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Abstract: With the development of big data, data collection and publishing are symmetrical. The
purpose of data collection is to better publish data. To better collect user data and promote data
analysis, publishing massive amounts of data can better provide services for people’s lives. However,
in the process of publishing data, the problem of low data availability caused by over protection is
widespread. In addition, the attacker indirectly obtains the data of the target user by accessing the
data of the user’s friends or neighbors, which leads to the disclosure of the user’s privacy. In order to
solve these problems, a structure–attribute social network data publishing model is proposed. This
model protects the privacy of user attribute data and prevents homogeneity attacks through attribute
data perturbation. In addition, the model disrupts the structure of social networks by introducing
uncertainty graphs into network partitions to generate published social network data. Our scheme
has been tested on three public datasets, and the results show that our scheme can retain the social
network structure as much as possible.

Keywords: attribute information; community division; uncertainty graph

1. Introduction

During COVID-19, the social network [1] was regarded as an indispensable com-
munication means and platform in people’s lives. Users communicate with each other,
disseminate information on social networks [2], and hold online meetings [3]. In social
networks, users usually have many attributes [4]. They also have a lot of information.
Users usually have friend information, behavior information, content information, and
attribute data [4]. For example, behavioral information can be a user’s favorite circle of
friends, a user-commented movie, or a mobile application that users often open. The
content information can be the user’s circle of friends, uploaded photos, microblog, etc. The
attribute data includes the user’s gender, age, date of birth, religious beliefs, and promotion
information. Some users choose to publish their personal information, life status, and
friends’ photos on their friend’s circle, microblog, or dating website. However, some users
choose not to disclose or provide some of their own data, such as various personal infor-
mation. In general, social networks can be viewed as a combination of public and private
data. Generally, when publishing social network data [1], the number of nodes in the social
network and the relationship between users will be disturbed after anonymization [5].

For data platforms with massive data, such as social networks, attackers can obtain
users’ privacy information through various means [6]. For example, attackers want to obtain
user attribute information [4] and predict attacks against social network user attributes [7].
Attribute prediction [8] is a serious privacy and security attack faced by social network
users [9]. In attribute prediction attacks, attackers can first collect public data about users
on social networks and then use machine learning [10] and data mining [11] methods to
predict the privacy attributes of target users. Attackers can be any person or organization
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interested in users, such as advertisers, hackers, etc. Advertisers can use the predicted
attributes to provide targeted advertising, thereby increasing profits. When a hacker sends
a malicious website to a user, he can describe the website as having information related
to the user’s school, thus increasing the probability of users clicking on the malicious
website. Data buyers can sell the predicted attribute data to advertisers, banks, insurance
companies, etc. to obtain economic benefits. More seriously, attackers can use predicted
attributes to associate user accounts in different social networks or even associate online
data with offline data to form more comprehensive user data, thus causing greater privacy
and security risks. For the edge relationship attack, the attacker knows the user’s friends
through various channels and means and analyzes the user’s attributes through the friend’s
attributes, thus leading to the disclosure of user privacy. Another problem is that, due to
the need to protect users, the published data interfere too much with them, resulting in
very low data availability, which also undermines the role of data publishing [12].

Aiming at the problems of low data availability, user attribute attacks [7], and user
relationship attacks [13], a social network data publishing model based on structural
attributes is proposed. This model protects the privacy of user attributes to the greatest
extent and retains the structural information of social networks by proposing various
attribute processing schemes and interfering with the graph structure.

The main contributions of this paper are as follows:

1. A network protection model of attributes and structure is proposed. Information
is added to social network data in the process of publishing a graphic structure to
improve the availability of data. The continuous attributes are classified by the binary
discrete method, which is convenient for attribute application and improves operation
efficiency. In addition, the attribute structure of the social network publishing model
can protect user attributes while resisting the community homogeneity attack caused
by community division and protecting user privacy.

2. The Louvain community partition algorithm is introduced and further optimized.
The time efficiency of the optimized method is increased by 20%.

3. In the process of implementing edge differential privacy protection for social networks,
a tainted graph is introduced to improve the availability of published data. This
method can effectively preserve the community structure.

4. We propose an attribute–structure publishing model for social network data publish-
ing, and we prove that the model satisfies differential privacy.

The organizational structure of this paper is as follows: Section 2 describes the related
work. In Section 3, we introduce the relevant definitions of attribute social networks
and differential privacy. In Section 4, the framework and process of the whole model are
described. We describe the details of attribute protection and structure protection and prove
their privacy in Sections 5 and 6. In Section 7, we present and explain the experimental
dataset and results. Section 8 gives relevant conclusions.

2. Related Works
2.1. Application of Differential Privacy

Cynthia Dwork [14] put forward the concept of differential privacy. By adding de-
signed noise to anonymous data sets, attackers cannot restore user information. Hay et al. [15]
applied differential privacy to histogram data publishing, and improve the accuracy of
differential privacy histogram through consistency. Alexander et al. [16] applied differential
privacy to the deep learning of medical imaging, achieving deep neural network training
through a differential privacy random gradient descent algorithm and using differential
privacy to protect the privacy information provided by patients. In June 2016, Apple
announced that it would use differential privacy for the collection of some user data to
ensure the privacy of user data [17]. Dong Jin Shuo et al. [18] proposed a new concept
of differential privacy with more relaxed conditions and introduced this concept into a
standard series of single-parameter privacy concepts called “Gaussian differential privacy”.
Yang Meng Meng et al. [19] gave a comprehensive and structured overview of localized
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differential privacy technology. Hou Jun et al. [20] applied differential privacy to the con-
struction of a random forest and optimized the differential privacy random forest algorithm,
balancing the privacy and classification accuracy of the differential privacy-based random
forest algorithm. Munib et al. [21] introduced differential privacy into the blockchain and
used differential privacy technology at each layer of the blockchain and in some block
chain-based scenarios. Nao Y et al. [22] introduced a general-population open-source
differential privacy library for investigating, testing, and developing differential privacy
applications in the Python programming language. Zhao Jing Wen et al. [23] studied the pri-
vacy disclosure problem in the deep learning model and discussed it from the perspectives
of member reasoning, training data, and model extraction. Jiang Bin et al. [24] discussed
the combination of differential privacy and industrial Internet of Things applications in
view of the risk of privacy disclosure caused by the strong reliance on data collection in the
deep learning model.

2.2. Data Publishing

Mark et al. [25] discussed the issue of privacy disclosure in track data by combining
privacy protection and track data publishing. Song Jing Cheng et al. [26] proposed a privacy
protection data aggregation scheme for data publishing in view of the large amount of data
and data sensitivity faced by intelligent agriculture. Wang et al. [27] discussed real-time
spatio-temporal data publishing in privacy-protected social networks for social network
data publishing and used adaptive sampling, adaptive budget allocation, dynamic group-
ing, perturbation, and filtering methods to publish social network data, which improved the
practicality of real-time data sharing and had strong privacy protection. Mina et al. [28] pro-
posed an analysis algorithm based on the privacy needs of data providers for the analysis
of data sharing among multiple data providers to realize the trade-off between privacy and
accuracy. Qian Xu et al. [29] proposed a decentralized data publishing scheme with com-
puting outsourcing and anti-concatenation based on attribute encryption and searchable
encryption functions. Chen Ping et al., Wang Tian et al., and Xu Zheng et al. [30] proposed
a data sharing framework to protect privacy by adopting differential privacy protection in
view of the privacy challenges brought by data sharing. Li Boyu et al. [31] proposed a new
technology of mutual coverage to achieve privacy protection during data publishing. Chen
Rui et al. [32] studied the issue of relevant data publishing under differential privacy for
different privacy needs and proposed a non-interactive data publishing scheme.

2.3. Social Network Clustering and Community Discovery

Kun He et al. [33] proposed a meta method to identify hidden community structures by
analyzing complex networks containing different types of communities. Andreas et al. [34]
studied community detection at the emotional level by analyzing vertex clustering and
community detection in social networks. Mehdi et al. [35] analyzed community detection in
social networks and conducted a comprehensive investigation into community detection in
static and dynamic social networks. Su Xing et al. [36] designed a new classification method
for community discovery based on a deep learning model of deep neural networks, deep
non-negative matrix decomposition and deep sparse filtering. Zeng Xiangxiang et al. [37]
put forward the concept of consensus community for community detection in dynamic
networks, which can solve the problem that community structure is affected by assessment,
renewal, and mutation events in the process of event evolution. Geng Junxian et al. [38]
proposed an efficient Markov Monte Carlo algorithm to solve the problem of unequal clus-
tering quality caused by the uncertainty of clustering quantity and estimated the number
and structure of communities at the same time, avoiding the need to invert the number of
clusters to Markov Monte Carlo. Li Chunlin et al. [39] proposed a community detection al-
gorithm based on network topology and user interest. This algorithm detects the number of
communities based on a hierarchical clustering algorithm and partition density to improve
the accuracy of the community detection algorithm. Nate Werter et al. [40] proposed a
new LambdaCC community detection framework based on association clustering analysis.
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Through clustering analysis parameters, the size and structure of clusters can be implicitly
controlled, which can be applied to large-scale collaborative networks and social networks.
Hu Lu et al. [41] proposed a new multi-core combination algorithm for community partition
under the problem of community detection on social networks and studied several basic
kernel matrices from the adjacency matrix of the network, which constitute community
partition. Sarah Ahajim et al. [42] proposed a new scalable and deterministic method, the
leader community detection method, which conducts community detection through leader
retrieval and node similarity.

3. Preliminaries
3.1. Attributed Graph Model

We model a social network as an undirected graph G = (V, E), where V represents
users (nodes) and E represents the relationship between nodes in V. In addition to relation-
ships, each node is associated with a set of attributes, as shown in Figure 1, the attributes of
each user include gender, age, height. For example, in SINA Weibo, the nodes are SINA
Weibo users, and they represent the friendship between different users; you can extract age,
gender, birthday, height, and other node attributes from user files.
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We need to distinguish between attributes and attribute values. Each user has a limited
number of attributes, such as gender, age, height, etc., and each attribute has a limited
number of attribute values. For example, the attribute value of the user’s gender is either
male or female. Let m be the total number of different attribute values in the social network.
Then, we can use an m-dimensional binary vector to represent the existence of attribute
values for each node. More specifically, let au be the attribute vector of node u. Then, the
item equal to 1 in au indicates that u has the corresponding attribute value. Otherwise, it is
0. The attribute value of all nodes uses the matrix U = [u1, u2, · · · , un], where n is the total
number of social nodes, and u1 = [a1, a2, a3, · · · , am], where m is the number of attributes.
In this paper, we use a structure attribute network G = (V, E, B) to model a social network
consisting of a social structure G = (V, E) and an attribute matrix B.

3.2. Differential Privacy

Differential privacy is proposed to solve the problem of privacy disclosure caused by
differential attacks; that is, when the attacker’s knowledge background is the largest, it
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cannot determine whether one of the users exists in the database. For example, there is a
database containing 10 people, among whom there are several patients with COVID-19.
Later, the next user entered into the database is a patient with COVID-19. After we publish
the data, the attacker cannot distinguish whether the last patient added has COVID-19
or not, even though he knows the information of all patients except for the last newly
added patient. Differential privacy mainly uses random noise to ensure that the results
of the query request for public visible information will not disclose individual privacy
information, that is, to provide a way to maximize the accuracy of data queries when
querying from the statistical database while minimizing the opportunity to identify its
records. In other words, remove individual features to protect user privacy while retaining
statistical features.

A related concept in differential privacy is adjacent datasets. Assuming that two
datasets D and D′ are given, if they have only one piece of data that is different, then these
two datasets are called adjacent datasets [14]. Then, if a random algorithm A acts on two
adjacent datasets to obtain two output distributions that are difficult to distinguish, the
algorithm is considered to achieve differential privacy. For a random algorithm A, for
input D and D′, the possible output field O is not a fixed value but data satisfying a certain
distribution, as defined below.

Definition 1. (Differential privacy [14]) A random algorithm A satisfies differential privacy if and
only if for any two adjacent datasets D, D′, the output field O satisfies

Pr(A(D) = O) ≤ eε × Pr
(

A
(

D′
)
= O

)
(1)

This algorithm works with any adjacent dataset, and the probability of obtaining a
specific output O is almost the same. Thus, it is difficult for attackers to detect small changes
in the dataset by observing the output results. In this way, privacy can be protected.

The implementation mechanism of differential privacy is mainly to add randomiza
tion noise to the input or output: Laplace noise [14], Gaussian noise [14], exponential
mechanism [14], etc.

Definition 2. (Neighboring databases [15]) As for a randomized community Ci = (Vi, Ei) in a
graph G, two community graphs, Ci = (Vi, Ei) and Ci

′ = (Vi
′, Ei

′), are randomized; if Vi = Vi
′,

Ei ∈ Ei
′, and |Ei| ± 1 = |Ei’|, we consider that Ci and C′i are neighboring community graphs.

Definition 3. (Sensitivity [14]) As for randomized neighboring graphs Ci, C′ i, the definition of the
sensitivity of the function fCi : Ci → Rd is:

∆ fCi =max ‖ f (Ci)− f
(
C′ i

)
‖1

CiC′ i

(2)

Theorem 1. (Laplace mechanism [15]) For any function f : G → Rd , the mechanism satisfied
with the ε-differential privacy,

A(G) = f (G) +

〈
Lap1

(
∆ f
ε

)
, · · · , Lapd

(
∆ f
ε

)〉
(3)

where Lapi

(
∆ f
ε

)
is the Laplace variables, and the parameter is ∆ f

ε .

Definition 4. (Social network community) As for a social network G = (V, E), the collection of a
community is C = {C1, C2, · · · , Cm}, where Ci ∩ Cj = ∅ (1 ≤ i 6= j ≤ m). For any node v ∈ C,
if the density of internal connections in community C is higher than that of external connections
between communities, C is called a community.
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This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

4. Structure–Attribute Social Network Graph Publishing Model
4.1. Design Motivation

At present, the types of attacks that social network users have are mainly divided
into two categories: one is from the user attributes and the other is from the relationship
between users and friends. User attribute attacks involve user attributes include gender,
age, height, etc. There is a correlation between attributes. If we obtain the true information
for one attribute, we can speculate on the information for another attribute. For example, if
a person likes spicy food, the attacker may speculate that he is from Sichuan or Chongqing
and recommend some spicy products to users, or the hacker may send a connection of spicy
food to users, which is a virus connection. A structural attack refers to the protection of
the relationship between users. In social networks, it is expressed as the existence of edges.
Attackers can judge the relationship between two people by the number of mutual friends
or infer the relevant information of users by obtaining the attribute information of friends.
It is necessary to protect user attributes and structures. Differential privacy can protect user
information by disturbing the data. On the premise of ensuring that the attacker has the
maximum background knowledge, specific user information cannot be inferred, and the
published data can be used for data statistics.

Problems:

1. In practice, social network data are usually anonymous before publishing, generating
anonymous graphs. Attackers can obtain additional information in many ways, such
as data mining, cooperative information systems, and attacks on knowledge or data,
which still cause the disclosure of user privacy.

2. Social network data publishing usually only goes through clustering and structural
perturbation, which will lead to the risk of homogeneous privacy disclosure in the
publishing community.

3. The current social network protection scheme lacks the protection of attributes in
formation, causing user privacy to be attacked.

4.2. Model Overview

The main steps of structure-attribute social network graph publishing model are: (1) to
protect the user’s binary attribute information—specifically, to use the binary discretization
method for continuous attributes and to divide the attribute values into two categories
to improve the operation efficiency; (2) to improve the operation efficiency, we optimized
the Louvain community division algorithm, which divides communities according to map
data; (3) to improve the availability of data and reduce the addition of noise, we introduced
the community partition algorithm and carried out further optimization; (4) to preserve as
much of the graph structure as possible, we introduce an uncertainty graph and build a
composite social network graph using structure and attribute information.

We have designed an overall model diagram. The overall overview of the model is
shown in Figure 2.

Phase 1 (Protection of social network user attributes): This stage is to protect the user’s
attribute information. The data collector converts continuous attributes into binary at-
tributes by using the discrete binary method for the user’s continuous attributes, uses p-flip
probability flipping for all binary attributes, and corrects statistical attribute information for
unbiased estimation. Following iterations with prior probability, flipping probability, con-
ditional probability, and the Bayesian formula, the joint attribute distribution is generated.
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Phase 2 (Social network structure protection): This stage is a disturbance to the data-
side relationship of social networks. In order to reduce the impact of disturbances on the
data structure of social network graphs, we propose the uncertainty graph. First of all,
we use the Louvain community division algorithm to divide the social network graph
data into communities. The Louvain algorithm is an algorithm specially used for the
community discovery of graph data. In order to improve the operation efficiency, we have
further optimized the Louvain algorithm. Secondly, we introduce an uncertainty graph,
generate social network edges with probability, and use differential privacy protection for
the published uncertainty graph. Finally, we calculate the similarity of node attributes,
build the edges between different communities, and generate a composite social network
graph for publishing.

5. Protection of User Attributes

Before operating the user attribute information, we should preprocess the data first,
mainly to discretize the continuous data. The process of mapping finite individuals in an
infinite space to a finite space is known as discretization. The data discretization operation
is mainly performed on continuous data. After processing, the data range distribution
will be changed from a continuous attribute to a discrete attribute. This property usually
contains two or more value ranges. The advantages of discretization include: (1) saving
computing resources and improving computing efficiency; and (2) computing requirements
of computing models. Although some methods can support the input of continuous data,
they first discretize the continuous data and then further operate, such as the decision tree
model. Although they support continuous data, the decision tree itself will first convert the
continuous data into discrete data, so the discretization conversion is an indispensable step.

Collect information from users and convert the collected attribute information into
binary attributes. We use the binary discretization method to set a threshold value, which
is set to 1 if it is greater than the threshold value and to 0 if it is less than the threshold
value, and then obtain a binary dataset with only two value fields. For example, gender
(male and female) is a binary attribute, so there is no need to divide them. For age, use the
binary discretization method to set the attribute value greater than the average age to 1 and
the attribute value less than the average age to 0.

First, the data collector preprocesses the collected user attribute information and
judges the attribute information. If it is a binary attribute, it will not be processed. If it
is other attributes, we use the binary discretization method to cluster the attribute values
into two categories, which are represented by 0,1. Generate an attribute matrix from the
processed attribute values of each user. Each row represents a user, and each column
represents the value of an attribute. We use the probability P = 1

1+eε to flip the attribute
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values of each user to generate a disturbance matrix. We count the frequency of 1 for

each attribute fai =

n
∑

i=1
uai

n and use the formula for this frequency f ′ = p−1+ f
2p−1 to rectify

and obtain unbiased estimates. Then, the conditional probability is obtained according
to the prior probability of the attribute and the flipping probability of the attribute. The
posterior probability is obtained according to the Bayesian formula, and the average value
of the posterior probability is also obtained. The prior probability is iterated, and then
the posterior probability is iterated. Until the difference between two adjacent posterior
probabilities is less than the given threshold, we stop iterating to obtain the joint distribution
of the attribute.

It is proved that the perturbation algorithm satisfies the differential privacy,
Given the attribute list A = (a1, a2, a3, · · · , am) and A′ = (a1

′, a2
′, a3

′, · · · , am
′) and

the mechanism M, the output of M is O = (o1, o2, o3, · · · , om):

P[M(A)=O]
P[M(A′)=O]

= P[a1→o1],··· ,P[am→om ]
P[a1

′→o1],··· ,P[am ′→om ]

= P[a1→o1]
P[a1

′→o1]

< 1−p
p = eε

(4)

6. Protecting the Structure of the Social Network (Social Network Graph Publish
Method—SNGPM)
6.1. Optimization of Community Partition Algorithm

The Louvain algorithm is a community detection algorithm based on modular com-
puting. It is an iterative process of clustering vertices with the goal of maximizing modular
computing. It can calculate satisfactory community recognition results with a high effi-
ciency. The weight is calculated by considering the weight on the edge. In this paper, the
weight of all the edges is set as 1. The modular definition of social networks is as follows:

Q = ∑
C
[
∑c

in
2m
−

(
∑c

tot
2m

)2
] (5)

where m is the weight value of the graph; this paper sets the weight of each edge to 1. C is
any community in the graph. ∑c

in is the weight value within any community. ∑c
tot is the

weight value of the whole community.
In our optimization scheme, in the first round of iteration, we find the nodes with

a degree of 0 and remove them from the iteration graph. The points with a degree of 0
(isolated points) have a negative value for any other community or node. When moving
into other communities, the number of iteration rounds and the time complexity can be
reduced by removing the isolated points. At the same time, we first regard the node with
a degree of 1 and its neighbors as a whole. The node with a degree of 1 needs to iterate
with all communities and calculate the modularity (Q) value. After multiple iterations, it is
finally divided with the community where its neighbor node resides. Before starting the
iteration, the node with a degree of 1 and its neighbor node are first regarded as a node,
which can reduce the number of iterations and reduce the time complexity.

6.2. Algorithm Details

This section describes our solution in detail, including three steps:

1. Attribute perturbation algorithm (Algorithm 1)
2. Optimized Leuven community discovery (Algorithm 2)
3. Adding disturbance to generate an uncertainty graph (Algorithm 3)
4. Post-processing edge reconstruction (Algorithm 4)
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In Algorithm 1, we use the binary discretization method (line 5–9) to discrete disturb
and process user attributes (line 11–22). In Algorithm 2, we optimized the Leuven commu-
nity discovery algorithm, input a social network graph G, and output a graph G1 with a
community structure. First, each node is regarded as a community, and the independent
node is first established as a community and does not participate in the community division
iteration (lines 2–5). A node with a degree of 1 finally enters its neighbor’s community and
binds it to the neighbor node (line 7). Calculate whether each point can find a community
where its neighbors live. If this point can be allocated in the past to generate the largest and
most positive community, and if it can be found, adjust the node to a new community; use
the same method to calculate and adjust the next point. After all points have been calculated
and adjusted, the next iteration is started. This stage iterates according to this rule until no
points can be reallocated (lines 12–17). The runtime of our algorithm is O(n ∗ n).

Algorithm 1. Attribute perturbation algorithm

Input: user collection U(u1, u2, u3, · · · , un) (n is the number of users)
Attribute collection A(a1,a2,a3, . . . am) (m is the number of attribute),
Threshold t, flip probability Pf lip,
Output: joint distribution of user attributes Pu
Start
1: get property information A
2: if A is a binary attribute
3: Continue
4: Else
5: //binary discretization method, with attribute value marked as 0,1
6: If attribute value > the average value of this attribute,
7: set the attribute value to 1,
8: Else
9: set the property value to 0
10: For the attribute values of every user is ai,
11: With probability Pf lip flip attribute values per user//disturbance attribute list of each user
ui → ui

′

12: count the frequency of attribute values of each user fai =

n
∑

i=1
uai

n //Frequency per attribute
( fa1, fa2, fa3, · · · , fam)

13: user f ′ = p−1+ f
2p−1 to corrected, obtain unbiased estimates

14: End for
15: get the prior probability of each attribute of each user
Pf ormer = P(u1 = a1, u2 = a2, u3 = a3, · · · , um = am) and Pf lip

16: get conditional probability P(u′ i|ai) =
m
∏
j=1

(
1− Pf lip

)|ui
′ [j]−ai [j]|

× Pf lip
1−|ui

′ [j]−ai [j]|

17: according to Bayesian formula Pt(ai|ui
′) = Pt(ui=ai)P(ui

′ |ui=ai)
∑
ai

Pt(ai)P(ui
′ |ui=ai)

18: obtain a posterior probability Platter,
19: If Platter(t)− Platter(t− 1) ≥ t
20: calculated and get Platter(ave), use it to repeat iteration for prior probability
21: Else
22: Return Pu = Platter(t)
End
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Algorithm 2. Optimization of the Louvain community (OLC)

Input: Social network graph, G
Output: The graph G1 with community, community collection C
Start
1: initialization, create G1, V1, E1 //node set, edge set
2: G1.nodes = G.nodes, G1.edges = G.edges
3: For all nodes do
4: If di == 0 do
5: di is a community
6: Elseif di == 1 do
7: Consider di and di

′s neighbor node as a super node
8: end
9: While G is a connected graph do
10: for all nodes do
11: If node I has neighbor node
12: Put node I into a community Ci where node I’s neighbor in it
13: Calculate ∆Q //∆Q is the value that before and after the node is placed
14: If ∆Q > 0
15: Merge this node into the neighborhood community
16: Else
17: Keep it as it is
18: Else remove the node from node set and no longer participates in traversal
19: End for
20: End while
End

Algorithm 3. Algorithm for generating the uncertainty graph

Input: A graph G1 with community, privacy budget ε

Output: uncertainty graph G2
Start
1: for traverse every community do
2: Calculate the total degree of all nodes in the community ∑Vi∈C dVi

3: If this community has only one node
Continue
4: End if
5: end
6: For traverse every side in the community Ei,j do
7: calculate the degree of node i, j, as di, dj

8: Pei,j =
(

di + dj

)
//the sum of degree

9: calculate community sensitivity ∆f, injection noise P′di,j
= Pei,j + Lap(∆ f /ε)

10: End for
11: Return G2
End

Algorithm 3 realizes the privacy of a network graph through an uncertainty graph.
The input is the network graph G1 with a community structure and the privacy budget e,
and the output is the uncertain social network with Laplace disturbance. First, calculate the
sum of degrees of all nodes in each community and the probabilities of all edges (lines 2–7).
In addition, we do not calculate the community with just one node. Then, calculate the
sensitivity ∆ f based on the edge probability, inject the Laplace noise, and generate the
perturbation probability (line 8). The running time of the algorithm is O(n).

Algorithm 4 is post-processing. The input is an uncertainty graph G2 with a commu-
nity structure, and the output is a finally released graph G. The first step is to traverse
all the edges to determine whether the endpoint nodes are in different communities. If
the conditions are met, delete the edge and save the probability values in the variable list
(lines 2 and 3). Step 2: Choose nodes i′ and j′ at random. If the degree values of these two
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nodes are both greater than the average degree value, create an edge and assign the value
of the list to the edge (lines 4–6). Finally, return to G′. The operation time is O(n). Nodes
with higher degree values have a greater user influence and are easy to attack. An edge is
established between nodes with higher degree values than the average degree to effectively
protect user privacy.

Algorithm 4. Post-processing algorithm

Input: An uncertainty graph G2 with community
Output: G′

Start
1: for all edges do
2: If the two nodes i and j connected by this edge are in different communities
3: Delete edge, save probability in variable list
4: randomly select a node i′, j′,
5: If di

′ > daverage and dj
′ > daverage

6: Create edge, Ei′ ,j′ , and PEi′ ,j′
= list

7: End if
8: End for
End

6.3. Privacy Analysis

According to the definition of sensitivity, we can see that the global sensitivity of the
algorithm is ∆ fG = maxG,G′ ‖ f (G) − f (G′) ‖1, the dataset with the largest difference
between datasets on the entire social network graph and adjacent graphs. Our algorithm
reduces the global scope of an adjacent graph to the sensitivity of each adjacent community
through community division ∆ fCi = maxCi ,Ci

′ ‖ f (Ci)− f (Ci
′) ‖1. The local sensitivity of

adjacent communities is ∆ fCi = maxCi

(
PEi − PEj

)(
i, j ∈ VCi

)
; reduce sensitivity and noise

by dividing communities.
The proof of satisfying differential privacy is:

Pr[
∼
Ci=S]

Pr[
∼
C
′
i=S]

=
m∗

∏
j=1

Pr[
∼
Ci [j]=Sj |S1,··· ,Sj−1]

Pr[
∼
C
′
i [j]=Sj |S1,··· ,Sj−1]

m∗

∏
j=1

Pr[
∼
Ci [j]=Sj |S1,··· ,Sj−1]

Pr[
∼
C
′
i [j]=Sj |S1,··· ,Sj−1]

≤
m∗

∏
j=1

e |
∼
Ci [j]−

∼
C′i [j]|

σ

(6)

∼
Ci = Ci + Lap

(
∆ f
ε

)|Ci |
(7)

‖ Ci − C′ i ‖≤ ∆ f (8)

m∗

∏
j=1

e
|
∼
Ci [j]−

∼
C′ i [j]|

σ = e
‖
∼
Ci−

∼
C′ i‖1

σ

= e
‖
∼
Ci+Lap

(
∆ f
ε

)
−
∼
C′ i−Lap

(
∆ f
ε

)
‖1

σ

= e
‖Ci−C′ i‖1

σ

≤ eε

(9)

Ci and Ci
′ are adjacent communities, Ci[j] is the probability value of the corresponding

edge in each community, and m∗ is the number of nodes in any community.
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7. Experiment
7.1. Experimental Setup

The experimental environment of this paper is Windows 10, 2.50 GHz, 8.0 GB. All algo-
rithms are implemented in Python, and the programming environment is version Python
3.6.0 was founded by Gudio van Rossum, a Dutchman, in Amsterdam, the Netherlands.

7.2. Experimental Data

The experimental data are from the Stanford official dataset and the network official
dataset, as shown in Table 1, which can be found at http://snap.stanford.edu/ (accessed on
4 March 2022) and http://konect.cc/networks/, respectively (accessed on 4 March 2022).

Table 1. Experimental datasets.

Datasets The Number of Nodes The Number of Edges

Train bombing 64 243
Jazz musicians 198 2743

Facebook 4039 88,234
Wiki-vote 7115 103,689

7.3. Time Comparison Experiment

The running time of the Louvain algorithm before and after optimization is tested on
four different real datasets.

As shown in Figure 3, the comparison of time before and after the optimization of
the Louvain community partition algorithm from four datasets of different sizes (Train
Bombing, Jazz Musicians, Facebook, Wiki-vote) shows that there is no significant difference
in smaller datasets (Train Bombing, Jazz Musicians). However, with the increase in datasets,
the time advantage becomes more and more obvious. We divide a single node into a single
community, which can effectively prevent this node and all other nodes from calculating
the degree of modularity, reduce the number of traverses in the process of dividing the
experimental community, and reduce the time complexity. In addition, we bind a node
with a degree of one to the neighbor node of this node, which belongs to the community
where the neighbor node resides. If not, the node with a degree of one will calculate the
modularity with the community after each iteration, which is an order of magnitude of time
consumption for large datasets. We have conducted thousands of experiments and found
that when the social network is larger, the time saving of the optimization algorithm is
more prominent, and the time efficiency of running on Facebook and Wiki-vote is improved
by 20%.

7.4. Data Release Availability Measurement

We measure the availability of generated data through three experiments, namely, the
number of edges, the local clustering coefficient, and the global clustering coefficient. We
compare the DP and SNGPM algorithms for the three datasets in the original image with
privacy budgets of 0.1, 0.2, 1, 5, 10, and 100.

Figure 4 shows the experimental data on the number of edges in different datasets
(Train Bombing, Jazz Musicians, Facebook). The experiment shows that the SNGPM
algorithm is closer to real data than the DP algorithm. From the two small and medium
sized datasets, Train Bombing and Jazz Musicians, we can see that SNGPM is closer to the
edge number of real data than DP and that its performance is stable under different privacy
budgets. By introducing an uncertainty graph, our algorithm can retain the structure of
the social network to the greatest extent and thus retain the structure and number of edges
close to the original data. The experimental results on the Facebook dataset show that our
algorithm has obvious advantages and performs better on large datasets. We compare the
number of edges under different privacy budgets and quantitatively show the impact of
algorithm perturbations on the number of edges in the graph. The results show that our

http://snap.stanford.edu/
http://konect.cc/networks/


Symmetry 2022, 14, 2531 13 of 19

algorithm is obviously superior to the DP algorithm. Our algorithm can better preserve
the edge number and structure of the graph and effectively improve the availability of
published graphs.
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Figure 3. Running time of different datasets.

Figure 5 shows the distribution of local clustering coefficients in different datasets
(Train Bombing, Jazz Musicians, Facebook) under different privacy budgets. The local
clustering coefficient quantifies the degree to which adjacent nodes gather to form a com-
plete graph. In 1998, Duncan J. Watts and Steven H. Strogatz applied this measurement
method to determine whether a graph constitutes a small-world network. It is found
that the network with the largest local clustering coefficient has a modular structure, and
the average distance between different nodes is as small as possible. The experimental
results show that our algorithm is more stable than the DP algorithm and closer to the
local clustering coefficient of the original graph. After Louvain community division, our
algorithm effectively reduces the sensitivity and reduces the introduction of noise. We can
conduct less disturbance while maintaining the same differential privacy protection degree
as DP, so we have less disturbance to the original graph and more structure retention in the
social network. The results show that our algorithm can retain the structure of the original
graph to the greatest extent.

Figure 6 shows the experimental results of global clustering coefficients for different
datasets (Train Bombing, Jazz Musicians, and Facebook) under different privacy budgets
(0.1, 0.2, 1, 5, 10, 100). The global clustering coefficient is based on the tripleness of nodes.
A triplet is three nodes connected by two (open triples) or three (closed triples) undirected
connections. The global clustering coefficient is the total number of triples divided by the
number of closed triples. This metric summarizes clusters across the global network. In the
process of community division, we connect closely connected users together to increase
the tightness of the community. At the same time, the uncertainty graph algorithm we
introduced can preserve the internal structure of the community as much as possible while
maintaining user privacy. Our algorithm performs well on large datasets. Compared
with the DP algorithm, our algorithm can better maintain the clustering of the social
network graph and keep as many structures as possible in the whole social network graph.
Experiments show that our algorithm performs better than the DP algorithm.
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Figure 4. Number of edges in different datasets. (a) Train Bombing, (b) Jazz Musicians, (c) Facebook.
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Figure 5. Local clustering coefficients of different datasets. (a) Train Bombing, (b) Jazz Musicians,
(c) Facebook.
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Figure 6. Global clustering coefficients of different datasets. (a) Train Bombing, (b) Jazz Musicians,
(c) Facebook.



Symmetry 2022, 14, 2531 17 of 19

Figure 7 shows the correlation coefficient measurement under different graph genera-
tion models. P(i, j) = e

m represents that the degrees of two endpoints of an edge randomly
selected in the network are the probabilities of i and j, respectively; p(i) represents the
probability that the degrees of a node randomly selected in the network and then a neighbor
node randomly selected in the network are i. Similarly, P(j). If P(i, j) = P(i) ∗ P(j), the
network is said to have no degree correlation; otherwise, it has degree correlation. In a
network with further degree correlation, if the nodes with a higher degree tend to the nodes
with a higher degree of connectivity, then the network is said to be homogeneous; if the
nodes with a higher degree tend to the nodes with a lower degree of connectivity, then the
network is heterogeneous. We use ∑

i,j∈V
P(i, j)− P(i)P(j) to indicate the degree of the same

match and different matches in the network. After normalization, we think that when the
value is greater than zero, the network has the same match, and vice versa. Figure 7 shows
the correlation coefficients under different graph generation models. It can be seen that our
algorithm is the closest to the correlation coefficients of the original graph and does not
change the properties of the graph. The ER algorithm does not change the properties of the
graph but has a large difference from the correlation coefficients of the original graph. WS
and BA also change the correlation coefficients greatly.
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8. Conclusions

In this paper, we propose a social network data publishing model that combines node
attributes and graph structure. This model protects social network data from both node
attributes and network structure and uses the protected data for other research. First, we
discretize the continuous attributes through binary attribute discretization to reduce the
computational overhead. We protect the attributes of nodes by flipping the binary attributes
so that the published attributes do not disclose user privacy on the premise of meeting
availability. Secondly, we use the Louvain community partition algorithm to partition
the entire social network, further reducing the sensitivity of the data and reducing the
introduction of noise. Then, we introduce an uncertainty graph to maintain the community
structure to the greatest extent possible. Our experiments show that our method maintains
the structure of the whole network in terms of the number of edges, local clustering
coefficients, and global clustering coefficients on three datasets of different sizes. We prove
theoretically that our method satisfies differential privacy. In the process of analyzing
social network structure disturbances, we optimized the Louvain community partition
algorithm. Experiments on large datasets show that our method improves efficiency by
20%. In summary, our model not only improves efficiency but also ensures privacy.
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In our future work, we will continue to study the following aspects in depth:

(1) Further improve the operation time and efficiency of the community partition algorithm.
(2) In conventional social network protection methods, node attribute information is

combined, and further discussion is carried out, such as on the continuous numerical
value, multi-category attribute, and text attribute. Different types of attributes are
studied to improve the effectiveness of the published data.

(3) In the attribute structure of the social network composite graph, we can use the
association information of node attributes to generate the social network graph.
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