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Abstract: Symmetries play a vital role in the study of physical systems. For example, microworld
and quantum physics problems are modeled on the principles of symmetry. These problems are
then formulated as equations defined on suitable abstract spaces. Most of these studies reduce to
solving nonlinear equations in suitable abstract spaces iteratively. In particular, the convergence
of a sixth-order Cordero type iterative method for solving nonlinear equations was studied using
Taylor expansion and assumptions on the derivatives of order up to six. In this study, we obtained
order of convergence six for Cordero type method using assumptions only on the first derivative.
Moreover, we modified Cordero’s method and obtained an eighth-order iterative scheme. Further,
we considered analogous iterative methods to solve an ill-posed problem in a Hilbert space setting.

Keywords: iterative method; Taylor expansion; Fréchet derivative; order of convergence

1. Introduction

As already mentioned in the abstract, the main goal is to obtain convergence order
of the method studied in [1] without using assumptions on the higher-order derivatives.
Throughout this paper U ,V denote Banach spaces and Ω ⊂ U is a convex set. We are
interested in approximating the solution u∗ of the equation

J (u) = 0, (1)

where J : Ω ⊂ U → V is a nonlinear operator that is Frèchet differentiable. A considerable
number of nonlinear problems of the form (1) that arise in physics, chemistry, biology,
finance, and mathematics are modeled on principles of symmetry. In general, the classical
Newton method of second-order defines ∀k = 0, 1, 2, . . . , by

uk+1 = uk −J −1
uk
J (uk), (2)

where Juk = J ′(uk), is considered to be the most efficient iterative method to solve
Equation (1). Cordero et al. [2] modified the classical Newton method by employing
Adomian polynomial decomposition and obtained a fourth-order iterative scheme. The
iterative scheme in [2] is defined ∀k = 0, 1, 2, . . . , by

vk = uk −J −1
uk
J (uk)

uk+1 = vk − (2J −1
uk
−J −1

uk
JvkJ

−1
uk

)J (vk), (3)

where Jvk = J ′(vk). This new fourth-order Cordero method has better stability than the
classical Newton method with higher-order convergence.

A new technique was introduced by Cordero et al. in [1] to improve the convergence
order of an iterative method from q to q + 2 by combining it with the classical Newton
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method. By using this technique, the authors modified the fourth-order iterative method (3)
to a sixth-order iterative scheme that is defined ∀k = 0, 1, 2, . . . , by

vk = uk −J −1
uk
J (uk)

wk = vk −J −1
uk

(2I −JvkJ
−1

uk
)J (vk)

uk+1 = wk −J −1
vk
J (wk). (4)

However, the disadvantage of the convergence analysis conducted by Cordero et al. [1]
is that they use Taylor expansion which involves the Fréchet derivative of the function up
to order six. The convergence analysis of iterative methods in Banach space is conducted
by using Taylor expansion which requires assumptions on the higher-order derivatives
of the operator involved [1,3–8]. If the higher-order derivatives are unbounded, these
schemes bear limited applicability. For example, consider the equation G(t) = 0, where
G : [− 1

2 , 5
2 ]→ R is defined by

G(t) =
{

t3log(t2) + t5 − t4 t 6= 0
0 t = 0.

Since the third-order derivative of G is unbounded, the convergence analysis depends
on Taylor expansion which is not applicable in this example.

In this study, we could obtain the sixth-order convergence for the method (4) without
using Taylor expansion. We employed only the assumptions on the Fréchet derivative of
order one. The novelty of our approach is that it does not require higher-order Fréchet
derivatives of the operator and Taylor expansion in the convergence analysis. Thus, we
enhance the method’s utility. We also modify the last step of the method (4) and obtain a
new eighth-order iterative scheme that is defined ∀k = 0, 1, 2, . . . , by

vk = uk −J −1
uk
J (uk)

wk = vk −J −1
uk

(2I −JvkJ
−1

uk
)J (vk)

uk+1 = wk −J −1
wk
J (wk). (5)

where Jwk = J ′(wk).
In [9], Parhi and Sharma proved the convergence of the method (4) without using

Taylor expansion. However, the authors could not obtain the sixth-order convergence
theoretically for method (4).

In this study, we also estimate the radius of convergence of the methods (4) and (5)
under assumptions on first-order Fréchet derivative and compute the efficiency indices.
We numerically demonstrate that the radius of convergence in our study is superior to the
estimates of Parhi and Sharma. We also considered the analogous iterative methods of
these two iterative schemes to solve an ill-posed problem in a Hilbert space.

The convergence analysis of methods (4) and (5) is provided in Section 2. The radius of
convergence and Approximate Computational Order of Convergence (ACOC) is computed
numerically in Section 3. A numerical example of an ill-posed problem is given in Section 4
and the paper concludes in Section 5.

2. Convergence Analysis of (4) and (5)

We use notations B(t0, ρ) = {t ∈ U : ‖t − t0‖ < ρ} and B(t0, ρ) = {t ∈ U :
‖t − t0‖ ≤ ρ} for some ρ > 0. The following definition and assumptions are used to
prove our results.

Definition 1. A sequence {un} is said to converge to solution u∗ with order q if there exists K > 0
such that
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‖un+1 − u∗‖ ≤ K‖un − u∗‖q.

Assumption 1. ∃ ζ1 > 0 such that ∀u, v ∈ D(J ),

‖J ′(u)−1(J ′(v)−J ′(u))‖ ≤ ζ1‖v− u‖.

Assumption 2. ∃ ζ2 > 0, ρ > 0 such that ∀u, v ∈ B(u∗, ρ),

‖J ′(u)−1J ′(v)‖ ≤ ζ2.

The local convergence is based on functions φi, ψi, i = 1, 2, which are defined as
follows. Let φ1 : [0, ∞)→ [0, ∞) be defined by

φ1(t) =
ζ3

1
32

[16ζ1 + 4ζ2
2 + 8ζ2

1t + ζ3
1t2]t3

and
ψ1(t) = φ1(t)− 1.

We observe that ψ1(0) = −1 and ψ1(t) → ∞ as t → ∞. So, by intermediate value
theorem ψ1(t) = 0 has a minimal zero ρ1 > 0. Similarly, define φ2 : [0, ∞)→ [0, ∞) by

φ2 =
ζ2

1
2

(
1 +

φ1(t)
ζ1t

)
φ1(t)t2

and
ψ2(t) = φ2(t)− 1.

Furthermore, let ρ2 > 0 be the minimal zero of ψ2(t) = 0. Let

ρ = min{ 2
ζ1

, ρ1, ρ2}. (6)

Then, 0 < φ1(t), φ2(t) < 1, ∀t ∈ (0, ρ). Let eu
n = ‖un − u∗‖, ev

n = ‖vn − u∗‖, and
ew

n = ‖wn − u∗‖, ∀n = 0, 1, 2, . . .

Theorem 1. (Existence and Uniqueness) Let ρ be as in (6). Then {uk} defined by (4) with
u0 ∈ B(u∗, ρ)− {u∗}, converges to u∗ with order of convergence six, i.e.,

eu
k+1 ≤ C(eu

k )
6,

where C =
ζ5

1
64

(
1 + φ1(ρ)

ζ1ρ

)(
16ζ1 + 4ζ2

2 + 8ζ2
1ρ + ζ3

1ρ2). Suppose that (1) has a simple solution

in the set S = Ω ∩ B(u∗, ρ). Then u∗ is the unique solution of equation J (u) = 0 in the set S,
provided that ζ1ρ < 2.

Proof. (Existence Part) By induction, we shall prove the following inequalities:

vn ∈ B(u∗, ρ), ev
n ≤ ζ1

2
(eu

n)
2,

wn ∈ B(u∗, ρ), ew
n ≤ φ1(eu

n)e
u
n,

un+1 ∈ B(u∗, ρ), eu
n+1 ≤ C(eu

n)
6.
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For u0 ∈ B(u∗, r), by (4) we have,

v0 − u∗ = u0 − u∗ −J −1
u0

(J (u0)−J (u∗))

=

(
−J −1

u0

∫ 1

0
J ′(u∗ + t(u0 − u∗))−Ju0 dt

)
(u0 − u∗),

So by Assumption 1, we obtain,

ev
0 ≤

ζ1

2
(eu

0 )
2. (7)

By (6), ζ1
2 (e

u
0 )

2 ≤ ζ1
2 ρ2 ≤ ρ, so we have v0 ∈ B(u∗, ρ). Again, from the second step of (4),

w0 − u∗ = v0 − u∗ −
(
J −1

u0
(2I −Jv0J −1

u0
)
)
(J (v0)−J (u∗))

= J −1
u0

(Ju0(v0 − u∗)− (2I −Jv0J −1
u0

)

×
∫ 1

0
J ′(u∗ + t(v0 − u∗))(v0 − u∗)dt)

= −J −1
u0

∫ 1

0
(J ′(u∗ + t(v0 − u∗))−Ju0)(v0 − u∗)dt

−J −1
u0

(I −Jv0J −1
u0

)
∫ 1

0
J ′(u∗ + t(v0 − u∗))(v0 − u∗)dt

= −J −1
u0

∫ 1

0
(J ′(u∗ + t(v0 − u∗))−Ju0)(v0 − u∗)dt

−J −1
u0

(Ju0 −Jv0)J −1
u0

(∫ 1

0
J ′(u∗ + t(v0 − u∗))(v0 − u∗)dt

)
.

By adding and subtracting the term Γ =
∫ 1

0 J
′(u∗ + t(v0 − u∗))dt we get,

w0 − u∗ = −J −1
u0

∫ 1

0
(J ′(u∗ + t(v0 − u∗))−Ju0)(v0 − u∗)dt)

−J −1
u0

(Ju0 + Γ− Γ−Jv0)

×
(
J −1

u0

(∫ 1

0
J ′(u∗ + t(v0 − u∗))(v0 − u∗)dt

))
= −J −1

u0

(
Γ−

∫ 1

0
Ju0 dt

)
(v0 − u∗)

−J −1
u0

(Ju0 − Γ)J −1
u0

Γ(v0 − u∗)

−J −1
u0

(
Γ−

∫ 1

0
Jv0 dt

)
J −1

u0
Γ(v0 − u∗)

= −J −1
u0

(
Γ−

∫ 1

0
Ju0 dt

)(
I −J −1

u0
Γ
)
(v0 − u∗)

−J −1
u0

(
Γ−

∫ 1

0
Jv0 dt

)
J −1

u0
Γ(v0 − u∗)

= −J −1
u0

(
Γ−

∫ 1

0
Ju0 dt

)
J −1

u0
(Ju0 − Γ)(v0 − u∗)

−
(
J −1

u0
Jv0J −1

v0

(
Γ−

∫ 1

0
Jv0 dt

))
J −1

u0
Γ(v0 − u∗).
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Therefore, by (7), Assumptions 1 and 2, we obtain

ew
0 ≤ ζ2

1

(
eu

0 +
ev

0
2

)2
ev

0 +
ζ1ζ2

2
2

(ev
0)

2

= ζ2
1

(
(eu

0 )
2 + eu

0 ev
0 +

(ev
0)

2

4

)
ev

0 +
ζ1ζ2

2
2

(ev
0)

2

≤ ζ2
1

(
(eu

0 )
2 +

ζ1

2
(eu

0 )
3 +

ζ2
1

16
(eu

0 )
4

)
ζ2

1
2
(eu

0 )
2 +

ζ1ζ2
2

2

(
ζ1

2
(eu

0 )
2
)2

=
ζ4

1
32

(
16 + 8ζ1eu

0 + ζ2
1(e

u
0 )

2
)
(eu

0 )
4 +

ζ3
1ζ2

2
8

(eu
0 )

4

=
ζ3

1
32

(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
4 (8)

= φ1(eu
0 )e

u
0 < eu

0 .

Thus, w0 ∈ B(u∗, ρ). By the third step of (4) we have,

u1 − u∗ = w0 − u∗ −J −1
v0

(J (w0)−J (u∗))

= −J −1
v0

∫ 1

0
(J ′(u∗ + t(w0 − u∗))−Jv0)(w0 − u∗)dt.

Again, by using Assumption 1, (7) and (8) we get,

eu
1 ≤ ζ1(ev

0 +
ew

0
2
)ew

0

≤ ζ1(
ζ1

2
(eu

0 )
2 +

ζ3
1

64

(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
4)

ζ3
1

32

(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
4

=
ζ5

1
64

(
1 +

ζ2
1

32

(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
2

)
(

16ζ1 + 4ζ2
2 + 8ζ2

1eu
0 + ζ3

1(e
u
0 )

2
)
(eu

0 )
6

=
ζ5

1
64

(
1 +

φ1(eu
0 )

ζ1eu
0

)
32
ζ3

1
φ1(eu

0 )(e
u
0 )

3

= φ2(eu
0 )e

u
0 . (9)

Note that,

φ2(eu
0 ) =

ζ2
1

2

(
1 +

φ1(eu
0 )

ζ1eu
0

)
(φ1(eu

0 ))(e
u
0 )

2

=
ζ5

1
64

(
1 +

φ1(eu
0 )

ζ1eu
0

)(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
5,

So by (9), we get,

eu
1 =

ζ5
1

64

(
1 +

φ1(eu
0 )

ζ1eu
0

)(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
6

≤ C(eu
0 )

6.

Further, since φ2(eu
0 ) < 1, we have u1 ∈ B(u∗, ρ). The induction is complete, by replac-

ing u0, v0, w0, u1 by un, vn, wn, un + 1,, respectively, in the preceding arguments.
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(Uniqueness Part) Let u be another solution of the Equation (1) in the set S.
Let T =

∫ 1
0 J

′(u∗ + t(u− u∗))dt. By using Assumption 1, we have

‖J ′(u∗)−1(T −J ′(u∗))‖ ≤ ζ1

∫ 1

0
‖u∗ + t(u− u∗)− u∗‖dt

= ζ1

∫ 1

0
t‖u− u∗‖dt

≤ ζ1

2
ρ < 1.

Therefore, by using Banach lemma [10], one can conclude that T is invertible.
Hence u = u∗ follows from 0 = J (u)−J (u∗) = T(u− u∗).

Next, we prove the convergence of method (5). Let φ̃2 : [0, ∞)→ [0, ∞) be defined by

φ̃2(t) =
ζ1

2
φ1(t)t4.

Again, by intermediate value theorem ψ̃2(t) = φ̃2(t) − 1 = 0 has a minimal zero
ρ̃2 > 0. Let us define

ρ̃ = min{ 2
ζ1

, ρ1, ρ̃2}. (10)

Theorem 2. Let ρ̃ be as in (10). Then {uk} defined by (5) with u0 ∈ B(u∗, ρ̃)− {u∗}, converges
to u∗ with the order of convergence eight. i.e.,

eu
k+1 ≤ C̃(eu

k )
8,

where C̃ = ζ1φ1(ρ̃)
2ρ̃3 . Furthermore, u∗ is the unique solution of Equation (1) in the set S = Ω ∩

B(u∗, ρ̃) provided that ζ1ρ̃ < 2.

Proof. By the third sub-step of (5), we have

u1 − u∗ = w0 − u∗ −J −1
w0

(J (w0)−J (u∗))

so, by (8), we get

eu
1 ≤ ζ1

2
(ew

0 )
2

≤ ζ1

2

(
ζ3

1
32

(
16ζ1 + 4ζ2

2 + 8ζ2
1eu

0 + ζ3
1(e

u
0 )

2
)
(eu

0 )
4

)2

=
ζ1

2

(
φ1(eu

0 )

(eu
0 )

3

)
(eu

0 )
8 (11)

= φ̃2(eu
0 )e

u
0 < eu

0 .

From (11), we get

eu
1 ≤ ζ1φ1(ρ̃)

2ρ̃3 (eu
0 )

8

= C̃(eu
0 )

8.

The rest of the proof proceeds in the same manner as in Theorem 1.

Remark 1. Note that by (8), we obtain the convergence order four for the Cordero method (3).
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3. Estimation of Radius of Convergence and Computational Order

We estimate the radius of convergence ρ and ρ̃ to validate the theoretical results.

Example 1. Let U = V = R, u0 = 1, Ω = [u0 − (1− k), u0 + (1− k)], k ∈ (2−
√

2, 1) and
F : Ω→ K be defined by

J (u) = u3 − k.

We have, ‖J −1
u0
‖ = 1

3 .

‖J −1
u0

(J ′(u)−Ju0)‖ =
1
3
‖(3u2 − 3)‖

≤ ‖u + 1‖‖u− 1‖
= (3− k)(1− k).

By using Banach Lemma,

‖J ′(u)−1‖ ≤
‖J −1

u0
‖

1− ‖J −1
u0 J ′(u)− I‖

=
1

3(1− (3− k)(1− k))
,

So,

‖J ′(u)−1(J ′(v)−J ′(u))‖ ≤ ‖J ′(u)−1‖‖3v2 − 3u2‖

≤ 3(v + u)(v− u)
3(1− (3− k)(1− k))

=
2(2− k)

(1− (3− k)(1− k))
‖v− u‖.

Therefore, ζ1 = 2(2−k)
(1−(3−k)(1−k)) .

‖J ′(u)−1J ′′(v)‖ ≤ ‖J ′(u)−1‖‖J ′′(v)‖

≤ 6v
3(1− (3− k)(1− k))

=
2(2− k)

(1− (3− k)(1− k))
= ζ2.

Set k = 0.85, we then get, ζ1 = ζ2 ≈ 3.3948, ρ1 ≈ 0.1899, ρ2 ≈ 0.2092, 2
ζ1

= 0.35,

ρ = min{ 2
ζ1

, ρ1, ρ2} ≈ 0.1899. Furthermore, we have ρ̃2 ≈ 0.4409 and ρ̃ = min{ 2
ζ1

, ρ1, ρ̃2} =
0.1899. Using the convergence analysis in [9], we obtain the radius R = 0.1123.

Example 2. Let U = V = R3, Ω = B[0, 1], u0 = (0, 0, 0)T . Define function J on Ω for
x = (u, v, w)T by

J (x) =
(

eu − 1,
e− 1

2
v2 + v, w

)T
.

Then,

J ′(x) =

 eu 0 0
0 (e− 1)v + 1 0
0 0 1

.

Thus, ζ1 = e− 1 and ζ2 = e. Furthermore, we get, 2
ζ1
≈ 1.1639, ρ1 ≈ 0.4510, ρ2 ≈ 0.4779 and

the radius of convergence ρ = min{ 2
ζ1

, ρ1, ρ2} ≈ 0.4510. Furthermore, we have ρ̃2 ≈ 0.7154 and
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ρ̃ = min{ 2
ζ1

, ρ1, ρ̃2} ≈ 0.4510. Parhi and Sharma [9] considered this example 2 and obtained the
radius R = 0.133649.

Remark 2. We observe that, ρ̃ = ρ in the above examples. Furthermore, note that we can obtain a
better radius of convergence than that of Parhi and Sharma’s convergence analysis in [9].

To ensure the methods (4) and (5) attain the order of convergence computationally, we
calculated the Approximate Computational Order of Convergence (ACOC) (Table 1), that
is defined as [1]

Σ = ln
(
‖uk+1 − uk‖
‖uk − uk−1‖

)
/ ln

(
‖uk − uk−1‖
‖uk−1 − uk−2‖

)
.

We considered the following functions and used the stopping criterion ‖uk+1 − uk‖+
‖J (uk+1)‖ ≤ 10−10.

J (t1, t2, t3) = (et1 − 1,
e− 1

2
t2
2 + t2, t3), (12)

J (t) = t3 − 0.85, (13)

J (t1, t2) = (t2
1 − 4t2 + t2

2, 2t1 − t2
2 − 2), (14)

J (t1, t2) = (t2
1 + t2

2 − 1, t2
1 − t2

2 + 0.5), (15)

J (t1, t2) = (t3
1 − t2, t3

2 − t2), (16)

J (t1, t2) = (3t2
1t2 − t3

2, t3
1 − 3t1t2

2 − 1). (17)

Table 1. ACOC for methods (2), (3), (4) and (5).

Eq. No. u∗ u0 N N N N ACOC ACOC ACOC ACOC
NM CM CM1 CM2 NM CM CM1 CM2
(2) (3) (4) (5) (2) (3) (4) (5)

(12) (0, 0, 0) ( 1
2 , 0, 0) 6 4 4 4 2 4.3 6.2 7.6

(1.1, 1.1, 1.1) 8 5 5 4 1.98 3.7 5.9 6.4

(13) 0.9472 1.6 7 5 4 4 2 3.9 5 6.8
0.5 8 10 41 7 2 3.9 5.6 6.5

(14) (0.3542, 1.1364) (0.6, 0.7) 7 5 4 4 2 3.5 5.8 8

(15) ( 1
2 ,
√

3
2 ) (0.35, 0.5) 7 5 4 4 1.5 3.9 6.3 8.4

(0.9, 1) 6 4 4 3 2 3.4 5.4 Not
defined

(16) (1, 1) (1.1., 0.75) 7 5 4 4 2 3.7 5.8 9.5

(17) (− 1
2 ,−

√
3

2 ) (−0.4,− 1
2 ) 8 7 8 5 1.2 4.2 5.2 7.9

Note that the oscillatory nature of the approximations and slow convergence in the
initial stage present the main disadvantages in the computation of ACOC in higher-order
iterative methods. In Table 1, we observe that the choice of a suitable initial approximation
plays a vital role to achieve the maximum order of convergence (see Equations (12), (13) and
(15)). Furthermore, it requires at least four iterations to compute ACOC (see Equation (15)).
Specifically in Table 1, we provide ACOC for nonlinear equations using Newton method
(NM) (2), Cordero’s fourth-order method (CM) (3), first extension (CM1) (4) and second
extension (CM2) (5). Here, N, u∗, and u0 denote the number of iterations, root, and initial
value, respectively.

Remark 3. The efficiency index c f is defined as c f = q
1
m , where q is the order of convergence

and m is the number of functions (and derivatives) [11]. The informational efficiency I is defined
as I = q

m [12]. The efficiency index and informational efficiency of the fourth-order Cordero
method (3) are c f = 41/4 = 1.41 and I = 4/4 = 1,, respectively, which coincide with that of the
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Newton method. Whereas c f = 61/5 = 1.43, I = 6/5 = 1.2 for the sixth-order method (4) and
c f = 81/6 = 1.41, I = 8/6 = 1.33 for the eighth-order method (5).

4. Application to Ill-Posed Problem

We implemented the analogous iterative methods (2)–(5) to solve the nonlinear ill-
posed problem (see [13,14] for details).

Example 3. Let c > 0 be a constant. Consider the inverse problem of identifying the distributed-
growth law u(t), t ∈ (0, 1), in the initial value problem

dy
dt

= u(t)y(t), y(0) = c,

from the noisy data yδ(t) ∈ L2(0, 1). One can reformulate the above problem as an ill-posed
operator equation

J (u) = y, (18)

with
[J (u)](t) = ce

∫ t
0 u(θ)dθ , u ∈ L2(0, 1), t ∈ (0, 1).

The Fréchet derivative of J is given by

[
J ′(u)h

]
(t) = [J (u)](t)

∫ t

0
h(θ)dθ.

It is proved in [15], that J ′ is positive type and spectrum of Ju is the singleton set {0}. We use the
Lavrentiev regularization method with α > 0 (see [14] for details), i.e.,

J (u) + α(u− u0) = y, (19)

to approximate the exact solution û of (18). To solve (19), we consider the analogous iterative
methods (2)–(5) defined ∀k = 0, 1, . . . , by

uk+1 = uk − (Juk + αI)−1(J (uk) + α(uk − u0)− yδ),

vk = uk − (Juk + αI)−1(J (uk) + α(uk − u0)− yδ)

uk+1 = vk − (2(Juk + αI)−1 − ((Juk + αI)−1

(Jvk + αI)(Juk + αI)−1(J (vk) + α(vk − u0)− yδ))),

vk = uk − (Juk + αI)−1(J (uk) + α(uk − u0)− yδ)

wk = vk − (Juk + αI)−1(2I − (Jvk + αI)

(Juk + αI)−1)(J (vk) + α(vk − u0)− yδ)

uk+1 = wk − (Jvk + αI)−1(J (wk) + α(wk − u0)− yδ),

and

vk = uk − (Juk + αI)−1(J (uk) + α(uk − u0)− yδ)

wk = vk − (Juk + αI)−1(2I − (Jvk + αI)

(Juk + αI)−1)(J (vk) + α(vk − u0)− yδ)

uk+1 = wk − (Jwk + αI)−1(J (wk) + α(wk − u0)− yδ),

respectively.
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Remark 4. We choose a priori α which satisfies the following condition;

Ψ(α, yδ) := ‖α2(Ju0 + αI)−2
(
J (u0)− yδ

)
‖ = dδ (20)

for some d > 1 with dδ ≤ ‖J (u0)− yδ‖ (see [13,14] for details).

For computation, we have taken û(t) = t, u0(t) = 0 and y(t) = e
t2
2 . Table 2 provides the

relative error Eα = ‖CS−û‖
‖û‖ of each iterative method, where CS is the computed solution. We choose

α according to (20). The accuracy of reconstruction increases as the relative error decreases.
For δ = 0.001, 0.0001, the exact and noisy data are shown in subfigure (a) and the computed

solution is in subfigure (b), respectively, in both Figures 1 and 2.
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Figure 1. Data (a) and Solution (b) with δ = 0.001.
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Figure 2. Data (a) and Solution (b) with δ = 0.0001.
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Table 2. Relative errors for Example 3.

Method α and Eα δ = 0.01 δ = 0.001 δ = 0.0001 δ = 0.00001

α 3.719646× 10−2 1.147848× 10−2 3.601858× 10−3 1.136730× 10−3

(5) Eα 1.323726× 10−1 3.780750× 10−2 1.912899× 10−2 1.532976× 10−2

stopping index 11 11 11 11

(4) Eα 1.323724× 10−1 3.780538× 10−2 1.912626× 10−2 1.532735× 10−2

stopping index 15 15 15 15

(3) Eα 1.314847× 10−1 3.852680× 10−2 2.047544× 10−2 1.680669× 10−2

stopping index 11 11 11 11

(2) Eα 1.305499× 10−1 3.947806× 10−2 2.210599× 10−2 1.856438× 10−2

stopping index 27 27 27 27

5. Conclusions

We studied the convergence analysis of a three-step Cordero type method of order
six and modified it to a new eighth-order iterative method. The convergence analysis
of these methods was studied without using Taylor’s expansion. We use assumptions
based only on the first-order Fréchet derivative. We computed the radius of convergence
and computational efficiencies of these methods. Furthermore, we considered analogous
iterative methods to solve an ill-posed problem in a Hilbert space. The developed process
can also be applied to any other method using inverses of linear operators with the same
benefits. This represents the topic of our future study.
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