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Long-Wave Anti-Plane Motion in a Pre-Stressed Compressible
Elastic Laminate with One Fixed and One Free Face
Maha M. Helmi

Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia; m.hlmi@tu.edu.sa

Abstract: In this paper, long-wave anti-plane shear motion in a multilayered laminate composed
of pre-stressed compressible elastic layers is investigated. The layers of the laminate are perfectly
bonded, while a fixed-free boundary condition is prescribed on the outer faces of the laminate. The
solution of the model is determined analytically via the propagator matrix and numerically through
the asymptotic approach. Moreover, the numerical results featuring harmonic curves are presented
graphically, together with an asymptotic long-wave analysis of the vibration modes. As a special
case of materials, linear isotropic with one shear modulus is considered. A polynomial long-wave
low-frequency approximation of the related dispersion relation is also studied. It governs dispersion
curves including the lowest harmonic. It is revealed that a low-frequency mode exists in both the two-
and three-layered laminates, which are taken as prototypical structures. Lastly, comparisons between
the exact and approximate asymptotic results are presented, and excellent agreement is observed.

Keywords: anti-plane motion; pre-stressed; compressible; laminates; fixed-free; long-wave; cut-off
frequency; asymptotic

1. Introduction

Addressing the problem of wave propagation in multilayered elastic media is a crucial
subject of much concern. Thus, we accordingly attribute the early theoretical works on the
propagation of waves with regard to the material behaviour and dispersion characteristics
of such structures to the works of Lamb in 1917, Tolstoy and Usdin in 1957, and Mindlin in
1960; for more on these studies, interested reader(s) are refereed to [1–6] and the references
therewith, where the propagation of waves was associated with higher modes for a plane
section of an isotropic plate. In addition, many of the findings of the previous researches
are tackled via the application of numerical methods, including, for instance, the works
by Rogerson and Sandiford in 1997 [7], 2000 [8], and 2002 [9], respectively, with regard to
the computational analysis of the frequency equations arising in multilayered composites;
moreover, cases of the symmetric and anti-symmetric vibrations were considered in favor
of incompressible symmetric three-layered panels.

Asymptotic analysis, based on the ratio of the materials parameters has been discussed
by a considerable number of research for compressible, incompressible and nearly incom-
pressible materials, we may cite here the early wark by Willson in 1973 [10] who examined
wave propagation in an incompressible pre-stressed plate and Ogden and Roxburgh [11],
who investigated in detail plane incremental waves and vibrations in a pre-stressed incom-
pressible elastic plate.

In the counterpart, studies focused on the compressible materials examined for in-
finitesimal surface waves by Chadwick and Jarvis 1979 [12]. More contributions included
in some papers, see for example the work by Ogden [13] and the recent paper by Helmi
and Rogreson [14] investigated long wave motion in a compressible pre-stressed materials.
Some aspects of wave motion problems, in slightly compressible materials can be found in
the work done by Chattopadhyay and Rogerson [15], and the references [16–19].
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Nevertheless, the asymptotic analysis approach has equally been utilized in the past
and has further been proven to be an expensive tool for the analytical scrutiny of different
frequency equations or, alternatively, the dispersion relations. For more on the use and
application of the asymptotic analysis approach, we make mention of the famous book
of Kaplunov et al. [20] on the dynamics of thin-walled elastic media via the asymptotic
method, the work of Rogerson et al. [21] on the vibration of waves on thin elastic plates
through the asymptotic method, the good paper by Andrianov et al. [22] on the vibration
of waves in periodic composite media via higher-order asymptotic homogenization, and
the relevant study by Daya and Potier-Ferry [23] on the propagation of waves in repetitive
structures via the application of the double-scaled asymptotic approach, to mention a
few. Equally, we mention the recent developments with regard to the application of
the asymptotic approach to both the plane and anti-plane dynamic problems, which are
associated with the multilayered and composite structures, to include [24–30] and the
references therein. Furthermore, unlike just the mere analytical or numerical approach, the
asymptotic procedure is able to provide the complete characterization of the dispersion
relation by deeply unraveling some salient features of the propagating wave. For instance,
we recall various studies by Rogerson et al. [31], Nolde and Rogerson [32], Pichugin and
Rogerson [33], and Knowles [34], to mention a few, that lead to the complete understanding
of the dispersion relation of a propagating wave in diverse heterogeneous elastic media. In
fact, an asymptotic solution generally involves donations from each mode of the frequency
equation; read the works of Rogerson [35] and Yang [27] for more on the approximation of
the fundamental mode within the low-frequency region. Additionally, further studies on
vibration stability, fiber-reinforced composites, long-wave motions in multilayered media,
and material nonhomogeneity, which are momentous in their own right, can be accessed
via the reported results in [36–42] and the references enclosed therein.

In particular, as the anti-plane shear motion would be the base for the formulation
of the governing model of multilayered laminate, let us recall that the equation of the
anti-plane motion according to Horgan in 1995 [43] is “an interesting two-dimensional
mathematical model arising in solid mechanics involving a single second-order linear or
quasi-linear partial differential equation. This model has the virtue of relative mathematical
simplicity without a loss of essential physical relevance. Anti-plane shear deformations
are one of the simplest classes of deformations that solids can undergo”. Thus, recent
considerations of elastodynamical models through anti-plane dynamic motion comprise
the study of the dispersion of elastic waves in inhomogeneous three- and five-layered panels
of various structural configurations [44–48]. Certainly, the four types of material contrasts,
involving low- and high-contrast material, which are typical for the classical sandwich,
were analyzed. We also made mention of the recent mechanically loaded multilayered
plates that were modeled via anti-plane shear motion in [49]. In fact, these mechanical
loads happened to be due to Winkler elastic foundations—the famous simple class of
elastic foundations, which found its application in a variety of engineering applications. In
addition, multilayered structures with high material contrast layers are extensively utilized
in contemporary engineering; take a look at, for instance, photovoltaic panels, laminated
glass, vibration filters, and smart periodic structures, to mention a few, see [50] and the
references therein.

However, within this article we investigate the anti-plane dynamic shear of pre-
stressed compressible multilayered structures, considering the two- and three-layered
laminates as prototypical structures. A fixed-free type of boundary condition will be
examined with material contrast and non-contrast properties for each layer. Moreover, as
the structural performance of multilayered laminate depends not only on the properties of
shear modulus and the geometrical dimensions of the components, the present study will
adopt both the analytical and approximation approaches for a solution, to deeply examine
the resulting dispersion relations. A comparative investigation between the two approaches
is also set to be carried out. For this reason, we arrange the present study as follows: the
formulated problem is given in Section 2, while Section 3 determines the solution and the
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analytical dispersion relations. Section 4 makes use of the asymptotic analysis approach to
derive the corresponding approximate results. Additionally, the cut-off frequency and the
polynomial dispersion relation, corresponding to the long-wave low-frequency limit, are
equally derived in Section 4. Lastly, Section 5 provides some concluding remarks.

2. Statement of the Problem

The first concern in this paper is the modelling and analysis of a 2-layered laminate
formed by the ground layer of thickness h1 and perfectly bonded to the second layer of
thickness h2. Then, we model a 3-layered laminate of thickness h1 + h2 + h3. Both layers of
2-layered laminate are assumed to be composed of a pre-stressed compressible material.
The structures are finite in x2 direction and of infinite in the two remaining lateral extent in
both the x1 and x3 directions; see Figure 1 for the 3-layered prototypical structure.

Figure 1. A 3-layered structure.

Moreover, for the sake of simplicity, we consider a state of anti-plane strain for this
layered problem, thus, the only non-zero displacement component is orthogonal to the
plane x1 x2 and taking the form: (u1, u2, u3) = (0, 0, u3). Hence, the equations of motion
for the 2-layered and 3-layered pre-stressed compressible structures can be written in the
following form [20,21,25]

C(n)
1313u3,11 + C(n)

2323u3,22 = ρnü3, (1)

where n = 1, 2 for the 2-layered laminate and n = 1, 2, 3 for the 3-layered laminate.
In addition, perfectly bonded interfaces are considered between the layers of the

governing structures; thus ensuring continuity of displacements and tractions across the
interfaces. The boundary conditions of zero traction at one surface and zero displacement
of the other one will be applied. Thus, in what follows, the exact dispersion relations in
both structures will be determined analytically via the application of the propagator matrix
technique, and subsequently, asymptotically.

3. Exact Dispersion Relation

To determine the resulting dispersion relations, the solution of the above equation is
sought as a travelling wave in the following form

u(n)
3 (x1, x2, t) = Uekqnx2 eik(x1−υt), (2)

where k is the wave number, U is an arbitrary constant, t is time, C(n)
2323, C(n)

1313 are material
parameters, ρn are the volume mass densities of layers, υ is the phase wave speed, in which
the subscript (n) denotes to the layer number, for n = 1, 2 or n = 1, 2, 3, and qn is to be
determined. After substituting the above solution into (1), we obtain a linearised equation,
which possesses a non-trivial solution provided in the following form

C(n)
2323q2

n − C(n)
1313 + ρnυ2 = 0, (3)
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from which we deduce that the solutions for qn are given by

q2
n =

C(n)
1313 − ρn υ2

C(n)
2323

. (4)

Then, the displacement can be written after separating eik(x1−υt) factor as linear combi-
nations, associated with the two solutions indicates in (4) as

u(n)
3 = Unekqnx2 + Vne−kqnx2 . (5)

In addition, the non-zero increment traction may be defined in component form by

τ̂(n) =
τ
(n)
3
k

= C(n)
2323 qn

(
Unekqnx2 −Vne−kqnx2

)
. (6)

Accordingly, the appropriate matrix form for both the two layers (for the 2-layered
laminate) may be introduced as(

u(n)
3

τ̂(n)

)
=

(
ekqnhn e−kqnhn

qnC(n)
2323ekqnhn −qnC(n)

2323e−kqnhn

)(
Un
Vn

)
. (7)

Then, the solution can be rewritten in the following form

Y(xln
2 ) = Q(n) U, (8)

where U = (Un, Vn)T , Y(xln
2 ) = (u(n)

3 , τ̂(n))T and Q(n) is the 2× 2 matrix introduced in (7).
Next, the arbitrary constant vector U may be eliminated from the solution shown in (7)
to yield

(
u(n)

3
τ̂(n)

)
=

 cosh (kqnhn)
1

C(n)
2323qn

sinh (kqnhn)

C(n)
2323qn sinh (kqnhn) cosh (kqnhn)

( ũ(n)
3

τ̃(n)

)
. (9)

Further, this can be rewritten as

Y(x2) = P(n) Ỹ(x2), (10)

in which, the displacements and tractions for the lower layer are denoted by imposing an
over tilde, and P(n) is the so-called propagator matrix for each layer, given by

P(n) =

 cosh (kqnhn)
1

C(n)
2323qn

sinh (kqnhn)

C(n)
2323qn sinh (kqnhn) cosh (kqnhn)

. (11)

Then, the components of the above matrix for the whole 2-layered structure will be
provided by multiplying P = P(2) P(1).

Similarly, we can generate the propagator matrix for the 3-layered structure, which
has been built by adding one more layer with the same material parameters and volume
mass density of the first layer but of different thickness h3, that is, the third layer occupied
h2 ≤ x2 ≤ h3. Thus, the upper surface is at x2 = (h1 + h2 + h3), and the lower surface at
x2 = 0. Therefore, the components of the propagator matrix can be introduced for the
whole 3-layered structure by multiplying P = P(3) P(2) P(1), that is

P =

(
P11 P12
P21 P22

)
. (12)
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In general, if we add more layers to the structure under consideration, we will be able
to reformulate the solution by the propagator matrix as Y(upper) = P Y(lower), with

P = P(n) P(n−1)...P(1).

Therefore, to derive the dispersion relation for the fixed-free boundary condition, we
satisfy the boundary conditions of zero traction on one surface and the zero displacement
on the other surface, in conjunction with the condition of continuity across the interface,
see [51].

Under the above assumptions, either P11 = 0 or P22 = 0 yields the dispersion relation.
Thus, by considering kqnhn = αn, Γ(n)

23 = C(n)
2323, it can be easily shown that the dispersion

relation for the 2-layered laminate takes the following exact form

α2 Γ23

α1
tanh(α1 h12) tanh(α2) + 1 = 0. (13)

Following similar steps, the associated dispersion relation for the 3-layered laminate
can equally be expressed as follows

1 + tanh(α1 h32)

(
tanh(α1 h12) +

α1

Γ23 α2
tanh(α2)

)
+

Γ23 α2

α1
tanh(α1 h12) tanh(α1) = 0, (14)

with,

α1 =

√
γ

Γ
K2 − Γ23

ρ
Ω2, α2 =

√
γK2 −Ω2, (15)

where the dimensionless quantities including the frequency Ω and wave number K are
defined as follows

Ω =
ω h2

Γ(2)
23 /ρ2

, K = kh2, (16)

with the following introduced dimensionless basic parameters

h12 =
h1

h2
, h32 =

h3

h2
, ρ =

ρ2

ρ1
, Γ23 =

Γ(2)
23

Γ(1)
23

, Γ13 =
Γ(2)

13

Γ(1)
13

, γ =
Γ(2)

13

Γ(2)
23

, Γ =
Γ13

Γ23
.

4. Asymptotic Approach of Pre-Stressed Materials

In this section, we determine the governing approximate dispersion relations asymp-
totically with regard to both the 2- and 3-layered laminates. More so, in what follows, we
examine the effect of material contrast within the low-frequency vibration modes, in rela-
tion to the obtained exact and approximate dispersion relations in both scenarios. Hence,
the material contrasts of interest for the typical sandwich laminates include [47–49].

(i) Γ23 � 1, h12 ∼ 1, ρ ∼ Γ2
23.

(ii) Γ23 � 1, h12 ∼ 1, ρ ∼ Γ23,

4.1. 2-Layered Laminate

Let us begin here with the case of a 2-layered laminate. Therefore, Guided by the
numerical analysis of the dispersion relation (13) in the long wave region, we set αn = iα̂n,
in which α̂n is real and positive, see [9]. This leads us to rewrite the dispersion relation
obtained in the case of a 2-layered laminate in (13) as

α1

Γ23 α2
tan(α1 h12) tan(α2)− 1 = 0, (17)
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with,

α1 = Ω
(

1− γ K2

2Γ Ω2 + ..
)√

Γ23

ρ
, α2 = Ω

(
1− γK2

2Ω2 + ....
)

, (18)

Then, with the help of (16), we may adopt a near cut-off asymptotic expansion in
the form

Ω2 = Ω0 + Ω1 K2 + O(K4), (19)

such that upon substituting the latter equation into (17), we obtain at the leading order
(first) the following √

Γ23 ρ− T(Ω∗0) T(Ω0) = 0, (20)

where Ω0 are the cut-off frequency values, that will be solved numerically.
Then, the second order Ω1 can be calculated from

Ω1 =
T(Ω∗0) T(Ω0)

(
(Ω0 T(Ω0) + T(Ω∗0)) + Ω0(1 + h12Γ23ρ) +

√
Ω0 + (1 + h12 Γ2

23) T(Ω0)
)

T(Ω∗0) T(Ω0)
(
h12 Γ2

23T(Ω∗0) +
√

ρT(Ω0)
)
+ T(Ω0) h12 Γ2

23) +
√

ρ T(Ω∗0)
, (21)

where

T(Ω∗0) = tan

(√
Γ
ρ

Ω0 h12

)
, T(Ω0) = tan(

√
Ω0).

 0
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Figure 2. Harmonic curves for a 2-layered pre-stressed laminate through the dispersion relation
(13) (black solid line) and asymptotic solution (19) (red dashed line) when (a) Γ23 = 0.5, Γ13 = 0.45,
ρ = 0.01, and h12 = 0.9, and (b) Γ23 = 0.5, Γ13 = 0.45, ρ = 0.1, and h12 = 0.9.

Harmonic curves computed from Equation (13) are shown in Figure 2a,b for the two
cases of material contrasts. This provides the lowest cut-off frequencies as Ω0 ≈ 0.1, 0.51
and Ω0 ≈ 0.3. Moreover, the figures also portrayed comparative curves between the exact
dispersion relation earlier determined and that of the asymptotic result found in (19). In
fact, from these figures a good agreement between the two approaches has been realized.

4.2. 3-Layered Laminate

Equally, we introduce the asymptotic approach to (14). In doing so, we first re-write
the equation in the following form

tan(α1 h32)

(
tan(α1 h12) +

Γ23 α2

α1
tan(α2)

)
+

α1

Γ23 α2
tan(α1 h12) tan(α2)− 1 = 0, (22)

then, in asymptotic form, we get

T(Ω∗0) T(Ω∗∗0 ) + T(Ω0)
(√

ρ Γ23 T(Ω∗∗0 ) + T(Ω∗0)
)
− 1 = 0, (23)
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where,

T(Ω∗∗0 ) = tan

(√
Γ Ω0

ρ
h32

)
.

Then the (19) may be written as

Ω̃2 = Ω̃0 + Ω̃1 K2 + O(K4), (24)

where Ω̃0 is the cut-off frequencies for 3-layered laminate, which can be obtained numeri-

cally from (23) and Ω̃1 =
F1(Ω0)

F2(Ω0)
, where F1(Ω0) and F2(Ω0) are found to be as follow

F1(Ω0) = T(Ω0)
(

Ω0
√

ρ Γ23

(
h32 T2(Ω∗∗0 ) + h12 T2(Ω∗0)

)
+ Γ23 Γ

√
Ω0(T(Ω∗∗0 ) + T(Ω∗0))

+
√

ρ Γ23Ω0(h12 + h32)− ρ
√

Ω0(T(Ω∗∗0 ) + T(Ω∗0))
)
+ T2(Ω0)(Ω0 Γ23(T(Ω∗∗0 ) + T(Ω∗0)))

+T(Ω∗0)(h12 + Γ23 Γ)Ω0 + T(Ω∗∗0 ) (h32 + Γ23 Γ)Ω0,

F2(Ω0) = T(Ω0)
(

Ω0
√

ρ Γ23

(
h32 T2(Ω∗∗0 ) + h12 T2(Ω∗0)

)
+ Γ23 Γ

√
Ω0(T(Ω∗∗0 ) + T(Ω∗0))

+
√

ρ Γ23Ω0(h12 + h32) + T(Ω∗0))
)

Ω0Γ23 + T2(Ω0)ρ((T(Ω∗∗0 ) + T(Ω∗0)))

+T(Ω∗0)(h12 + ρ) + T(Ω∗∗0 ) (h32 + ρ).

4.3. Special Cases

In this regard, we consider a special case of linear isotropic material in both layers of
the structures (of course, the structures are composed of different materials in each layer).
Therefore, upon assuming the 2- and 3-layered laminate under consideration to be isotropic
materials, several of the existing results are set to be obtained and analyzed.

4.3.1. 2-Layered Isotropic Laminate

Therefore, the dispersion relation found (17) with isotropic material parameters can be
expressed as follows

α1

µ α2
tan(α1 h12) tan(α2)− 1 = 0, (25)

in which,

α1 =

√
µ

ρ
Ω2 − K2, α2 =

√
Ω2 − K2, µ =

µ2

µ1
.

Thus, the frequency equation in this case can only be computed for two material
parameters ρ and µ, in which Γ23 = Γ13 = µ. Hence, for such a structure, the dispersion
relation (13) can be introduced as

√
ρ µ = tan(Ω) tan

(
h12

√
µ

ρ
Ω
)

. (26)

Further, within the low-frequency regime, both arguments in the above equation must
satisfy the following relations, that is,

Ω� 1, and h12

√
µ

ρ
Ω� 1,

over the low-frequency range

Ω
(

1 + h12

√
µ

ρ

)
� 1.



Symmetry 2022, 14, 2516 8 of 13

Furthermore, from (26), we can write

√
ρ µ = Ω

(
Ω h12

√
µ

ρ

)
, (27)

upon which Ω ≈
√

ρ

h12
� 1 and h12

√
µ

ρ
Ω� 1, which further gives the predicted single

cut-off frequency as follows
ρ� h12 � µ−1. (28)

Hence, the formulated problem under consideration does not support the fundamental
mode with a zero cut-off frequency.

Besides, on the long-wave motion, that is, when K(1+ h)� 1, and in conjunction with
the low-frequency range expressed in (28), the shortened polynomial dispersion relation
from (26) is further got to be

µ + h12 K2 − µ h12

ρ
Ω2 + h12

(
h2

12 + 1
3

)
K4 − h12

3

(
1 +

µ

ρ
(2h2

12 + 1)
)

Ω2 K2 + ... = 0. (29)

Equation (29) will be analysed for two cases of contrast. In case (a), µ � 1, ρ ∼

µ2, h12 ∼ 1, then ρ∗ =
ρ

µ2 ∼ 1 and h∗12 =
h12

µ
. As a result, we obtain the shortened

polynomial cut-off frequency equation as follows

µ + µ

(
1
2
+ h∗12

)
K2 −

h∗12
3ρ∗

K2 Ω2 −
(

µ

2
+

h∗12
ρ∗

)
Ω2 + ... = 0, (30)

In order to get the shortened polynomial in this case, we first provide Ω in the
following form

Ω2
∗ = Ω2

0 + µΩ2
2 + .. (31)

Then, after substituting the later into (30), we finally arrived at

Ω2
0 =

ρ∗

h∗12
, Ω2

2 =
ρ∗

h∗12

(
1
3
+ h∗12

)
K2 − 1

3

(
ρ∗

h∗12

)2
. (32)

Next, for the parameters in case (ii), we set ρ∗ = ρ
µ ∼ 1, and further express the

shortened dispersion formula as follows

µ

h12
+ K2 − 1

ρ∗
Ω2 = 0. (33)

Then, we introduce Ω2 = µη Ω2
∗ and K2 = µη K2

∗, in which, Ω∗ ∼ K∗ ∼ 1, 0 < η ≤ 1.
In the long-wave low-frequency regime, equation written in (33) may be re-expressed as

Ω2
∗ = ρ∗

(
K2
∗ +

µ1−η

h12

)
. (34)

Amazingly, the above special case (results) for the 2-layered linear isotropic laminate
exactly corresponds to the findings of the symmetric three-layered plate that was recently
studied by Prikazchikova et al. (2018) [48]. More so, it is very relevant to state here that
the case of antisymmetric vibrational modes was analyzed in [41], owing to the fact that
only antisymmetric dispersion relation was found to satisfy the global low-frequency
region. Further, we examine two cases of material contrasts, comprising case (i) when
(µ = 0.2, h12 = 0.9, ρ = 0.01), and case (ii) when (µ = 0.2, h12 = 0.9, ρ = 0.1). Additionally,
the dispersion curves have been presented for the first case of contrasting setup in Figure 3a
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and for the second case in Figure 3b, respectively. Furthermore, it is observed from these
figures that the lowest cut-off frequency associated with cases (i) and (ii) are approximately
realized when at Ω ≈ 0.102 and Ω ≈ 0.31, correspondingly.
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Figure 3. Harmonic curves for a 2-layered linear isotropic laminate through the dispersion relation
(26) (black solid line) and shortened polynomial (33) (red dashed line) when (a) µ = 0.2, ρ = 0.01,
and h12 = 0.9, and (b) µ = 0.2, ρ = 0.1, and h12 = 0.9.

4.3.2. 3-Layered Isotropic Laminate

In the same manner, we deduce from the obtained dispersion relation for the pre-
stressed 3-layered structure in (14) the corresponding/reduced dispersion relation for a
3-layered linear isotropic laminate as follows

tan(α1h32) tan(α1h12) +
α1

µ α2
tan(α1h32) tan(α2) +

µ α2

α1
tan(α1h12) tan(α2) = 1. (35)

Accordingly, by setting K = 0 in (35), we have for the low frequency range

Ω ≈
(

ρ

µ

) 1
2 1√

h12h32 + ρ (h12 + h32)
� 1. (36)

Consequently, without further delay, the harmonic curves computed from the exact
and approximate frequency equations in this scenario are equally portrayed in Figure 4a,b,
respectively, for the two cases of material contrasts. Indeed, a very good agreement has
been graphically realized between the two approaches.

Next, expanding the trigonometric functions in (35) in Taylor series about Ω = K = 0,
and assuming (3), an approximate polynomial dispersion relation may be obtained in
the form

1 + γ1K2 + γ2 Ω2 + γ3Ω2K2 + γ4K4 + γ5K4Ω2 + γ6K2Ω4 + γ7Ω4

+ γ8 K6 + γ9 Ω6 + .. = 0, (37)

where the coefficients γi for i = 1, 2, ..., 9, are expressed as follows
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γ1 = µ(h12 + h32) + h12 h32,

γ2 = −µ(h12 + h32)−
µ

ρ
h12 h32,

γ3 =
µ

3
(h12 + h32) +

µ

6

(
µ

ρ
+ 1
)(

h3
12 + h3

32

)
γ4 = −µ

6

(
h12 + h3

12 + h32 + h3
32

)
,

γ5 = − µ

36

(
µ

ρ
+ 2
)(

h3
12 + h3

32

)
,

γ6 = − µ

36

(
2µ

ρ
+ 1
)(

h3
12 + h3

32

)
, (38)

γ7 = − µ2

6 ρ2 (h12 h3
32 + h32 h3

12),

γ8 =
µ

36

(
h3

12 + h3
32

)
,

γ9 = − 1
36

µ2

ρ

(
h3

12 + h3
32

)
.

Comparatively, the findings of the present special case are similitude to that of
the recent study reported by Kaplunov et al. 2020 [44], Alkinidri et al. 2020 [45], and
Nuruddeen et al. 2021 [46] with regard to the vibration of waves on an asymmetric elastic
three-layered sandwich plate. However, we state the exception of the geometric arrange-
ment of the layers and the traction-free faces in [44–46], which differ from the present
fixed-free structure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.13  0.3  0.5  0.8  1

K

Ω
(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.4  0.9  1

K

Ω
(b)

Figure 4. Harmonic curves for a 3-layered pre-stressed laminate through the dispersion relation
(14) (black solid line) and asymptotic solution (24) (red dashed line) when (a) Γ23 = 0.5, Γ13 = 0.45,
ρ = 0.01, and h12 = 0.9, h32 = 0.3 and (b) Γ23 = 0.5, Γ13 = 0.45, ρ = 0.1, and h12 = 0.9, h32 = 0.3.

In the same passion, Figure 5 presented comparative harmonic curves, comparing the
exact and approximate results via (35) with respect to linear isotropic material parameter,
for fixed-free faces laminate. Also, from the figures, the two lowest harmonics curves
with the two cut-off frequency values at 0.16, and 0.41, respectively, are showed a good
agreement over the long-wave region.
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Figure 5. Harmonic curves for a 3-layered linear isotropic laminate through the dispersion relation
(35) (black solid line) and asymptotic expansion (37) (red dashed line) when (a) µ = 0.2, ρ = 0.01,
and h12 = 0.9, h32 = 0.3, and (b) µ = 0.2, ρ = 0.1, and h12 = 0.9, h32 = 0.3.

5. Some Concluding Remarks

The present study employed both the analytical and approximation approaches to
examine the dispersion of multilayered elastic laminates with fixed-free outer faces. More
precisely, the dispersion of small amplitude waves in multilayered structures, which are
made up of pre-stressed compressible elastic materials has been investigated, with the 2-
and 3-layered laminates as prototypical structures. Analytically, the propagator matrix
technique has been utilized to get hold of the relevant exact frequency equations, with the
method offering a simpler derivation procedure; while on the other hand, an asymptotic
analysis approach has been deployed as the efficient approximation method of concern to
divulge the analogous approximate frequency equations. Moreover, two cases of material
contrasts have been incorporated in the structures to further facilitate the long-wave low-
frequency vibration. Besides, in an attempt to validate the results of the present study,
some well-known results of the classical linear isotropic scenario have been deduced
from the governing pre-stressed compressible material. Long-wave approximations of the
exact and analogous asymptotic dispersion relations have been established in each case—
and graphically shown to be in a good agreement. Moreover, an n-layered generalized
anisotropic structure will be the target of the future undertaking, in fact, the both the
geometric and material properties are heterogeneous in nature.
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