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Abstract: Due to emerging internet technologies that mostly depend on the decentralization concept,
such as cryptocurrencies, cyber attackers also use the decentralization concept to develop P2P botnets.
P2P botnets are considered one of the most serious and challenging threats to internet infrastructure
security. Consequently, several open issues still need to be addressed, such as improving botnet
intrusion detection systems, because botnet detection is essentially a confrontational problem. This
paper presents PeerAmbush, a novel approach for detecting P2P botnets using, for the first time, one
of the most effective deep learning techniques, which is the Multi-Layer Perceptron, with certain
parameter settings to detect this type of botnet, unlike most current research, which is entirely
based on machine learning techniques. The reason for employing machine learning/deep learning
techniques, besides data analysis, is because the bots under the same botnet have a symmetrical
behavior, and that makes them recognizable compared to benign network traffic. The PeerAmbush
also takes the challenge of detecting P2P botnets with fewer selected features compared to the existing
related works by proposing a novel feature engineering method based on Best First Union (BFU).
The proposed approach showed considerable results, with a very high detection accuracy of 99.9%,
with no FPR. The experimental results showed that PeerAmbush is a promising approach, and we
look forward to building on it to develop better security defenses.

Keywords: P2P networks; P2P botnets; intrusion detection systems; feature engineering; Multi-Layer
Perceptron; deep learning

1. Introduction

Typically, a bot is a compromised machine remotely controlled by a botmaster. A
network of such infected machines under the command of a botmaster is called a botnet [1].
The compromised end-hosts are exploited in order to steal data or to launch Distributed
Denial of Service (DDoS) attacks [2]. In their different scenarios, botnets have recently led
to more threats to internet infrastructure security. Botnets are the reason behind many
malware attacks, such as cryptocurrency mining, click fraud, and DDoS attacks [3]. The
peculiarity of the botnet is its ability to launch large-scale, stealthy, and highly coordinated
attacks [1]. Thus, taking down the botnet or even detecting the botnet is very challenging.

Traditionally, a botnet starts when the attacker, called the botmaster, infects many
machines, called bots, over the network with various viruses, worms, and trojan horses
and then commands and controls them remotely to coordinate a large-scale attack [1]. For
that, we can summarize the main three components of botnets: Bot (master/operator),
Command-and-Control mechanism (C2), and Malware (malicious software) [4]. Intuitively,
the larger the botnet, the more challenging it is to counter. However, there is centralization
(master) in that attack, where security guards could target it to weaken the whole thread.
However, there is the issue of decentralized botnets, where there is no centralization
to counter. It is important to consider that botmasters also evolve their mechanisms
for command-and-control purposes. Consequently, some botnets utilize the concept of
avoiding the single point of failure where the non-centralization leads to the attack [5].
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Therefore, it is clearly necessary to categorize the botnet into centralized and decentralized
botnets [6]. Examples of centralized botnets are HTTP-based and IRC-based botnets [7]. The
HTTP-based botnets use HTTP messages to hide their commands, whereas the IRC-based
botnets are considered the most widespread botnets, and both HTTP-based and IRC-based
botnets have a simple structure. As previously explained, HTTP-based and IRC-based
suffer from a centralized nature, i.e., they are under the risk of a single point of failure.

In contrast, decentralized botnets such as Peer-to-Peer (P2P) botnets operate in a
distributed style where there is no central server to lead the command-and-control to
launch an attack [4,8]. Reasonably, due to the distributed nature of P2P botnets, these
botnets are comparatively harder to counter or detect. The idea of P2P botnets is that the
attackers leverage the features of the P2P network in order to construct a robust net of bots,
avoiding the risk of a single point of failure and giving permissions to peers to act as client
and server simultaneously [9,10].

Examples of P2P botnets are Nugache [11], Zeus GameOver [12], Slapper [13], Storm [14],
ZeroAccess, DDG [15], and the very sophisticated FritzFrog [16], etc. These botnets have a
bad history, with many victims, leading to large financial losses [17]. So far, there are two
P2P botnets: P2P botnets that either use specific P2P protocol for a special purpose or adopt
the public P2P protocols, i.e., parasite botnets [18]. When P2P botnets utilize a specifically
built private P2P protocol, these botnets are easier to detect, whereas the parasite P2P
botnets adopt existing protocols and become stealthy and harder to detect [18].

Recently, P2P networks have become viral because of the ease of sharing resources.
For example, cryptocurrencies are based on the decentralization concept, such as Ethereum,
which is wholly based on a P2P network [19]. For that, attackers also aim to leverage
the same characteristics of P2P networks, such as scalability, resilience, and efficiency, to
attack important organizations, banks, institutions, companies, etc. Therefore, we take this
challenge to benefit one of the most effective security defenses, the Intrusion Detection
System (IDS), to build a Deep Learning (DL) model to detect P2P botnets. Machine Learn-
ing (ML) and DL techniques have proven their effectiveness in learning-based anomaly
detection [20]. Some efficient ML techniques have shown considerable results in classifying
network traffic, and this is one of the reasons behind employing these techniques to detect
botnets, because P2P bots have symmetrical activities in the network. Thus, the symmetry
in bots’ behaviors makes them detectable compared to benign network traffic.

However, we found very few papers that attempted to detect the botnets using Deep
Learning techniques. In contrast, DL techniques have not yet been completely leveraged
in detecting P2P botnets. This is another challenge in developing the efficiency of DL
techniques in this matter. Finally, this paper proposes a novel DL-based approach to detect
P2P botnets using Multi-Layer Perceptron (MLP) as a DL classifier.

The rest of this paper is organized as follows. Section 2 exclusively reviews the works
relevant to P2P botnet detection using ML and DL techniques and then critically discusses
them. Section 3 presents the proposed methodology. Section 4 shows the implementation
and experimental results and compares them with the existing works. Finally, Section 5
concludes our work and suggests future avenues.

2. Relevant Research and Critical Analysis

This section discusses the state-of-the-art of IDS solutions against P2P botnets using
ML and DL techniques. Respectfully, this paper shows the findings and limitations of
the relevant research in order to highlight the open issues, which may facilitate other
researchers to work on the existing gaps. This section critically analyses the gaps in
relevant research to develop a solution that contributes to the current body of knowledge
and research.

2.1. Relevant Research

In the last decade, there has been a growing interest in detecting and preventing botnet
techniques. These techniques include monitoring the botnet and learning how a bot infects
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benign machines, but the challenge starts with detecting whether this machine is infected
or not. Once a machine is detected as infected, many post-procedures must be taken to
avoid exploiting this machine to enlarge the botnet. There have been many approaches
developed to detect botnets. Based on a set of factors, these approaches can be classified
as either signature-based or anomaly-based IDSs. In addition, there are three classes of
botnet detection system based on location: host-based, network-based, and hybrid-based
detection systems [21]. This paper covers only research that works on detecting P2P botnets
using ML and DL techniques and then critically discusses the relevant research.

PeerRush was proposed to mine unwanted traffic in the P2P network [22]. Rahbarinia
is meant to detect Storm, Zeus, and Waledac P2P botnets. The proposed solution performed
cross-validation and showed a low misclassification rate of 0.68% and a low false positive
of 0.1%.

Garg et al. [23] applied several ML techniques, such as nearest neighbor, Naive Bayes,
and J48, to detect P2P botnets. In this experiment, the classifiers nearest neighbor and J48
performed better than other classifiers.

Jiang and Shao [24] proposed an approach to detect P2P botnets using an unsupervised
ML technique. The proposed approach focuses more on the characteristics of command-
and-control traffic. The author applied a clustering technique to distinguish between benign
and P2P botnet flows.

Liao and Chang [25] proposed a methodology to distinguish between legitimate P2P
traffic and P2P botnet traffic using the packet size. The author discovered that P2P botnets
frequently try to update connection information for other bots rather than staying idle.
Moreover, P2P botnets usually transmit data with a minimum rate of connection. The
author applied Bayesian networks, Naïve Bayes, and J48 as classifiers to classify the network
traffic. The J48 technique showed the highest detection rate compared to other classifiers.

Zhao and Traore [26] proposed an ML-based approach to detect P2P botnets by
classifying the captured fast flux network flows. The authors applied a decision tree as a
classifier to detect P2P botnets.

Alauthaman et al. [6] proposed a method to detect P2P botnets using a multilayer
feed-forward neural network as well as decision trees. The regression tree is applied as a
feature selection technique. Thereafter, the selected features feed the feed-forward neural
network training. The proposed method achieved a high detection accuracy of 99% and a
low FPR of 0.7%.

Yang and Wang [27] implemented an ML technique to detect P2P botnet for DDoS
attacks. The authors also proposed a feature extraction method using the graph symmetry
concept. This paper took the packets as subdivisions of the signal, and the time interval
and data packet were the corresponding two-dimensional features.

Yin proposed a node-based detection approach to detect P2P botnet characteristics [28].
Yin focused more on the network characteristics of an individual node by examining the
node flows in order to extract the significant features. The author then utilized an ML
classifier to detect the bots.

Priyanka presented a two-tier detection scheme to detect parasite P2P botnets in their
waiting stage [17]. The authors considered only two essential behaviors: the search requests’
intensity and the long-living peers. However, that does not reflect the whole network of
the compromised machines.

Table 1 summarizes the findings, limitations, and other details of all the relevant research.
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Table 1. Summary of relevant research.

Article Technique Performance
Metrics Findings Limitations

[22] SVM Accuracy, FPR,
TPR

• Proposing an approach that
achieved low
misclassification in detecting
three types of P2P botnet.

• Small lab dataset that consists of only
11 hosts;

• The used hosts were running limited P2P
applications, mostly Skype traffic.

[23] Nearest NeighborNaive
BayesJ48 TP, FP, Time

• The authors experimented
with different ML techniques
in detecting the P2P botnet
and compared their abilities
in classifying this kind of
botnet.

• Detection of legitimate traffic is very
weak.

[24] Hierarchical clustering
dendrogram

FPR, Detection
Rate

• Detecting P2P botnets by
discovering flow
dependencies.

• The proposed approach will fail to detect
the botnets that have irregularity in their
traffic flow, such as Storm, because this
method was built based on the similarity
of botnet traffic.

[25] Bayesian networksNaïve
BayesJ48 Accuracy, FP, FN

• Proposing a methodology to
detect P2P botnets using ML
techniques and achieving a
high detection rate.

• Research was conducted only for the
LAN environment;

• No details were mentioned regarding the
used dataset;

• Compared to other solutions, this
methodology is considered complex
because it deals with whole features and
costs the model time and resources.

[26] Decision Tree TP, TN
• Proposing a P2P detecting

system by identifying the
malicious fast-flux networks.

• It is based on low Time to Live; once the
TTL reaches zero, then packets are
discarded, which leads to losing some of
the network information;

• Limited record of the used dataset;
• The major evaluation metrics are missed.

[6] Neural Network Accuracy, FPR
• Based on multilayer NN, the

proposed method achieved a
high detection rate of 99%.

• The used dataset (ISOT) consists of only
DNS malicious traffic.

[27] K-NearestREP TreeSVM Accuracy, Recall,
FPR

• Proposing a new feature
extraction method using the
graphic symmetry concept to
detect the P2P botnet.

• The used dataset (ISOT) consists of only
DNS malicious traffic.

[28] Decision Tree
Accuracy,

Precision, FPR,
TPR

• Proposing an approach
based on ML classifier to
detect the P2P botnets
through the node level;

• The proposed approach
achieved a high detection
rate.

• Storage overhead and major
computational are required to process the
constant flows at the node without even
feature engineering;

• The author used sampling, which does
not detect the same number of botnets as
detected using constant flow monitoring.

[17] MultiBoostABDecisionStump Accuracy, FPR,
TPR

• Detecting parasite P2P
botnets using machine
learning classifiers.

• No feature engineering was performed;
this approach costs resources and time;

• The authors used the same dataset of [22],
which is small and limited in terms of the
traffic type.

2.2. Critical Analysis

Critically, we analyze the relevant research respectfully. We did our best to exhaustively
cover all the works that work on detecting P2P botnets using ML and DL techniques
through the top scientific research repositories, namely: ScienceDirect, WoS, Springer- Link,
Wiley, IEEE, and several flagship conferences in the domain of security according to the
CORE2021 ranking, which are ACM, IEEE SP, NDSS, and Usenix-Security. For integrity,
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some interesting works detected P2P botnets and achieved a high detection rate. However,
we still derived some concerns from the existing good works. In general, we cluster the
concerns into three, as follows.

2.2.1. Dataset Concern

As cyber security researchers, we know that compiling a real network dataset is
difficult for many reasons, such as anonymity and privacy considerations. For this reason,
we found that most of the existing datasets are simulated datasets. The argument is not
about whether it is a real network dataset or a simulated one, but rather it is about the way
the dataset is constructed. Constructing a dataset for IDS experiments is quite important
because the dataset is the crucial norm to evaluate the effectiveness of the proposed IDs.
For example, there is no problem if the proposed IDS was wisely and smoothly built, but if
we look back at the used dataset to evaluate this IDS and we find it was rashly constructed,
we no longer trust it. Some issues in the data reflected in the final evaluation, such as the
imbalanced dataset, finally led to an overfitting problem [29]. This paper will not discuss
other problems, such as small-size datasets, unknown-source datasets, and unavailability, etc.

The problem we found in most of the existing works is that the used datasets were
incomplete, or they did not include real network features. It is agreed that the dataset
must contain attack traffic mixed with background traffic in order to make the proposed
model/approach/system learn more about both normal and abnormal traffic. For example,
some existing works evaluated their experiments using the CTU-13 dataset, such as [30],
and after analyzing this dataset, we found that it does not contain background traffic. For
that, we conducted a simple assessment survey of the existing datasets that has P2P botnet
traffic by checking Google data [31], Mendeley data [32], and Kaggle [33]. Based on a
checklist inspired by Susan McGregor [34], we chose a dataset to evaluate our proposed
approach. The quality assessment included checking for certain points, such as: is it of
known pedigree? Is it complete? Is it high-volume? Is it consistent? Is it dimensionality
structured? The dataset was also assessed regarding the data fit via validity, reliability, and
representativeness. Table 2 summarizes the existing datasets that contain botnet traffic.

Table 2. Summary of the botnet datasets.

Dataset Description Limitation

DCNDS [35] • Project dataset, P2P botnet;
• Detection using enhanced peer hunter.

• No PCAP files were provided;
• No background flows.

CTU-13 [36]
• Includes 13 scenarios of different botnet samples, such as the P2P

botnet;
• Many protocols were considered, such as ICMP, TCP, and DNS.

• No background flows.

VHS-22 [37] • Mixed flows of botnets from other datasets such as ISOT, CICIDS,
CTU-13, and MTA with legitimate traffic; • Only a CSV file was provided.

MTA-KDD-19 [38] • Malware Traffic Analysis Knowledge Dataset. • Only a CSV file was provided;
• Small dataset.

TrendMicro [39]
• CTF Wildcard botnet dataset 400;
• Contains only the following features: timestamp, source, destination,

port, bytes.

• Only five features were provided
(limited images of the network);

• Only a CSV file was provided.

P2P-BDS [21] • Based on the article: Peer-2-Peer botnet detection system. • No longer reachable.

ISOR [40] • Based on the article [40]. • No longer reachable.

ISOT [41] • Botnet dataset. • Contains only traffic passed from/to
DNS.

It should be noted that we did not cover the IoT and Android botnet datasets. More-
over, we did not consider the datasets that were only provided as CVS files because the
CSV file reflects a limited network traffic image. Therefore, we listed providing only CSV
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files as a limitation in our work. Another concern in the datasets is that most of the relevant
works did not show whether the used dataset was balanced. Ignoring such norms might
show good experimental results, but they would be fake. Overall, we had to construct a
new and solid dataset (Section 3.1) to avoid the existing concerns.

2.2.2. Feature Engineering Concern

First, most of the authors of the relevant research did not engineer features where
they handled all the features, and they had to then feed that large volume to the mod-
els/approaches/systems. Consequently, that cost resources and time and increased the
complexity. Second, even authors who had feature engineering did not evaluate the util-
ity of the proposed feature engineering methods before and after implementing those
methods. Finally, some matters must be considered by the feature engineering method,
such as the simplicity, applicability, and efficiency of the proposed solution. In this paper,
we propose a novel, efficient, and applicable feature selection method to reduce the data
dimensionality and speed up the whole data processing (Section 3.3). Moreover, the fea-
ture selection facilitates the targeted attack detection for the predictors in the next stage
(detection stage) [42].

2.2.3. Detection Concern

All the utilized classifiers in the relevant works are ML techniques. Although some
works achieved good detection rates, they still cannot prove their effectiveness because
of the different data preparation, and major evaluation metrics were missed. In addition,
some researchers repeated applying the same ML techniques, i.e., the existing works did
not apply many different classifiers to understand each technique’s performance and cover
more probabilities. For example, [26–28] applied Decision Tree as a classifier to detect the
P2P botnet, whereas [22] and [27] applied SVM as a classifier, and [23] and [25] applied
Naïve Bayes as a classifier. Noticeably, there are many repetitions of applying the same ML
classifiers. Furthermore, DL techniques have not been completely leveraged in detecting
P2P botnets. Another concern is that not all of the authors mentioned the testing approach
utilized in their experiments, whether it was Percentage-split or Cross-validation. For that,
our proposed approach is based on the most effective DL technique, the MLP, and it is
tested by both testing approaches: Percentage-split and Cross-validation.

3. PeerAmbush

In this paper, we propose a novel approach, PeerAmbush, to detect one of the most
dangerous attacks, P2P botnets using the DL technique. PeerAmbush addresses some of
the derived limitations of relevant research, as earlier discussed in Section 2.2, regarding
the used datasets to evaluate the proposed solution, feature engineering influence, and
detection performance. PeerAmbush consists of five stages: Data Construction, Data
Preparation, Feature Engineering, MLP-based P2P Botnet Detection, and Evaluation Results.
Each stage includes some substages before feeding the output as input to the following
stage. Figure 1 shows an overview of PeerAmbush.

The key contributions of our proposed approach are as follows:

• Constructing a new dataset that includes P2P botnet traffic and background flow;
• Proposing a novel feature engineering method based on mathematical union theory to

select the most significant features: Best First Union (BFU);
• Adapting the MLP as a classifier to detect P2P botnets.
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3.1. Data Construction

As mentioned previously, generating a new dataset is challenging due to privacy
matters. For this reason, we constructed a new dataset based on the reliable existing ones.
One of the norms to assess the dataset quality was whether it was of a known pedigree.
After that, we selected the CTU-13 dataset [36] for three reasons: (i) it is reliable, and
many researchers have used this dataset to evaluate their solutions, (ii) it contains the P2P
botnet scenario, and (iii) it was provided as PCAP files not CSV files, and that gives more
understanding of the network traffic and the behavior of P2P botnets. However, this dataset
was missing benign network flows. Hence, we merged the CTU-13 dataset with a recent
network background flow collected from the HIKARI dataset [43]. As a result, the newly
constructed dataset contains both the abnormal behavior of the P2P botnet and the normal
flow of the network to let the trained model learn about both the normal and abnormal and
then avoid the problem of overfitting. Figure 2 simplifies the process of this stage.

3.1.1. CTU-13 Dataset

This dataset is considered one of the most reliable datasets in the IDS community.
CTU-13 has a large capture of real botnet traffic, including 13 different scenarios of different
botnet types. This dataset contains many protocols, such as ICMP, TCP, DNS, etc. One of
its useful features is that it was provided as PCAP files, allowing a realistic and deeper
understanding of the network traffic. The PCAP files of the CTU-13 dataset also contain
other types of information, such as NetFlow, Weblogs, etc. [36].
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3.1.2. HIKARI Dataset

This dataset was recently captured by Ferriyan [43], and it was decided to merge it
with the CTU-13 to complete what was missing in the first dataset. The HIKARI dataset
completely captures the network traffic, such as communication between hosts, broadcast
messages, and domain lookup queries. We chose the ground-truth from this dataset because
it provides realistic benign traffic from a real production network, not synthetic traffic, as
found in some datasets [43].

3.2. Data Preparation

Data preparation means preparing the selected dataset for the next stages by some
substages to make it fit the purpose of this research and be seen as readable by the next
methods, i.e., the feature engineering method and the detection stage. The first procedure
is filtration because, as mentioned previously, the CTU-13 dataset contains 13 different
scenarios, and this approach concerns only P2P botnets (Scenario no. 12) [36]. Consequently,
we exclude the other scenarios and keep the P2P botnet scenario as well as the ground-truth
from the HIKARI dataset. After filtration, we label the filtered dataset to import it into
a supervised learning-based model. We convert the labelled dataset into numeric data
to make them readable by the next methods/algorithms (Numericalization). Finally, we
normalize the dataset before taking it as input for the third stage. Figure 3 shows the
process of the data preparation stage.
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3.3. Feature Engineering

Recently, researchers have widely applied feature engineering because it plays a
vital role in their proposed solutions. There are many feature engineering methods, such
as feature selection. Feature selection reduces the data dimensionality, saving time and
reducing the proposed solutions’ complexity [29]. Unfortunately, most of the relevant
works had no feature engineering methods. Accordingly, those proposed solutions were
more complex and sources/time-consuming.

In this paper, we propose a novel feature engineering method based on mathematical
union theory to select the most significant features that reflect the influence of whole
features and improves the predictor performance. We name the proposed method Best First
Union (BFU). BFU starts with a feature evaluator to select the highest important features
as the best first ones via two different methods: CFS Subset Evaluation and Consistency
Subset Evaluation. The next subsections explain the two methods (Sections 3.3.1 and 3.3.2).

Each method evaluates the features differently and eventually provides a final shortlist
of features. The resulting two shortlists will then be united to generate one shortlist that
includes the most significant features and leverage two different evaluators. Later, only
the selected features will go through the detection stage as inputs. Figure 4 simplifies the
process of our novel feature engineering method, BFU.



Symmetry 2022, 14, 2483 9 of 18Symmetry 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. The process of BFU. 

3.3.1. CFS Subset Evaluation 
This method works on evaluating the worth of features by grouping them into sub-

sets and then considering the individual predictive ability of each feature along with the 
degree of redundancy among features. Consequently, the features highly correlated with 
the class during low intercorrelation are preferred as the best first [44]. 

3.3.2. Consistency Subset Evaluation 
This method works on evaluating the worth of features by grouping them into sub-

sets and then measuring the level of consistency in the class values. Each subset has a 
consistency, and that consistency can never be lower than that of the full dataset [45]. 

3.4. MLP-based P2P Botnet Detection 
According to the relevant research, the behavior of P2P botnets is distinguishable 

from normal network traffic. Detecting the P2P botnets can be modelled as a multi-class 
classification task. We earlier prepared our dataset through some substages, such as label-
ling. Accordingly, we adopted a typical supervised deep learning technique, MLP, as a 
classifier to detect the P2P botnet. There are two reasons behind choosing this DL tech-
nique in this work: i) there is no work yet that has applied DL techniques to detect P2P 
botnets, and ii) this technique has proved its effectiveness in detection systems, i.e., there 
are some researchers who applied this technique to detect different types of attacks, such 
as [46–49], and their experiments show the high efficiency of MLP in network intrusion 
detection systems. 

3.4.1. Multi-Layer Perceptron (MLP) 
Multi-Layer Perceptron is a deep learning technique; it is considered one of the most 

efficient neural network techniques for classification in IDS [50]. MLP is a feed-forward 
and fully connected neural network. Figure 5 shows a simple hypothetical example of the 
architectural design of MLP. 

Figure 4. The process of BFU.

3.3.1. CFS Subset Evaluation

This method works on evaluating the worth of features by grouping them into subsets
and then considering the individual predictive ability of each feature along with the degree
of redundancy among features. Consequently, the features highly correlated with the class
during low intercorrelation are preferred as the best first [44].

3.3.2. Consistency Subset Evaluation

This method works on evaluating the worth of features by grouping them into sub-
sets and then measuring the level of consistency in the class values. Each subset has a
consistency, and that consistency can never be lower than that of the full dataset [45].

3.4. MLP-Based P2P Botnet Detection

According to the relevant research, the behavior of P2P botnets is distinguishable
from normal network traffic. Detecting the P2P botnets can be modelled as a multi-class
classification task. We earlier prepared our dataset through some substages, such as
labelling. Accordingly, we adopted a typical supervised deep learning technique, MLP,
as a classifier to detect the P2P botnet. There are two reasons behind choosing this DL
technique in this work: (i) there is no work yet that has applied DL techniques to detect P2P
botnets, and (ii) this technique has proved its effectiveness in detection systems, i.e., there
are some researchers who applied this technique to detect different types of attacks, such
as [46–49], and their experiments show the high efficiency of MLP in network intrusion
detection systems.

3.4.1. Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron is a deep learning technique; it is considered one of the most
efficient neural network techniques for classification in IDS [50]. MLP is a feed-forward
and fully connected neural network. Figure 5 shows a simple hypothetical example of the
architectural design of MLP.
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The MLP takes the numeric and normalized values of the selected features, as prepared
in the previous stages.

The most relevant works that applied MLP as a classifier did not mention the parameter
settings. Some of them merely increases the number of hidden layers, which might cause
overfitting, i.e., increasing the hidden layers may be illusory once it performs well on
the training dataset. However, testing the trained model with a new dataset may show a
disappointing performance. The number of hidden layers should be tunned along with the
number of nodes and the dataset volume. Setting a number of hidden layers and nodes can
reflect the performance quality and trade-off, minimizing the total error due to bias and
variance. Often, the complex model leads to overfitting, while the simple ones fail to catch
the relationship between the input and the output [51].

In this paper, we utilize both testing approaches: Percentage-split, and Cross-validation,
as well as providing the parameter settings of MLP.

3.4.2. Percentage-Split

In this testing approach, the dataset is split into 80% and 20% of the dataset. The first
one is used to train the MLP, while the second one is to test the effectiveness of MLP in
detecting the intrusion with a new dataset (20%).

3.4.3. Cross-Validation

In this testing approach, the dataset is divided into 10 folds of cross-validation, where
nine of them are to train the MLP and one fold is to test the effectiveness of MLP in detecting
the intrusion. Figure 6 shows the difference between the two testing approaches.

In this paper, all the major metrics are used to evaluate the performance of employing
the MLP to detect the P2P botnet, such as Detection Accuracy, FPR, Precision, Recall,
and F-Score. Providing all the major metrics reflects the quality and effectiveness of the
proposed approach.
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3.5. Evaluation Metrics

Several key metrics were used to evaluate the performance of different models/appro-
aches/systems. The evaluation metrics are similar to an accurate reading of the performance
of the proposed solution. However, some standard metrics should be calculated, especially
for comparison purposes, such as Accuracy, False Positive Rate, Precision, etc. This paper
considers all the major metrics to evaluate PeerAmbush compared to other works. True
Positive (TP) is the percentage of correctly predicted attacks, while True Negative (TN)
is the percentage of correctly predicted normal instances of traffic. In comparison, False
Positive (FP) and False Negative (FN) are the percentages of normal instances when they
are predicted as an attack and the percentage of attacks that are predicted as normal
instances, respectively [20,52]. The False Positive Rate is another major metric to evaluate
the proposed approach; it is the percentage of normal instances when they are predicted as
attacks. Equation (1) calculates the FPR, Equation (2) calculates the Precision, Equation (3)
calculates the Recall, and Equation (4) calculates the F-Score, as follows [53].

FPR =
FP

TN + FP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F− Score =
Precision ∗ Recall
Precision + Recall

∗ 2 (4)

4. Implementation and Experimental Results

This section describes the design, implementation, and experimental results of each
stage in PeerAmbush through three subsections. PeerAmbush as a security solution against
P2P botnets was thoroughly explained in the previous section. However, this section shows
the output of each stage, starting with constructing a new dataset and ending with the
evaluation results. Figure 7 shows the roadmap of PeerAmbush in detail.
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4.1. Data Construction and Preparation (Stages 1–2)

As previously discussed in Section 2.2.1, there is a need to construct a new dataset
that contains both the traffic of P2P botnets and benign network traffic. The concern was
that Scenario no. 12 was selected for further analysis in our work, and we found that
there were flows from the botmaster to the infected machines, and vice. In addition, this
scenario also contains flows from ‘infected machines’ to ‘non-infected’ machines. Suppose
we experimentally block the IP addresses of the botmaster and the infected machines. In
that case, no traffic lasts, i.e., there is no normal traffic among only benign nodes (between
non-infected machines). Therefore, for further understanding, we need to differentiate
between the flows of infected and non-infected machines by their traffic. For additional
information regarding CTU-13, Table 3 shows the IP addresses of the botmaster and the
infected machines, and the dataset can then be found through [36].

Table 3. Types of flow from scenario no. 12 of the CTU-13 botnet dataset.

IP Address Machine Role Flow Direction

147.32.84.165 Botmaster To/From infected and non-infected machines

147.32.84.165 Bot To/From other infected machines and rarely to benign machines

147.32.84.191 Bot To/From botmaster and rarely to non-infected machines

147.32.84.192 Bot To/From botmaster and rarely to non-infected machines

Noticeably, we can see in Table 3 that there was no traffic flow from non-infected
to non-infected machines. As a complement measure, we extracted the background of
normal network traffic from HIKARI [43]. The number of extracted packets from CTU-13 is
352,266 packets. In contrast, the number of complement packets from the HIKARI dataset
is 533,848 packets. Accordingly, the number of packets of the newly constructed dataset
is 886,114 packets. The new dataset is labelled into multiclass; botmaster flow, infected
machines flow (bots), and benign flow (i.e., multiclass labelling). After labelling, filtration
keeps only the flows of scenario no.12 and drops the rest (scenarios 1–11 and 13). Finally,
before converting the dataset to numeric data and applying the normalization, we checked
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whether the dataset was balanced or not before proceeding to the next stage, and it was
balanced. Table 4 describes the newly constructed dataset.

Table 4. Description of dataset.

Total number of records 886,114

Category Multi-class

Classes Botmaster, Bot, Normal

Number of botmaster/bots records 352,266

Number of normal records 533,848

Number of features 30

4.2. Feature Engineering (Stage 3)

The prepared dataset has 30 features. In our novel feature engineering method
(BFU), all features are evaluated by a feature evaluator using two different methods
(Sections 3.3.1 and 3.3.2) to select the best first. Each method then outcomes in a different
shortlist representing the best first. Mathematically, A represents the best first list of CFS
Subset Evaluation, and B represents the best first list of Consistency Subset Evaluation.
Equation (5) calculates A union B, where x represents the feature [54].

A U B = {x: x ∈ A or x ∈ B} (5)

Consider the two lists of A and B, such that the number of features in the union of A
and B can be calculated as follows in Equation (6) [54].

n (A U B) = n(A) + n(B) − n (A ∩ B) (6)

where n (A U B) represents the total number of features in A U B; it is called the cardinality
of a final list of A U B. Whereas n(A) represents the number of features in A; it is called
the cardinality of list A. Similarly, n(B) represents the number of features in B, called the
cardinality of list B. Moreover, n (A ∩ B) represents the number of features common to both
A and B; it is called the cardinality of list A ∩ B, i.e., A intersection B.

Table 5 summarizes the evaluation methods (Best First Evaluators).

Table 5. Summary of evaluation methods.

Feature Evaluator-Method

CFS Subset Evaluation Consistency Subset Evaluation

Search method Best First Best First

Search direction Forward Forward

No. of subset evaluated 171 178

Merit of best subset found 0.866 1

No. of features selected 3 2

Selected features Source, Time to live, Epoch time Source, Version

The above table shows that four features compose the final shortlist of features. Only
these four features are considered to feed the detection stage. Comparatively, the BFU has
achieved fewer selected features compared to the relevant research, as explained in Table 6.
Selecting only four features represents approximately 12.5% of the whole original dataset
composed of 30 features. Accordingly, this feature selection saves time and resources for
the detection system, and indirectly that makes the process less complex and smoother.
Furthermore, the next section (P2P botnet detection) shows the positive influence of using
the BFU method compared to not using the BFU method, i.e., using the full dataset.
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Table 6. Number of features in each work of the relevant works.

Article [22] [23] [6] [27] [28] [17,24–26] BFU

No. of selected features 8 17 10 7 13 - 4

4.3. Evaluation Results of MLP-Based P2P Botnet Detection

This section shows the parameter settings and experimental results of PeerAmbush
to detect P2P botnets. In addition, this section provides a comparison with respect to
the relevant works. As mentioned previously, we tested PeerAmbush using two testing
approaches: Percentage-split and Cross-validation. Furthermore, the parameter settings
that we set to MLP are as follows. The number of training instances utilized in one iteration
is 100 (officially called the patch size). There are ten hidden layers in our neural network.
Experimentally, we slightly increased/decreased the number of hidden layers and the
nodes in each layer until we achieved the highest detection rate, considering also the time
taken to build a model and, as mentioned previously, that it is not recommended to keep
increasing the number of hidden layers to avoid the overfitting problem [51]. Furthermore,
we set 0.5 as the learning rate for updating the weights of nodes. The momentum that is
applied to weight updates is 0.2. Last but not least, the training time is measured by the
number of epochs to train through, and it is 500 epochs. Our parameter settings achieved
better results compared to the relevant research. PeerAmbush achieved a high detection
accuracy of 99.9%, and no FPR. Meanwhile, the default parameter settings achieved a
detection accuracy of 96.5%, with higher false positive alarms compared to our parameter
settings. Table 7 shows the parameter settings of MLP.

Table 7. The Parameter settings of MLP.

Parameter Value

Batch size 100

Hidden Layers 10

Learning Rate 0.5

Momentum 0.2

Training Time 500

Table 8 summarizes the experimental results of our proposed PeerAmbush approach
compared to the most recent works (last five years). No relevant works have yet leveraged
DL techniques to detect P2P botnets. Consequently, there was a vital need to employ
efficient techniques such as MLP to detect one of the most serious threats, P2P botnets.
In addition, none of the relevant works have tested the proposed solution with the two
different testing approaches to show its effectiveness. Moreover, most of the relevant works
did not provide many of the major evaluation metrics, which is what causes us to doubt
the solution. Thus, we provide all the major evaluation metrics, which show the superiority
of PeerAmbush in Accuracy, FPR, Precision, Recall, and F-Score using two different testing
approaches: Percentage-split and Cross-validation.

Table 9 comparatively shows the performance of MLP with our parameter settings
and the performance of the best ML techniques that have been applied by the relevant
research using the same dataset (our newly constructed dataset).

To conclude, some ML techniques did well in detecting P2P botnets in terms of
detection accuracy, as shown in the relevant research. However, IDSs are not only based
on intrusion detection accuracy, and there are some matters that should be considered to
improve the overall performance, such as time and complexity. In this work, we proposed
a novel feature engineering methods to select the most significant features. The proposed
feature selection method eventually produced only four features to the predictor, and that
contributed to reducing the data dimensionality and then reducing the process complexity.
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Experimentally, we also used the full-features dataset to show the positive influence of our
feature engineering method (BFU, Stage 3). Comparatively, the results of using the BFU
method are better for many reasons: higher detection accuracy, lower FPR, higher Precision
and Recall, and the time taken to build a model is less than the time taken when we use
the full dataset. Table 10 comparatively shows the results of using the BFU method and
without using the BFU method.

Table 8. The experimental results of PeerAmbush compared to the relevant works.

Article Technique Testing Approach ACC (%) FPR Precision Recall F-Score Others

[6] NN Cross-validation 99.0 0.75 - - - -

[27]

K-Nearest Cross-validation 76.5
79.1 0.06 - 0.82

0.85 - -

REP Tree Cross-validation 96.1
97

0.01
0.02 - 0.96

0.97 - -

SVM Cross-validation 88
89

0.06
0.05 - 0.82

0.91 - -

Peer-
Ambush MLP

Percentage-split 99.9 0.0 1.0 1.0 1.0 TPR = 1.0
ROC area = 1.0

Cross-validation 99.9 0.0 1.0 1.0 1.0 TPR = 1.0
ROC area = 1.0

ACC: Detection Accuracy, FPR: False Positive Rate, TPR: True Positive Rate, SVM: Support Vector Machine, MLP:
Multi-Layer Perceptron, NN: Neural Network.

Table 9. The performance of MLP compared the used ML techniques using the same dataset.

Technique Accuracy (%) FPR Recall

DecisionStump 82.1 0.040 0.82

AdaBoostAB 95.4 0.009 1.0

SVM 88.8 0.06 0.88

Neural Network 91.81 0.016 0.91

MLP 99.9 0.001 1.0

Table 10. Comparison between the results with BFU and without BFU.

Using BFU Without Using BFU

Number of features 4 30

Detection Accuracy (%0) 99.9 96.5

FPR 0.001 0.007

Precision 1.0 0.96

Recall 1.0 0.96

The above table shows the power of using the BFU. There are some features that may
mislead or affect the classification process. For that, feature engineering selected only the
most significant features that reflected the worth of the whole set and also benefited the
predictor for better classification.

In general, this approach achieved higher detection accuracy and no FPR with fewer
selected features compared to the relevant works. Last but not least, this paper shows the
performance of one of the most effective DL classifiers, which is the MLP with a certain
parameter setting to detect P2P botnets. Finally, the experimental results are promising to
build and improve new IDSs to detect the P2P botnets.
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5. Conclusions and Future Work

In conclusion, we proposed PeerAmbush as a novel DL-based approach to detect one
of the most serious attacks, the P2P botnets. The proposed approach addresses some of
the limitations in the relevant research, such as the dataset issues and feature engineering
matter, by constructing a new dataset and proposing a novel feature engineering method,
respectively. The novel feature engineering method is based on Best First Union, though
we named it BFU, and this method selected only four features as the best to detect P2P
botnets. Therefore, PeerAmbush employs the MLP as a DL classifier to classify the network
traffic because the relevant works have not yet leveraged the DL techniques, and to benefit
the effectiveness of DL in this case. The proposed approach consists of five main stages;
each stage has substages to solve a certain issue and prepare the dataset for the next stage.
PeerAmbush showed impressive results compared to the relevant research in terms of
detection accuracy, FPR, Precision, Recall, and F-Score by only using four features as the
fewest number of selected features compared to the relevant works. In the future, we look
forward to specifically detecting more new P2P botnet types, such as DDG P2P botnet or the
very sophisticated FritzFrog P2P botnet. Henceforward, we will also work on employing
more DL techniques to detect more types of P2P botnet. We also plan to complete this work
by improving a prevention technique against the detected traffic.
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