.2. q-Rung Picture Fuzzy Dynamic Einstein-Weighted Geometric Operator

Definition 6. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d). ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]
T is the WV of

the periods, where ∑d
k=1 ζ(mk) = 1 and let q-RPFDEWG : Xn → X. If

q-RPFDEWG
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)

=
d⊕

g=1

(
ζ
(
mg
)
·ε αh̄(mg

))
= ζ(m1) ·ε αh̄(m1)⊕ε ζ(m2) ·ε αh̄(m2)⊕ε, . . . ,⊕εζ(md) ·ε αh̄(md)

then q-RPFDEWG is called “q-rung picture fuzzy dynamic Einstein-weighted geometric (q-RPFDEWG)
operator”.

Theorem 6. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d). We can also find the q-RPFDEWG operator by
q-RPFDEWG

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)

=


q
√

2 ∏d
g=1

(
δαh̄(mg)

)ζ(mg)

∏d
g=1

(
2− δ

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
δ

q
αh̄(mg)

)ζ(mg)
,

q

√√√√√√√√√
∏d

g=1

(
1 + ν

q
αh̄(mg)

)ζ(mg)
−∏d

g=1

(
1− ν

q
αh̄(mg)

)ζ(mg)

∏d
g=1

(
1 + ν

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
1− ν

q
αh̄(mg)

)ζ(mg)
, (11)

q

√√√√√√√√√
∏d

g=1

(
1 + λ

q
αh̄(mg)

)ζ(mg)
−∏d

g=1

(
1− λ

q
αh̄(mg)

)ζ(mg)

∏d
g=1

(
1 + λ

q
αh̄(mg)

)ζ(mg)
+ ∏d

g=1

(
1− λ

q
αh̄(mg)

)ζ(mg)


Here, ζ(k) = [ζ(m1), ζ(m2), · · · , ζ(md)]

T is the WV of the d different periods and ∑d
k=1 ζ(mk) = 1.

Proof. This is the same as Theorem 1.

Theorem 7. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
be the family of q-RPFNs. The aggregated

value using the q-RPFDEWG operator is q-RPFN.

Proof. This is same as Theorem 2.
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Theorem 8. Let αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) be the collection of q-RPF

values for d different periods (k = 1, 2, · · · , d) and all αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
(k = 1, · · · , d) are equal, i.e., αh̄(mk) = αh̄ for all k, then

q-RPFDEWG
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)
= αh̄.

Proof. This is same as Theorem 3.

Theorem 9. Assume that αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
is the family of q-RPFNs, then

αh̄
min ≤ q-RPFDEWG

(
αh̄(m1), αh̄(m2), · · · , αh̄(md)

)
≤ αh̄

max (12)

where
αh̄

min = min(αh̄(mk)), αh̄
max = max(αh̄(mk))

Proof. This is same as Theorem 4.

Theorem 10. (Monotonicity) Assume that αh̄(mk) =
(

δαh̄(mk)
, ναh̄(mk)

, λαh̄(mk)

)
and

αh̄∗(mk) =
(

δ∗
αh̄(mk)

, ν∗
αh̄(mk)

, λ∗
αh̄(mk)

)
are the families of q-RPFNs. If δ∗

αh̄(mk)
≥ δαh̄(mk)

, ν∗
αh̄(mk)

≤
ναh̄(mk)

and λ∗
αh̄(mk)

≤ λαh̄(mk)
for all j, then

q-RPFDEWG
(

αh̄(m1), αh̄(m2), · · · , αh̄(md)
)
≤ q-RPFDEWG

(
αh̄∗(m1), αh̄∗(m2), · · · , αh̄∗(md)

)
Proof. This is same as Theorem 5.

6. MCDM Method with Proposed AOs

Consider δג =
{

δ1ג, δ2ג, · · · , δגm
}

to be the discrete set of m alternatives and ℵδ ={
ℵδ

1,ℵδ
2, · · · ,ℵδ

n
}

be a finite set of n criteria whose weights vector is W = [f1,f2, · · · ,fn].
k = 1, 2, · · · , d is a finite set of d periods whose weight vector is ζ(mk) = [ζ(m1), ζ(m2), · · · ,
ζ(md)]

T , where ζ(mk) > 0, ∑d
k=1 ζ(mk) = 1. Let R(mk) =

(
rk

ij

)
m×n

=(
δ′ij(mk), ν′ij(mk), λ′ij(mk)

)
m×n

be the decision matrix with q-RPF values, where δ′ij(mk)

represents the PMSD of the ith alternative that satisfies the jth criterion at the kth period,
and ν′ij(mk) represents the NuSMG of the ith alternative that satisfies the jth criterion during

the kth period and λ′ij(mk) represents the NgSMG of the ith alternative that satisfies the jth

criterion during the kth period such that 0 ≤ δ′ij(mk) ≤ 1, 0 ≤ ν′ij(mk) ≤ 1, 0 ≤ λ′ij(mk)

≤ 1 δ′ij(mk) + ν′ij(mk) + λ′ij(mk) ≤ 1 for i = 1, 2, · · · , m, j = 1, 2, · · · , n, k = 1, 2, · · · , p. New
MCDM method is illustrated in the following Algorithm 1.
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Algorithm 1 (MCDM Method)

Step 1:
Obtain the decision matrices R(mk) =

(
rk

ij

)
m×n

=
(

δ′ij(mk), ν′ij(mk), λ′ij(mk)
)

m×n
for the d

different periods.
Step 2:
Two kinds of criterion are discussed in the decision matrix: (ζc) cost type indicators and (ζb)
benefit type indicators. There is no need for normalization if all indicators are of the same
kind, but in MCDM, there may be two types of criteria. The matrix was updated to the trans-
forming response matrix in this case N(mk) =

(
nk

ij

)
m×n

=
(
δij(mk), νij(mk), λij(mk)

)
m×n

using the normalization formula Equation (13).

(
nk

ij

)
m×n

=


((

rk
ij

)
m×n

)c
; j ∈ ζc(

rk
ij

)
m×n

; j ∈ ζb.
(13)

where
((

rk
ij

)
m×n

)c
show the compliment of

(
rk

ij

)
m×n

.

Step 3:
In this phase, we used one of the proposed AOs to aggregate all the normalized decision
matrices N(mk) =

(
nk

ij

)
m×n

=
(
δij(mk), νij(mk), λij(mk)

)
m×n into one cumulative q-RPF

matrix Z =
(
zij
)

m×n =
(
δij, νij, λij

)
m×n.

zij = q-RPFDEWA
(
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)
=
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+ ∏d
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1− δq
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,

q
√
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ζ(mk)
nij(mk)

q

√
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2− νq

nij(mk)

)ζ(mk)
+ ∏d

k=1

(
νq

nij(mk)

)ζ(mk)
,

q
√

2 ∏d
k=1 λ

ζ(mk)
nij(mk)

q

√
∏d

k=1

(
2− λq

nij(mk)

)ζ(mk)
+ ∏d

k=1

(
λq

nij(mk)
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or
zij = q-RPFDEWG

(
nij(m1), nij(m2), · · · , nij(md)

)
=


q
√

2 ∏d
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√
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(
1− νqnij(mk)
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(
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(
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,

q
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)ζ(mk)



(15)
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Step 4:
Define A+ = (αh̄+1

, αh̄+2
, . . . , αh̄+m

)T and A− = (αh̄−1
, αh̄−2

, . . . , αh̄−m
)T as the q-RPF

positive ideal solution (q-RPFPIS) and the q-RPF negative ideal solution (q-RPFNIS),
respectively, where αh̄+

i = (1, 0, 0), (i = 1, 2, . . . , m) are the m largest q-RPFNs and
αh̄−

i = (0, 0, 1), (i = 1, 2, . . . , m) are the m smallest q-RPFNs. Furthermore, we denote the
alternatives δגi(i = 1, 2, . . . , n) by δגi = (ni1, ni2, . . . , rim)

T , (i = 1, 2, . . . , n).
Step 5:
Calculate the distance between the alternative δגi and the q-RPFPIS A+ and the distance
between the alternative δגi and the q-RPFNIS A−respectively:

d
(

δגi, A+
)
=

m

∑
j=1

fjd
(

zij, δג
+
j

)
=

1
2

m

∑
j=1

fj
(∣∣δij − 1

∣∣+ ∣∣νij − 0
∣∣+ ∣∣λij − 0

∣∣)
=

1
2

m

∑
j=1

fj
(
1− δij + νij + λij

)
and

d
(

δגi, A−
)
=

m

∑
j=1

fjd
(

zij, αh̄−
j

)
==

1
2

m

∑
j=1

fj
(∣∣δij − 0

∣∣+ ∣∣νij − 0
∣∣+ ∣∣λij − 1

∣∣)
=

1
2

m

∑
j=1

fj
(
1 + δij + νij − λij

)
Step 6:
Calculate the closeness coefficient of each alternative:

c
(

δגi

)
=

d
(
δגi, A−

)
d
(
δגi, A+

)
+ d
(
δגi, A−

) , i = 1, 2, · · · , n (16)

Step 7:
Rank all the alternatives δגi(i = 1, 2, · · · , n) according to the closeness coefficients c

(
δגi
)
(i =

1, 2, · · · , n) : the greater value c
(
δגi
)
, the better alternative δגi.

7. Case Study

Cancer can be understood as an wide range of diseases characterized by the event
of abnormal cells that divide uncontrollably and have the power to infiltrate and destroy
traditional body tissue. Cancer usually has the ability to unfold throughout the body [63].

In a succession of stages, cancer cells spread to other organs. These stages are described
as follows:

1. Moving to other areas of the body via the lymphatic system and bloodstream;
2. Causing new blood vessels to grow, which creates blood delivery to the metastatic

tumor that enables it to continue developing; the circulatory (blood) system is involved
(hematogenous);

3. Spreading into or infiltrating normal nearby tissue;
4. Growing in this tissue until a tiny tumor forms;
5. Stopping in small blood vessels farther away, invading the blood vessel walls, and

proceeding into the surrounding tissue;
6. Passing through the lymph glands or capillaries in the region.
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It is very much clear that cancer spreads due to the malignancy of the cells and it
spreads as the malignancy travels into other cells. In the next section, we will start
explaining different cancer treatments followed by the description of our technique to
model the spread of cancer and our treatment strategy.

7.1. Different Treatment Strategies of Cancer

The data in this section come from [64]. There are various forms of cancer treatments
that aim to achieve the following objectives.

(i) Curing cancer, which means that it is no longer present. It can take years to find out
whether a person’s cancer has been cured.

(ii) If a cure is unattainable, the goal may be to control the condition, such as shrinking the
tumor or stopping the cancer from developing and spreading, or a combination of the
two. This can improve the patient’s quality of life and help them live longer. In many
situations, the cancer does not go away completely, but it is managed and controlled
as a chronic disease, similarly to heart disease or diabetes. In other circumstances, the
cancer may appear to have gone away for a time, but it may return.

(iii) Chemotherapy medications may be used if the cancer has progressed to an advanced
stage.

Now, we will go over some of the most common cancer therapies, which vary depend-
ing on the type of cancer.

7.2. Chemotherapy

The employment of chemicals to treat both low-grade and malignant tumors is referred
to as “chemotherapy.” Its purpose is to immediately limit tumor cell growth by rendering
them unable to replicate or by inducing apoptosis (programmed cell death). Apoptosis
corresponds to a set of cells in the human body at any one time and notifies the organ when
new cells are necessary in functional organs. Tumor cells in malignancy may be resilient to
apoptosis or replicate faster than the quantity of dying cells, resulting in tumor growth.

Cytotoxic and Cytostatic Agents

Chemotherapeutic drugs are employed to halt this reproduction process, modify
tumor cell behavior, or directly kill tumor cells. Chemotherapy medications are divided
into two categories: “cytostatic” therapies, also known as targeted or biologic drugs, which
limit cell reproduction, and “cytotoxic” drugs, which cause cell death [65]. The phases are
discussed in [64].

Chemotherapy medications are classified into several groups based on their role in
the elimination of cancer cells. More specifically, their assignment to a specific category
depends on the phase of the cell cycle interrupted by the drug action [64]. The drug used is
supported to interrupt the cell cycle at the M phase, when a cell actually divides . The aim
of chemotherapy is here to enhance the differentiation, i.e., the splitting of a mother cell
into two DCs.

The main goal of using chemotherapy in our suggested treatment is to enhance the
radio sensitivity of tumor cells.

7.3. Radiotherapy and Common Radiobiological Models

In radiotherapy, ionized radiation to kill or damage cancer cells has been used, which
stops cancer cells from growing and multiplying [66].

Common radiobiological models are presented as follows.

7.3.1. Nominal Standard Dose (NSD)

The model was the first effort which famous methods are used. The method for
obtaining the effects are based on the number of fractions and it depends how many
fractions have been used and for how long. It was developed in the 1960s by Ellis using
information on skin reactions and was widely used until the more precise linear quadratic
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model replaced it. The NSD model’s formula is denoted by the letter D and is as follows:
N denotes time (in days) of treatment, whilst the time scale for calculating the treatment
period is taken in days and represents the number of fractions:

D = nsd N0.24T0.11

The nsd (nominal standard dose (NSD)) skin tolerance is represented by the nominal
standard dose (NSD) constant. Other systems and connectives were also treated with it.
If the computed NSD value for a fractionated therapy was less than the tolerance NSD
value, changes in the quantity of treatment until the threshold was reached would be
considered “safe.” Then, it would be ’safe’ to increase the amount of treatment until the
tolerance was reached. To compensate for the NSD model’s failure to adjust for changes in
the treatment schedule (from 5 to 3 fractions per week) or treatment pauses, Ellis suggested
partial tolerance (PT). The partial tolerance (PT) of a treatment course is computed as
follows:

PT = NSD N
NT

where N denotes the number of fractions administered in a session and NT denotes the
number of fractions required to achieve tissue tolerance. The NSD figure means the that
the tissue is inherently tolerance. The treatment’s multiple partial tolerances could then be
added up:

PTtot = PT1 + PT2 + . . . PTn.

NSD model based on an acute skin toxicity study. Finally, it assumes that repopulation
occurs in a linear fashion, despite the fact that human research suggests that repopulation
does not become a significant factor for four weeks.

7.3.2. Cumulative Radiation Effect (CRE)

Kirk et al. proposed the cumulative radiation effect in 1971 [67]. It was a good addition
to and improvement upon the cumulative NSD, as it replaced factors related to the dose
per unit of time, as shown by the fraction (d = D

N ) and interval per fraction (x = T
N ). The

subsequent formula eliminated the total dose (D) and treatment time (T).

CRE =
dN0.65

x0.11

The CRE effect in an equivalent manner to the NSD: if a therapy’s computed CRE was less
than the tolerance CRE, the treatment was deemed ’safe.’ CRE values might be summed to
give the total CRE for a therapy if several treatment regimens were employed. The CRE
model, unlike the NSD model, took treatment schedule fluctuations into account and did
not require the partial tolerance notion. The CRE model had the same issues as the NSD
in terms of relying on skin toxicity and issues with repopulation calculations. The linear
quadratic model would be able to overturn it.

7.3.3. Target Models

The target theory model assumes that a cell has important volumes, and that the
cell dies once all of the targets in those volumes are inactivated. As a result, the target
theory assumes that a cell dies in a multi-step process as in the cell, energy is absorbed,
whilst ionization and excitation are caused by the deposited energy, which results in the
information of molecular lesions and the cell’s ability to reproduce is lost.

For further details and derivation of the model, see [57].

7.3.4. Linear Quadratic (LQ) Model

For the past four decades, the linear quadratic (LQ) model has been the primary device
in radio-biology. It is generally used to look at mobile survival. It calculates the in vitro
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survival fraction of irradiated cells primarily based on the assumption that the likelihood
of a single hit causing a double-strand damage (DNA lesion) grows linearly with dosage,
whereas the possibility of hits causing a double-strand destroy increases. The damages due
to those techniques are referred to as Type A or Type B, respectively. Let LQ(d) denotes
the surviving fraction after the doses d have been implemented. If each damage type is
taken into consideration to be unbiased, then S(d) = S1(d)S2(d), wherein S1 denotes Type
A damage and S2 denotes Type B damage. The LQ model states that: S(d) = e−αd+βd2

.
The positive constants α and β depend on the specific cell line. The α

β ratio is funda-
mental to the LQ methodology. From a biological point of view, the α

β ratio is related to the
cell repair ability. A tissue with a low α

β ratio has a higher capacity for self-repair.
Furthermore, α and β were found to correlate with the cell cycle length. Tissues which

have a slow cell cycle are composed of cells which proliferate slowly. These slow cycling
tissues have a smaller α

β ratio.
In clinical practice, the total amount dose D is given in n fractions of equal size d, i.e.,

S(D(n, d)) = [e−(αd+βd2)]n

= e−n(αd+βd2)

= e
−αnd(1+ d

α
β
)

= e
−αD(1+ d

α
β
)
,

where S denotes the survival fraction.

7.3.5. The LQ Model and Recolonization

Treatment plans in radiotherapy are divided to allow regular tissue to heal and recover
from irradiation. Survivor clonogenic cells of the tumor heal and repopulate at some
unspecified time in the future during a period of recuperation and relaxation. According to
quotesaunder, tumor cell repopulation throughout in the direction of traditional radiation
can be a sign of treatment failure. Indeed, the nature of the regrowth of the individual tumor
in question is expected to guide the end result of a given remedy plan. The repopulation
within the LQ model is usually included in the very simple form based on the assumption
of a time-dependent exponential term factored into predicted clonogenic survival [59].
Such a model is very useful and can be formulated in the form

ln S = −n(αd + βd2)− λT, (17)

where T is the overall exposure time (i.e., the entire time scale of the treatment protocol)
and λ is the exponential repopulation ordinary. An expression for λ can be acquired by
means of using it with regard to the clonogenic doubling time Tp Equation (17), which will
turn into

ln S = −n(αd + βd2)− T ln 2
Tp

. (18)

The model given by Equation (18) was used by [67]. In 1977, the most reliable uniform
treatment schedules for cancer radiotherapy could not be forgotten. This turned into
uniform treatment schedules completely relying on thinking about them and incorporating
the cumulative radiation impact (CRE) into radiation tolerance (Section 7.3.2). Moreover,
(18) was also modified by Fowler to reflect the more acceptable clinical setting in which
there is a time delay, Tk, before repopulation, as clearly visible in [60]. Hence, (18) becomes

ln S = −n(αd + βd2)− (T − Tk) ln 2
Tp

. (19)
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It is commonly assumed that repopulation starts at the time of Tk days and continues until
the radiotherapy timetable is abandoned after T days. Thus, the time available for cellular
repopulation is T − Tk days. A steady doubling time of Tp after Tk days is believed. We
will use (19) for the optimization of treatment fractionation.

All previous efforts neglected the fact that every individual cell type responds dif-
ferently to chemo- or radiotherapy, evidencing the heterogeneity of cancer cells. This
phenomenon indicates that even though most cancer cells are resistant to radiotherapy,
others are extremely vulnerable to it. In the next segment, heterogeneity among cancer cells
is explained, which is the main idea underlying our treatment technique. Our technique is
basically a combination of chemotherapy and radiotherapy.

7.4. Immunotherapy

Immunotherapy is a type of cancer treatment that is intended to increase or improve
the body’s natural immune responses. Unlike traditional medical help, it does not target
the tumor but rather the host’s tumor-responding immune cells. The system (the human
body’s anti-infection mechanisms) is made up of a network of cells, tissues, and organs that
recognize and eliminate foreign invaders such as bacteria and viruses, as well as aberrant
cells within the body. This strategy is mediated by the system’s ability to recognize the
distinction between the “self” and “non-self.” The self denotes your own bodily tissues.
The non-self refers to any aberrant cell or foreign invader, such as a bacteria or virus.

T cells defend us against infection. We are continually exposed to pathogens such
as bacteria, viruses, and fungi throughout our daily lives. Every exposure might be fatal
without T lymphocytes, commonly known as T cells. T cells have the ability to eliminate
contaminated or malignant cells. The process of immune therapy is concisely represented
in Figure 5.

Figure 5. Working of immune therapy.

7.5. Cryoablation

In this therapy, the cold destroys the cancer cells. A slender, wand-like needle (cry-
oprobe) is introduced through the skin and straight into the malignant tumor during
cryoablation. To freeze the tissue, a gas is fed into the cryoprobe. The tissue is then allowed
to defrost. To the destroy cancer cells, the freezing and thawing process is performed
numerous times during the same therapy session. Mechanisms of cryoablation are shown
in Figure 6 at temperatures below −20 °C, intracellular ice develops, and cell death takes
one of two forms: necrosis or apoptosis. Necrosis occurs when cellular membranes are
disrupted, allowing tumor antigens to be phagocytozed by dendritic cells. The disruption
of mitochondrial activity leads to the onset of Bax proteins, which drives downstream
apoptotic pathways in apoptosis. Aside from the two primary processes of cell death, the
development of an ice ball is affected by a variety of parameters, including the duration of
the freeze–thaw cycle, the number of cryoprobes, the temperature, the shape of the ice ball,
and the vascularity of the target ablation zone.
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Figure 6. Mechanisms of cryoablation: where arrows shows all the process going on during the
process.

7.6. Proposed Strategy

In this section, a previously suggested treatment strategy is discussed.

7.6.1. Treatment without Considering Heterogeneity of Cancer Cells

First, the previous treatments are discussed in the form of an algorithm to show that the
previous strategies do not take into account that cancer cells are heterogeneous and must be
treated according to cell biology. This has not been accounted for in previously employed
treatment strategies. This kind of treatment is illustrated as under in Algorithm 2.

Algorithm 2 (Treatment without considering Heterogeneity of Cancer Cells)

Step 1: First, the total cancer cells are considered.
They are of two types: cancer stem cells (CSCs) and differentiated cells (DCs).
Total cancer cells are: CSCs + DCs
Step 2: Apply treatment of radio therapy on both CSCs and DCs.
As DCs are sensitive to radiotherapy, they will be killed:
CSC are resistant to radiotherapy and responsible for cancer cells.
Step 3: CSCs will further continue to spread and divide into CSCs and DCs.
This spread will continue.

In the flow chart given in the Figure 7 elaborate the strategy to treat cancer without
taking care of the heterogeneity among cancer cells.
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Figure 7. Cancer cells after radiotherapy: DCs are killed but CSCs remain and continue to grow. The
dotted line shows that this process will continue.

7.6.2. Suggested Treatment Strategy Accounting for Heterogeneity of Cells

The suggested treatment strategy accounting for heterogeneity of cancer cells is pro-
posed is presented in the following Algorithm 3.

Algorithm 3 (Cancer treatment strategy accounting for Heterogeneity)

Step 1: First the total cancer cell are considered.
They are of two types: cancer stem cells (CSCs) and differentiated cells (DCs).
Total cancer cells are: CSCs + DCs

Step 2:
First apply chemotherapy; this will convert CSCs into DCs.
Meaning that it will convert radiotherapy-resistant cells (CSCs) into radiotherapy-

sensitive cells (DCs).
Step 3:

Now apply radiotherapy and maximum cells will be killed as chemotherapy applica-
tion makes the process of conversion of CSC into DC fast enough.

The flow chart shown in the Figure 8 explains our proposed strategy to cure cancer
accounting for heterogeneity.
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Figure 8. Cancer cells after radiotherapy: DCs are killed.

The Figure 9 is the simulation of the proposed stochastic model for cancer treatment,
which has complete agreement with the Algorithm 3 that is, first it illustrates how cancer
grows when no treatment is administered—it is shown that the cancer cells keep on increas-
ing. As a result of chemotherapy, differentiated cells which are sensitive to radiotherapy are
increased. Furthermore, one can finally easy observe how all types of cancer cells decreased
as a result of radiotherapy. The Matlab code used to generate the simulation in the Figure 9
is given in the Appendix A.

Simulation of suggested model (1)
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Figure 9. (A) Plot shows first that both stem (SCs) and differentiated cells (DCs) are increasing;
(B) upon undertaking chemotherapy, the SCs decrease and the DCs increase; (C) upon undertaking
radiotherapy, the total cancer decreases as DCs decrease due to radiotherapy. The interaction between
C and D cells under radiotherapy is as follows: C0 = 2

100 103 cells, D0 = 1
100 103 cells, δ = 0.4 day−1,

f = 0.4, µ = 0.3 day−1, α1 = 0.35 Gy−1, α2 = 1.5 Gy−1, α1
β1

= 3 Gy−1, α2
β2

= 7 Gy−1, fractionated

dose= 2 Gy−1 on week days.

7.7. Decision-Making Criteria in Oncology

Clinical decision making is at the heart of regular clinical practice. Our opinions
and conclusions are influenced by a variety of circumstances. Multiple alternatives for
oncological problems are frequently available for a number of reasons [68]. Figure 10 shows
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the different factors involved in the decision-making process underlying the choice of
cancer treatment.

Figure 10. Conceptual model of decision-making criteria in oncology.

(1) In oncology, age is a main criteria in choosing the treatment for cancer. The treatment
choice changes with the age of the patient. For example, radiation therapy is highly
related to age [69]. Patients over 65 years of age may not tolerate all treatments as
well as their younger counterparts.

(2) The cancer entity and stage are key factors to consider throughout the decision-making
process. Treatment is mostly determined by the stage and extent of the cancer. The
treatment guidelines for regionally based tumors differ from those for advanced
sickness or metastasized tumors. The Figure 11 shows the relationship between stage
of cancer and survival with respect to the choice of treatment [70].

(3) The choice between prioritizing the quantity or quality of life will influence the
decision of whether or not to treat, the degree of data available to support the option,
and perhaps the level of adverse effects the patient is prepared to risk. The purpose of
a technique determines the selection of decision criteria [71,72].

(4) Cost is also an important factor when choosing cancer treatments. The resources of
every individual are limited, and since saving a life is someone’s top priority, it is
important to choose a life-saving treatment strategy considering the limited resources.

(5) Long-term side effects are also an important factor to consider when choosing cancer
treatment strategy.

Figure 11. Cancer Treatment Patterns (%) by Stage, 2016. Chemo indicates chemotherapy (includes
targeted therapy and immunotherapy); RT, radiation therapy.
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Assume that a high-level group has been formed to decide how to improve cancer
therapy in a state’s major cities. Five cancer therapy options are available, namely δ1ג=
chemotherapy, δ2ג = radiotherapy, δ3ג = immunotherapy, δ4ג= cryoablation, and δ5ג =
proposed strategy. This assessment group is composed of representatives from the min-
istries of healthcare, industry, and the environment. The panel is entrusted with evaluating
cities based on five key criteria given in Table 2, throughout the three significant periods
d1, d2, and d3. Assume that W = (0.15, 0.10, 0.25, 0.20, 0.30) represents the weighting of
the criterion ℵδ

1, ℵδ
2, ℵδ

3, ℵδ
4, and ℵδ

5, and that ζ(mk) = (0.35, 0.40, 0.25) represents the
weighting of the time periods d1, d2, and d3. Assume that the experts construct a decision
matrix table with dynamic q-RPFNs. This is carried out in the following order: Step 1
through Step 7 of the Algorithm.

Table 2. Criterion for the assessment.

Criteria

ℵδ
1 Age

ℵδ
2 Type of cancer

ℵδ
3 Stage of the cancer

ℵδ
4 Cost of treatment

ℵδ
5 Chance of a cure

7.8. Decision-Making Process

Step 1:
Acquire a decision or assessment matrix R(mk) =

(
rk
ij

)
m×n

=
(

δ′ij(mk), ν′ij(mk), λ′ij(mk)
)

m×n
for the d different periods. The assessment matrix acquired from d1 is given in Table 3.

Table 3. Assessment matrix acquired from d1.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.367,0.142,0.372) (0.364,0.155,0.283) (0.285,0.165,0.152) (0.145,0.154,0.253) (0.385,0.132,0.473)

δ2ג (0.167,0.384,0.236) (0.140,0.150,0.168) (0.165,0.135,0.374) (0.144,0.363,0.396) (0.145,0.475,0.337)

δ3ג (0.142,0.131,0.136) (0.144,0.265,0.572) (0.475,0.165,0.249) (0.473,0.166,0.138) (0.375,0.142,0.399)

δ4ג (0.464,0.163,0.172) (0.485,0.175,0.152) (0.175,0.253,0.299) (0.155,0.242,0.393) (0.455,0.353,0.248)

δ5ג (0.353,0.266,0.239) (0.133,0.175,0.131) (0.175,0.125,0.493) (0.384,0.155,0.493) (0.142,0.363,0.395)

The assessment matrix acquired from d2 is given in Table 4.

Table 4. Assessment matrix acquired from d2.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.384,0.155,0.142) (0.245,0.133,0.231) (0.465,0.155,0.375) (0.167,0.165,0.172) (0.235,0.155,0.188)

δ2ג (0.165,0.125,0.285) (0.350,0.245,0.147) (0.155,0.280,0.134) (0.455,0.345,0.124) (0.152,0.140,0.182)

δ3ג (0.353,0.170,0.395) (0.175,0.145,0.153) (0.145,0.255,0.166) (0.163,0.282,0.171) (0.442,0.135,0.227)

δ4ג (0.277,0.464,0.173) (0.165,0.166,0.132) (0.125,0.140,0.157) (0.280,0.272,0.237) (0.489,0.135,0.382)

δ5ג (0.151,0.136,0.182) (0.280,0.494,0.131) (0.175,0.242,0.182) (0.384,0.182,0.182) (0.153,0.246,0.151)

The assessment matrix acquired from d3 is given in Table 5.
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Table 5. Assessment matrix acquired from d3.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.134,0.274,0.162) (0.135,0.175,0.153) (0.285,0.253,0.253) (0.253,0.145,0.153) (0.162,0.253,0.156)

δ2ג (0.242,0.166,0.374) (0.155,0.145,0.192) (0.144,0.165,0.137) (0.463,0.130,0.148) (0.134,0.134,0.145)

δ3ג (0.134,0.155,0.142) (0.131,0.165,0.153) (0.135,0.490,0.264) (0.263,0.145,0.489) (0.242,0.253,0.375)

δ4ג (0.166,0.384,0.373) (0.353,0.275,0.153) (0.165,0.155,0.197) (0.255,0.155,0.264) (0.135,0.164,0.153)

δ5ג (0.145,0.266,0.133) (0.285,0.195,0.486) (0.310,0.155,0.174) (0.145,0.155,0.247) (0.283,0.245,0.486)

Step 2:
Normalize the decision matrices acquired by DMs using Equation (13). Here, we have

two types of criteria. ℵδ
4 is the cost-type criteria and others are benefit-type criteria.

The normalized matrix acquired from d1 is given in Table 6.

Table 6. Normalized matrix acquired from d1.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.467,0.242,0.472) (0.464,0.255,0.383) (0.385,0.265,0.252) (0.254,0.353,0.245) (0.485,0.232,0.573)

δ2ג (0.267,0.484,0.336) (0.240,0.250,0.268) (0.265,0.235,0.474) (0.463,0.496,0.244) (0.245,0.575,0.437)

δ3ג (0.242,0.231,0.236) (0.244,0.365,0.672) (0.575,0.265,0.349) (0.266,0.238,0.573) (0.475,0.242,0.499)

δ4ג (0.564,0.263,0.272) (0.585,0.275,0.252) (0.275,0.353,0.399) (0.342,0.493,0.255) (0.555,0.453,0.348)

δ5ג (0.453,0.366,0.339) (0.233,0.275,0.231) (0.275,0.225,0.593) (0.255,0.593,0.484) (0.242,0.463,0.495)

The normalized matrix acquired from d2 is given in Table 7.

Table 7. Normalized matrix acquired from d2.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.484,0.255,0.242) (0.345,0.233,0.331) (0.565,0.255,0.475) (0.265,0.272,0.267) (0.335,0.255,0.288)

δ2ג (0.265,0.225,0.385) (0.450,0.345,0.247) (0.255,0.380,0.234) (0.445,0.224,0.555) (0.252,0.240,0.282)

δ3ג (0.453,0.270,0.495) (0.275,0.245,0.253) (0.245,0.355,0.266) (0.382,0.271,0.263) (0.542,0.235,0.327)

δ4ג (0.377,0.564,0.273) (0.265,0.266,0.232) (0.225,0.240,0.257) (0.372,0.337,0.380) (0.589,0.235,0.482)

δ5ג (0.251,0.236,0.282) (0.380,0.594,0.231) (0.275,0.342,0.282) (0.282,0.282,0.484) (0.253,0.346,0.251)

The normalized matrix acquired from d1 is given in Table 8.

Table 8. Normalized matrix acquired from d3.

ℵδ
1 ℵδ

2 ℵδ
3 ℵδ

4 ℵδ
5

δ1ג (0.234,0.374,0.262) (0.235,0.275,0.253) (0.385,0.353,0.353) (0.245,0.253,0.353) (0.262,0.353,0.256)

δ2ג (0.342,0.266,0.474) (0.255,0.245,0.292) (0.244,0.265,0.237) (0.230,0.248,0.563) (0.234,0.234,0.245)

δ3ג (0.234,0.255,0.242) (0.231,0.265,0.253) (0.235,0.590,0.364) (0.245,0.589,0.363) (0.342,0.353,0.475)

δ4ג (0.266,0.484,0.473) (0.453,0.375,0.253) (0.265,0.255,0.297) (0.255,0.364,0.355) (0.235,0.264,0.253)

δ5ג (0.245,0.366,0.233) (0.385,0.295,0.586) (0.410,0.255,0.274) (0.255,0.347,0.245) (0.383,0.345,0.586)
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Step 3:
In this step, we utilized the proposed q-RPFDEWA operator to aggregate all the

normalized decision matrices N(mk) =
(

nk
ij

)
m×n

=
(
δij(mk), νij(mk), λij(mk)

)
m×n into one

cumulative q-RPF matrix Z =
(
zij
)

m×n =
(
δij, νij, λij

)
m×n.

Step 4:
Define A+ = (αh̄+1

, αh̄+2
, . . . , αh̄+m

)T and A− = (αh̄−1
, αh̄−2

, . . . , αh̄−m
)T as the q-RPF

positive ideal solution (q-RPFPIS) and the q-RPF negative ideal solution (q-RPFNIS) as

A+ = ((1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0)),

A− = ((0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1)).

and
δ1ג = ((0.445253, 0.281624, 0.301029), (0.386485, 0.251598, 0.319061), (0.48957, 0.284412, 0.359481),
(0.256243, 0.287820, 0.282953), (0.398981, 0.273292, 0.339379))

δ2ג = ((0.297577, 0.297896, 0.393483), (0.380198, 0.282677, 0.266157), (0.255217, 0.295307, 0.290462),
(0.423090, 0.293360, 0.436597), (0.244948, 0.310085, 0.308407))

δ3ג = ((0.381590, 0.253276, 0.316056), (0.255363, 0.282726, 0.288560), (0.454748, 0.379352, 0.317078),
(0.330077, 0.329611, 0.366467), (0.486936, 0.267879, 0.415438))

δ4ג = ((0.459936, 0.429227, 0.321736), (0.484967, 0.271364, 0.244091), (0.255768, 0.274417, 0.306307),
(0.340494, 0.386724, 0.330368), (0.536387, 0.296427, 0.360495))

δ5ג = ((0.363962, 0.279072, 0.281441), (0.358396, 0.383055, 0.305997), (0.340495, 0.276223, 0.350056),
(0.267132, 0.375715, 0.394955), (0.315702, 0.377352, 0.397659))

Step 5 and Step 6:
Calculate the distance between the alternative δגi and the q-RPFPIS A+ and the dis-

tance between the alternative δגi and the q-RPFNIS A−, respectively. Then, we calculate
the closeness coefficient of each alternative:

c(δ1ג) = 0.246842

c(δ2ג) = 0.444742

c(δ3ג) = 0.353512

c(δ4ג) = 0.424229

c(δ5ג) = 0.533421

Step 7:
Rank all the alternatives δגi(i = 1, 2, · · · , n) according to the closeness coefficients

c
(
δגi
)
(i = 1, 2, · · · , n)

δ5ג > δ2ג > δ4ג > δ3ג > δ1ג.

7.9. Limitations of the Proposed Method

To demonstrate the inadequacies of the given techniques, we conducted a critical
analysis of the algorithm and listed its disadvantages:

• Logical dependencies amongst the parameters were ignored in the preceding instances.
• In practice, it is not generally fair to suggest that each parameter in the MPDM

is independent of the others. Any parameter in the MPDM may be reliant on or
connected to other parameters.
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• Evaluation of parameter dependencies should add to the objectivity of judgments
in the suggested MPDM techniques. The consideration of dependence in the q-RPF
MPDM may increase the decision-making framework’s quality.

7.10. Authenticity Analysis

Wang and Triantaphyllou [73] evaluated the preceding test criteria to demonstrate the
effectiveness of the suggested technique:

1. Test 1: If we replace the non-optimal alternate’s grade values with those of the
worst choice, the ideal option should not change as long as the respective priority
relationship remains unchanged.

2. Test 2: The approach’s framework should be transitive.
3. Test 3: Whenever a continuous dilemma is partitioned and the same MCDM algorithm

is used, the accumulated rating of the alternatives must be comparable to the initial
problem’s evaluation.

We checked the constraints on our proposed MCDM technique in the subsection below.

7.10.1. Authenticity Test 1

Here, we used the q-RPFDEWA operator in this test if we exchange the PMSGs and
NgMSGs of alternatives δ4ג and δ1ג in Table 9.

Table 9. Aggregated values.

ℵδ
1 ℵδ

2 ℵδ
3

δ1ג (0.445253, 0.281624, 0.301029) (0.386485, 0.251598, 0.319061) (0.48957, 0.284412, 0.359481)

δ2ג (0.297577, 0.297896, 0.393483) (0.380198, 0.282677, 0.266157) (0.255217, 0.295307, 0.290462)

δ3ג (0.381590, 0.253276, 0.316056) (0.255363, 0.282726, 0.288560) (0.454748, 0.379352, 0.317078)

δ4ג (0.459936, 0.429227, 0.321736) (0.484967, 0.271364, 0.244091) (0.255768, 0.274417, 0.306307)

δ5ג (0.363962, 0.279072, 0.281441) (0.358396, 0.383055, 0.305997) (0.340495, 0.276223, 0.350056)

ℵδ
4 ℵδ

5

δ1ג (0.256243, 0.287820, 0.282953) (0.398981, 0.273292, 0.339379)

δ2ג (0.423090, 0.293360, 0.436597) (0.244948, 0.310085, 0.308407)

δ3ג (0.330077, 0.329611, 0.366467) (0.486936, 0.267879, 0.415438)

δ4ג (0.340494, 0.386724, 0.330368) (0.536387, 0.296427, 0.360495)

δ5ג (0.267132, 0.375715, 0.394955) (0.315702, 0.377352, 0.397659)

The suggested q-RPFDEWA operator has been implemented based on this information.
Thus, the ranking arrangement of the alternatives dependent on the score values is δ5ג >
δ2ג > δ4ג > δ3ג > δ1ג, which is the same as the initial decision-making ranking. As a result,
the proposed methodology meets the first test condition. In the same way, we also check
the q-RPFDEWG operator.

7.10.2. Authenticity Test 2 and Test 3

If we breakdown the provided problem into the sub-problems {δ5ג, δ2ג}, {δ2ג, δ4ג},
{δ4ג, δ3ג}, {δ3ג, δ1ג}, and {δ1ג, δ5ג} then we apply the procedure steps of the proposed
technique and we receive the ranking order of these smaller problems as δ5ג � δ2ג, δ2ג �
δ4ג, δ4ג � δ3ג, δ3ג � δ1ג, and δ5ג � δ1ג. As a result of merging them, the total ranking order
of the alternate is δ5ג > δ2ג > δ4ג > δ3ג > δ1ג, which is the same as the original ranking
order. As a result, the proposed methodology meets authenticity test requirements 2 and 3.
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8. Conclusions and Discussion

Cancer is a complicated disease and it spreads through the cells in the body. There
are various therapies available to kill cancer cells. These therapies did not take into
consideration that cell division is often an asymmetric process that can be thought of
as a series of symmetry-breaking events. In the proposed strategy, the heterogeneity in
the cancer cells is presented. Furthermore, mathematical models using the stochastic
differential equations and stochastic delay differential equations of cancer cells in a tumor
bulk were constructed. Two types of cells have been considered, namely cancer stem cells
(CSCs), which are less sensitive, and differentiated cancer cells (DCs), which are more
sensitive with respect to radiotherapy. Consecutive chemotherapy and radiotherapy were
applied, with the aim of first converting CSCs into DCs, thus, making them more radio-
sensitive with respect to treatment, then cell killing with radiotherapy in order to control
and kill the tumor cells. With the help of simulation, it was demonstrated that the proposed
strategy is very effective in order to kill cancer in a speedy manner because time is an
important factor in curing cancer. Although information aggregation is significant during
the decision-making process, numerous dynamic q-rung picture fuzzy AOs are designed to
aggregate the q-RPF information accumulated over time. These include the q-rung picture
fuzzy dynamic Einstein-weighted averaging and q-rung picture fuzzy dynamic Einstein-
weighted geometric operators. All of the operators include time in the aggregation process
and are thus time-dependent, which addresses some of the limitations of traditional static
q-RPF aggregation operators. The proposed operators have been proven to have a variety
of desirable characteristics. Finally, an example is provided to exemplify the dynamic
operators and developed approach. The proposed method can be used to develop future
dynamic decision-making methods such as dynamic confidential short-listing, medical
assessment for COVID-19 task allocation, a dynamic financing approach, online social
media surveillance, and dynamic military management assessment, as well as complex
fuzzy dynamic decision making.
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Appendix A

Listing A1. Matlab code for the Figure 9.

1 %clear all
2 clc
3 %First, do no treatment for X ticks
4 %Second, only chemotherapy for Y ticks
5 %Third, radiotherapy for Z ticks
6 % OBS, we do not do chemo− and radiotherapy together. Should we?
7 % C, number of of CSC (cancer stem cells)
8 % D, number of of DC (Differentiated cells)
9 counter=0;

10 counter1=0;
11 % Parameters
12 % Ratios
13 % dc_ratio = 3; % gamma/beta
14 %f, fraction with which CSC split into DC
15 %sigma, death rate of CSC, by chemo− and radiotherapy (radio very very
16 %small)
17 %gamma, death rate of DC, natural death and by chemo− and radiotherapy
18 % gamma = 0.7; % w/ treatment (both radio and chemo)
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19 %beta, birth rate of DC
20 beta = 0.4; %from pdf
21 mu = 0.5; % what should this be?????
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 T_end = 10;
24

25 X = 100; %ticks without treatment
26 Y = 200; %ticks with chemotherapy
27 Z = 200; %ticks with radiotherapy
28

29 dt = T_end/(X+Y+Z);
30

31 C = zeros(X+Y+Z+1,1); % steam cancer
32 C(1) = 400;
33 D = zeros(X+Y+Z+1,1);
34 D(1) = 100;
35 cancer = zeros(X+Y+Z+1,1);
36 cancer(1) = C(1)+D(1);
37

38

39 N= zeros(X+Y+Z+1,1); % Normal cells initialization vector
40 dr=0.0003;
41 N(1)=2000; % Normal cell value at t=0
42 lambda1=0.2;%0.04
43 lambda2=0.003;
44 C_s=1500; % C_star
45 N_c=10000; % Normal cells carrying capacity
46 C_c=50000; % Cancer cells carrying capacity
47

48

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 % Values for chemo
52

53 d = 10; % number of dose
54 alpha_ch =0.5; % alpha for cancer cells, increase sensitivity gives ...

complex values
55 alpha1_ch=0.3; % alpha for normal cells
56 beta1_ch=alpha1_ch/1.5; % beta for normal cells
57 beta_ch = alpha_ch/3; % beta for cancer cells
58 S_ch = exp(− alpha_ch*d − beta_ch*d^2);
59

60 R_ch = 1−S_ch;%cancer cells
61

62 S1_ch = exp(− alpha1_ch*d − beta1_ch*d^2);
63 R1_ch=1−S1_ch;% Normal cells
64 % Values for radio−therapy
65 d = 10; % number of dose
66 alpha_rt =0.5; % alpha for cancer cells
67 alpha1_rt=0.3; % alpha for normal cells
68 beta1_rt=alpha1_rt/3; % beta for normal cells
69 beta_rt = alpha_rt/10; % beta for cancer cells
70 S_rt = exp(− alpha_rt*d − beta_rt*d^2);
71 R_rt = 1−S_rt;%cancer cells
72 S1_rt = exp(− alpha1_rt*d − beta1_rt*d^2);
73 R1_rt=1−S1_rt;% Normal cells
74 % Before treatment
75 gamma = 0.2; % w/o treatment
76 sigma = 0; % w/o any treatment
77 f = 0.35; % w/o treatment
78 for t=1:X
79 tau = sqrt((mu+sigma)*C(t)*(4*mu*(1−f)*C(t)+(gamma+beta)*D(t))− ...
80 4*mu^2*(1−f)^2*C(t)^2);
81 eta = sqrt(2*tau + (mu+sigma)*C(t)+4*mu*(1−f)*C(t)+(gamma+beta)*D(t));
82 dW1 = sqrt(dt)*randn;
83 dW2 = sqrt(dt)*randn;
84 a = [2*mu*f*C(t)−mu*C(t)−sigma*C(t); ...

2*mu*(1−f)*C(t)−gamma*D(t)+beta*D(t)];
85 b = 1/eta * [(mu+sigma)*C(t)+tau −2*mu*(1−f)*C(t); ...
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86 −2*mu*(1−f)*C(t) 4*mu*(1−f)*C(t)+(gamma+beta)*D(t)+tau];
87 A = [C(t) D(t)]' + a*dt+ b*[dW1; dW2];
88 C(t+1) = A(1);
89 D(t+1) = A(2);
90 cancer(t+1) = C(t+1)+D(t+1);
91

92 d1=dr*C_s*cancer(t+1);
93 d2=0;
94 b2=(1−(N(t)/N_c)−(cancer(t+1)/C_c));
95

96 tau1 = sqrt((d1*lambda1^1^2*(d2+b2)*lambda2^2));
97 eta1=sqrt((d1*lambda1^2)+((d2+b2)*lambda2^2)+(2*tau1));
98

99 a1= [−lambda1*d1; lambda2*(b2−d2)];
100 b1= (1/eta1)*[(d1*lambda1^2)+tau1 0; 0 ((d2+b2)*lambda2^2)+tau1];
101 A1= [N(t) cancer(t+1)]' + a1*dt+b1*[dW1; dW2];
102 N(t+1)=A1(1);
103 cancer(t+1) = A1(2);
104

105 if cancer(t+1)≥2*cancer(1)&& counter==0
106 time_double= t;
107 counter=1;
108 sprintf('The doubling time is %d ticks',time_double)
109 end
110

111 end
112 figure()
113 subplot(131)
114 plot(1:X+1,N(1:X+1),'−k');hold on
115 plot(1:X+1,C(1:X+1),'−b');
116 plot(1:X+1,D(1:X+1),'−r')
117 plot(1:X+1,cancer(1:X+1),'−g')
118 % legend('N','CSC','DC', 'all cancer cells')
119 title('Without treatment')
120 xlabel('time in dt units')
121 ylabel('number of cells')
122 pause(1.5)
123

124

125 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
126 % With chemotherapy
127 f = 0.6; % w/ chemo (radio same?) % f−−−rate of conversion of c to d ...

(more f) (as per simulation results as the f increases the rate of ...
conversion and total number falls down )

128 %gamma hardly changes
129 sigma = 0.5; % w/ chemo (and radio) chemo effect on cancer cell
130 % sigma1 −−−> add chemo on normanl 0.0001
131 % sigma1=0.0001;
132 N_d=1; % no. of integer delays
133 t_d=N_d; %delay
134 for t=1:Y
135 tau = sqrt((mu+sigma)*C(X+t−t_d)*(4*mu*(1−f)*C(X+t−t_d)
136 +(gamma+beta)*D(X+t−t_d))−4*mu^2*(1−f)^2*C(X+t−t_d)^2);
137 eta = sqrt(2*tau + ...

(mu+sigma)*C(X+t−t_d)+4*mu*(1−f)*C(X+t−t_d)+(gamma+beta)*D(X+t−t_d));
138 a = [2*mu*f*C(X+t−t_d)−mu*C(X+t−t_d)−sigma*C(X+t−t_d); ...

2*mu*(1−f)*C(X+t−t_d)−
139 gamma*D(X+t−t_d)+beta*D(X+t−t_d)];
140 b = 1/eta * [(mu+sigma)*C(X+t−t_d)+tau −2*mu*(1−f)*C(X+t−t_d); ...
141 −2*mu*(1−f)*C(X+t−t_d) ...

4*mu*(1−f)*C(X+t−t_d)+(gamma+beta)*D(X+t−t_d)+tau];
142 dW1 = sqrt(dt)*randn;
143 dW2 = sqrt(dt)*randn;
144 A = [C(X+t) D(X+t)]' + dt*a+ b*[dW1; dW2];
145 C(X+t+1) = A(1);
146 D(X+t+1) = A(2);
147 cancer(X+t+1) = C(X+t+1)+D(X+t+1);
148

149 d1=dr*C_s*cancer(X+t+1)+R1_ch;
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150 d2=−R_ch*cancer(X+t+1);
151 b2=(1−(N(X+t)/N_c)−(cancer(X+t+1)/C_c));
152 tau1 = sqrt((d1*lambda1^1^2*(d2+b2)*lambda2^2));
153 eta1=sqrt((d1*lambda1^2)+((d2+b2)*lambda2^2)+(2*tau1));
154

155 a1= [−lambda1*d1; lambda2*(b2−d2)];
156 b1= (1/eta1)*[(d1*lambda1^2)+tau1 0; 0 ((d2+b2)*lambda2^2)+tau1];
157 A1= [N(X+t) cancer(X+t+1)]' + a1*dt+b1*[dW1; dW2];
158 N(X+t+1)=A1(1);
159 cancer(X+t+1) = A1(2);
160

161 if cancer(X+t+1)≥2*cancer(1)&& counter==0
162 time_double= t;
163 counter=1;
164 sprintf('The doubling time is %d ticks',time_double)
165 end
166 end
167

168 % figure()
169 subplot(132)
170 plot(1:Y+1,N(X+1:X+Y+1),'−k');hold on
171 plot(1:Y+1,C(X+1:X+Y+1),'−b')
172 plot(1:Y+1,D(X+1:X+Y+1),'−r')
173 plot(1:Y+1,cancer(X+1:X+Y+1),'−g')
174 % legend('N','CSC','DC', 'all cancer cells')
175 title('With chemotherapy')
176 xlabel('time in dt units')
177 ylabel('number of cells')
178 pause(1.5)
179 % With radiotherapy
180 % f = 0.3; % w/ chemo (radio same?)
181 %Y=0;
182 gamma = 0.8;
183 % sigma = 0.5; % w/ chemo (and radio)
184

185 for t=1:Z
186 tau=sqrt((mu+sigma)*C(X+Y+t)*(4*mu*(1−f)*C(X+Y+t)+(gamma+beta)*D(X+Y+t))−
187 4*mu^2*(1−f)^2*C(X+Y+t)^2);
188 eta = sqrt(2*tau + ...

(mu+sigma)*C(X+Y+t)+4*mu*(1−f)*C(X+Y+t)+(gamma+beta)*D(X+Y+t));
189 a = [2*mu*f*C(X+Y+t)−mu*C(X+Y+t)−sigma*C(X+Y+t); 2*mu*(1−f)*C(X+Y+t)
190 −gamma*D(X+Y+t)+beta*D(X+Y+t)];
191 b = 1/eta * [(mu+sigma)*C(X+Y+t)+tau −2*mu*(1−f)*C(X+Y+t); ...
192 −2*mu*(1−f)*C(X+Y+t) 4*mu*(1−f)*C(X+Y+t)+(gamma+beta)*D(X+Y+t)+tau];
193 dW1 = sqrt(dt)*randn;
194 dW2 = sqrt(dt)*randn;
195 A = [C(X+Y+t) D(X+Y+t)]' + dt*a+ b*[dW1; dW2];
196 C(X+Y+t+1) = A(1);
197 D(X+Y+t+1) = A(2);
198 cancer(X+Y+t+1) = C(X+Y+t+1)+D(X+Y+t+1);
199 d1=dr*C_s*cancer(X+Y+t+1)+R1_rt;
200 d2=−R_rt*cancer(X+Y+t+1);
201 b2=(1−(N(X+Y+t)/N_c)−(cancer(X+Y+t+1)/C_c));
202 tau1 = sqrt((d1*lambda1^1^2*(d2+b2)*lambda2^2));
203 eta1=sqrt((d1*lambda1^2)+((d2+b2)*lambda2^2)+(2*tau1));
204

205 a1= [−lambda1*d1; lambda2*(b2−d2)];
206 b1= (1/eta1)*[(d1*lambda1^2)+tau1 0; 0 ((d2+b2)*lambda2^2)+tau1];
207 A1= [N(X+Y+t) cancer(X+Y+t+1)]' + a1*dt+b1*[dW1; dW2];
208 N(X+Y+t+1)=A1(1);
209 cancer(X+Y+t+1) = A1(2);
210

211 if cancer(X+Y+t+1)≥2*cancer(1)&& counter==0
212 time_double= t;
213 counter=1;
214 sprintf('The doubling time is %d ticks',time_double)
215 end
216

217 if cancer(X+Y+t+1)≤ 900 && counter1==0
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218 time_exit= t;
219 counter1=1;
220 hold on
221 sprintf('The exit time is %d ticks',time_exit)
222 end
223

224 end
225

226 % figure()
227 subplot(133)
228 plot(1:Z+1,N(X+Y+1:X+Y+Z+1),'−k');hold on
229 plot(1:Z+1,C(X+Y+1:X+Y+Z+1),'−b');
230 plot(1:Z+1,D(X+Y+1:X+Y+Z+1),'−r');
231 plot(1:Z+1,cancer(X+Y+1:X+Y+Z+1),'−g');
232 legend('N','CSC','DC', 'all cancer cells');
233 xlabel('time in dt units')
234 ylabel('number of cells')
235 title('With radiotherapy')
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29. Kirişci, M.; Demir, I.; Şimşek, N. Fermatean fuzzy ELECTRE multi-criteria group decision-making and most suitable biomedical

material selection. Artif. Intell. Med. 2022, 127, 102278. [CrossRef]
30. Feng, F.; Fujita, H.; Ali, M.I.; Yager, R.R.; Liu, X. Another view on generalized intuitionistic fuzzy soft sets and related multiattribute

decision making methods. IEEE Trans. Fuzzy Syst. 2018, 27, 474–488. [CrossRef]
31. Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the

concept of spherical fuzzy sets. Neural Comput. Appl. 2019, 31, 7041–7053. [CrossRef]
32. Ashraf, T.; Abdullah, S.T.; Mahmood, F.; Ghani, T.M. Spherical fuzzy sets and their applications in multi-attribute decision

making problems. Int. J. Intell. Syst. 2019, 36, 2829–2844. [CrossRef]
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