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Abstract: The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan
Gielis further extended the Lamé curve in the polar coordinate system by introducing additional

parameters (n1, n2, n3; m): r(ϕ) =
(∣∣∣ 1

A cos
(m

4 ϕ
)∣∣∣n2

+
∣∣∣ 1

B sin
(m

4 ϕ
)∣∣∣n3

)−1/n1
, which can be applied

to model natural geometries. Here, r is the polar radius corresponding to the polar angle ϕ; A, B,
n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the
number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on
its applications. However, the Gielis equation can also generate a large number of shapes that are
rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter
m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the
relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a
theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real
numbers rather than only taking positive real numbers, then classify the curves based on extremal
properties of r(ϕ) at ϕ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2

precisely affect the shapes of Gielis curves.

Keywords: axial symmetry; extreme points; Gielis equation; natural geometries; polar coordinates;
rotational symmetry

1. Introduction

Superellipses are defined by the equation:∣∣∣ x
A

∣∣∣n + ∣∣∣ y
B

∣∣∣n = 1 (1)

where x and y represent the horizontal and vertical coordinates of points in the rectangular
coordinate system, respectively; A, B and n are positive real numbers (n = +∞ is included).
Superellipses include the circle, the diamond and the square for A = B, and the ellipse, the
rhombus and the rectangle for A 6= B [1,2]. Superellipses are a subgroup of Lamé curves
whereby the absolute value signs ensure the symmetry of the shapes. The classic conic
sections are special cases as well. In the most general cases, the exponent n can also be a
negative real number [3].

Gielis [4,5] introduced more model parameters based on the superellipse equation
in the polar coordinate system (see Equation (2) below), which extends superellipses to
include various ranges of more symmetrical and asymmetrical geometries found in nature.
The mathematical expression of the Gielis equation is as follows:

r(ϕ) =
(∣∣∣∣ 1

A
cos
(m

4
ϕ
)∣∣∣∣n2

+

∣∣∣∣ 1
B

sin
(m

4
ϕ
)∣∣∣∣n3

)− 1
n1

(2)
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where r and ϕ are the polar radius and polar angle, respectively, and ni (i = 1, 2, 3) and m
are positive real numbers.

For the past few years, various studies [6–12] have demonstrated the validity of the
Gielis equation in describing actual biological geometries. The boundary coordinate data of
leaves for 46 bamboo species [6], and eggs of 9 species of birds [7] were well fitted using the
Gielis equation (m = 1); Tian et al. [8] used the Gielis equation (m = 2) to simulate the seed
projections (in side view) of two Ginkgo biloba cultivars, which provided a fresh viewpoint
to identify the morphological differences between species; Li et al. [9] compared the original
Gielis equation (m = 3) with its twin version in describing the planar projections (in top
view) of Koelreuteria paniculata fruits, and demonstrated that both the original and twin
Gielis equation can describe the shapes of the vertical fruit projections well; Shi et al. [10,11]
and Wang et al. [12] used the Gielis equation (m = 4, 5) to fit the outline shapes of tree-ring
cross sections, sea stars and corolla tubes of Vinca major flowers, respectively, which further
displayed various symmetric shapes with more angles generated by the Gielis equation.
However, it seems that the above studies involving the Gielis equation were all application
oriented, and the symmetry and periodicity of the equation were not studied systematically.

Gielis [4] pointed out that the values of ni (i = 1, 2, 3) and m have different roles for the
formation of the shapes of curves generated by the Gielis equation. It is apparent that the unit
circle (r = 1) is defined when n2 = n3 = 2 and A = B = 1. For n2 = n3 > 2, the shape circumscribes
the unit circle, while the shape will inscribe in the unit circle for n2 = n3 < 2. The value of
m determines the number of angles of the Gielis curves and the number of rotations which
make the curve closed. The shapes will close after one rotation (0–2π) when m is a positive
integer, in other words, r(0) = r(2π). When m is positive but not an integer, the shapes will
not close after one rotation (0–2π), that is, r(0) 6= r(2π). When m is a positive rational number,
the numerator of m determines the number of angles of the curves, and the denominator
of m determines how many rotations the curves need to close. For example, when m = 4/3,
the corresponding curves will close after three rotations (0–6π), generating four angles. The
curves will never close if m is an irrational number.

Lenjou [13] proved that there were several invariants in the Gielis curves: the in-
cluded area of the closed curves, the polar moment of inertia and the distance under angle
ϕ = k/m (k ∈ R), which are independent of the value of the positive integer m for the given
values of ni (i = 1, 2, 3), A and B. However, it is not clear whether the proof can be upheld
when the values of ni (i = 1, 2, 3) are negative and m is any rational number.

Matsuura [14] examined precisely and analytically the mathematical structure of Gielis
curves from a theoretical point of view, analyzed the symmetry of Gielis curves with the
condition A = B, and n2 = n3 and calculated the curvature at ϕ = π/m. This research was
limited to the case of m ≥ 3, A = B, n2 = n3 and highlighted the role of m/4, since one
could define Gielis polygons by choosing n1 = m2n2/16, in other words, when the ratio
of n1

n2
=
(m

4
)2. Under this condition, such polygons get closer to regular polygons for

increasing m. Equation (2) also allows for describing regular polygons [15].
However, previous researches did not include the cases when the values of ni (i = 1, 2,

3) are negative. Gielis [5] shows the more general equation, to include negative values and
the hyperbolic version with a minus sign between cosine and sine terms, and Spíchal [16]
used negative values for approximating some flowers and leaves, but a systematic study is
lacking. Here, we explore the rotational symmetry and axial symmetry of Gielis curves for
the case of A = B, n2 = n3, and m is a rational number. In particular, we also analyze the
influence of the parameters n1 and n2 which not only take positive real values, but can also
be negative real numbers, on the shapes of Gielis curves.

2. Materials and Methods

We set A = B, n2 = n3 in Equation (2) so that we have:

r(ϕ) = a
(∣∣∣cos

m
4
ϕ
∣∣∣n2

+
∣∣∣sin

m
4
ϕ
∣∣∣n2
)− 1

n1 (3)
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where a = An2/n1 . For n2 = 2, a circle of radius a is obtained. Here, n1, n2 are real numbers
and n1 6= 0, which determine the shapes of the Gielis curves, and m is a rational number,
which determines the number of angles for a closed curve.

We will discuss the symmetry and periodicity of r(ϕ) in Equation (3) in the form
of formulas. Since |cos(−θ)| = |cos θ|, |sin(−θ)| = |sin θ|, which results in the role of
the sign of m to r(ϕ) in Equation (3) being hidden by the absolute value sign, that is
r(ϕ,−m) = r(ϕ, m) (m > 0), we just need to consider the case of m > 0. Setting m = p/q (p
and q are positive integers that are coprime numbers), we have:

r(ϕ+ 2qπ) = r(ϕ) (4)

Equation (4) indicates that r(ϕ) in Equation (3) is a periodic function with T1 = 2qπ,
where T1 is the minimum closure period. In particular, r(0) = r(2qπ), which manifests that
Gielis curves generated by Equation (3) start from ϕ = 0, close firstly after q rotations, and
this pattern will be repeated every 2qπ that we call the minimum closure period. Therefore,
we just need to investigate the characters of the curves at ϕ ∈ [0, 2qπ).

Additionally, when we set ϕ ∈ [0, 2qπ) in Equation (3), it follows that

r
(
ϕ+

2π
m

)
= r(ϕ) (5)

Equation (5) indicates that r(ϕ) in Equation (3) is also a periodic function with T2 = 2π/m,
which shows that Gielis curves generated by Equation (3) are rotationally symmetric with
rotation angle 2π/m. We call T2 the minimum rotation period whenϕ ∈ [0, 2qπ). In particular,
the minimum closure period (T1) divided by the minimum rotation period (T2) is equal to p,
that is: T1

T2
= 2qπ

2π/m = p (m = p/q), which suggests that each angle corresponds to a minimum
rotation period and the curves generate p angles in a minimum closure period.

The above analysis indicates that the shapes generated by Equation (3) have a rota-
tional symmetry and the rotation angle is equal to 2π/m whenϕ ∈ [0, 2qπ). Shapes then are
always repeated for each 2π/m. So, we just need to consider the curves with ϕ ∈ [0, 2π/m),
and the axial symmetry of the shapes on this interval is shown as follows:

r
(

2π
m
−ϕ

)
= r(ϕ) (6)

which indicates that Gielis curves generated by Equation (3) are axisymmetric about the
line y = tan(π/m)x when ϕ ∈ [0, 2π/m).

The invariants of supershape generated by Equation (3), area, polar moment of inertia
and distance under angle ϕ = k/m (k ∈ R) [13] will be reconsidered as follows when n1, n2
are real numbers, and m is a rational number. Considering the integral A:

A =
1
2
∫ 2qπ

0 r2(ϕ)dϕ

=
p
2
∫ 2π/m

0 r2(ϕ)dϕ

=
p
2
∫ 2π/m

0 a2
(∣∣cos m

4 ϕ
∣∣n2 +

∣∣sin m
4 ϕ
∣∣n2
)− 2

n1 dϕ

=
pa2

2
· 4

m
∫ π/2

0

(
(cosϕ)n2 + (sinϕ)n2

)− 2
n1 dϕ

= 2qa2
∫ π/2

0

(
(cosϕ)n2 + (sinϕ)n2

)− 2
n1 dϕ

(7)

Equation (7) indicates that the integral A is independent of the numerator of m. When
the denominator of m is equal to 1, that is, m is a positive integer, the integral A represents
the area of the closed Gielis curves, which is an invariant for the given values of the
parameters n1, n2, a. However, the integral A is not the area when the denominator of m is
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not equal to 1, the reason being that the area of the closed Gielis curves is doubly-counted
many times in this case. It is worth noting that the integral A is not always convergent.
We can conclude that when n1, n2 are both negative, the integral A is convergent with
0 < n2

n1
< 1

2 , while A is divergent with n2
n1
≥ 1

2 ; while the integral A is always convergent
when at least one of the parameters n1 and n2 is positive.

The discussion about the polar moment of inertia is similar to the area. Considering
the integral I:

I =
1
4
∫ 2qπ

0 a4
(∣∣cos m

4 ϕ
∣∣n2 +

∣∣sin m
4 ϕ
∣∣n2
)− 4

n1 dϕ

=
p
4
∫ 2π/m

0 a4
(∣∣cos m

4 ϕ
∣∣n2 +

∣∣sin m
4 ϕ
∣∣n2
)− 4

n1 dϕ

=
pa4

4
· 4

m
∫ π/2

0

(
(cosϕ)n2 + (sinϕ)n2

)− 4
n1 dϕ

= a4q
∫ π/2

0

(
(cosϕ)n2 + (sinϕ)n2

)− 4
n1 dϕ

(8)

Equation (8) manifests that the integral I is independent of the numerator of m. When
q, the denominator of m, is equal to 1, the integral I represents the polar moment of inertia
of the supershape, which is an invariant for the given values of the parameters n1, n2,
a. Similarly, the integral I is always convergent when at least one of the parameters n1
and n2 is positive, while when n1, n2 are both negative, the integral I is convergent with
0 < n2

n1
< 1

4 , and A is divergent with n2
n1
≥ 1

4 .
When ϕ = k/m, we have:

r
(

k
m

)
= a

(∣∣∣∣cos
k
4

∣∣∣∣n2

+

∣∣∣∣sin
k
4

∣∣∣∣n2
)− 1

n1
(9)

where k is any real number. Equation (9) means that the distance under angle ϕ = k/m is
independent of the value of m with any real numbers n1, n2, and any rational number m.

We now discuss the variations of Gielis curves based on the characteristics of extreme
points of the polar coordinates equation r(ϕ) in Equation (3). For ϕ ∈ [0, 2π/m), the first
derivative of r(ϕ) in Equation (3) can be calculated as:

dr
dϕ

= a · n2

n1
· m

4
·
[(

cos
m
4
ϕ
)n2

+
(

sin
m
4
ϕ
)n2
]− 1

n1
−1
[(

cos
m
4
ϕ
)n2−1

sin
m
4
ϕ−

(
sin

m
4
ϕ
)n2−1

cos
m
4
ϕ

]
(10)

where d represents differential notation. Setting dr
dϕ = 0 we have:

ϕ =


π

m
, 0, when n2 > 1

π

m
, when n2 ≤ 1

(11)

which indicates that r(ϕ) may reach its extreme value at ϕ = π/m, 0 for n2 > 1, and ϕ = π/m
for n2 ≤ 1 with ϕ ∈ [0, 2π/m). Since ϕ = π/m may always be an extreme point, we give
priority to the characteristics of the curves at that point. For ϕ = π/m, the second derivative
of r(ϕ) in Equation (3) can be calculated as:

d2r
dϕ2

∣∣∣∣∣
ϕ= πm

= a · m2

8
· 2−

1
n1
−1 ·

(√
2

2

)− n2
n1

· n2

n1
· (2− n2) (12)

The sign of the second derivative is used to study whether the equation r(ϕ) reaches a
maximal value or a minimal value at a certain point. Apparently, the sign of d2r

dϕ2

∣∣∣
ϕ= πm

in

Equation (12) is determined by n2
n1
· (2− n2), and we have:
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d2r

dϕ2

∣∣∣
ϕ= πm

< 0, when n1 ∈ (0,+∞), n2 ∈ (−∞, 0)∪(2,+∞) or n1 ∈ (−∞, 0), n2 ∈ (0, 2)

d2r
dϕ2

∣∣∣
ϕ= πm

> 0, when n1 ∈ (−∞, 0), n2 ∈ (−∞, 0)∪(2,+∞) or n1 ∈ (0,+∞), n2 ∈ (0, 2)
(13)

Equation (13) indicates that r(ϕ) in Equation (3) will reach its maximal value at
ϕ = π/m when n1 ∈ (0,+∞), n2 ∈ (−∞, 0)∪(2,+∞) or n1 ∈ (−∞, 0), n2 ∈ (0, 2), and
will reach its minimal value at ϕ = π/m when n1 ∈ (−∞, 0), n2 ∈ (−∞, 0)∪(2,+∞) or
n1 ∈ (0,+∞), n2 ∈ (0, 2). Similarly, we calculate the second derivative of r(ϕ) at ϕ = 0 with
the condition n2 > 1:

d2r
dϕ2

∣∣∣
ϕ=0+

= a · m2

16 ·
n2
n1
· (−∞), when 1 < n2 < 2

d2r
dϕ2

∣∣∣
ϕ=0

= 0, when n2 = 2

d2r
dϕ2

∣∣∣
ϕ=0

= a · m2

16 ·
n2
n1

, when n2 > 2

(14)

Equation (14) indicates that the sign of the second derivative of r(ϕ) at ϕ = 0 is
determined by n2/n1 when n2 > 1. For 1 < n2 < 2, lim

ϕ→0+
d2r

dϕ2 = −∞ when n1 and n2

have the same sign, which means that r(ϕ) in Equation (3) will reach its maximal value at
ϕ = 0; and lim

ϕ→0+
d2r

dϕ2 = +∞ when n1 and n2 have the opposite sign, which means that r(ϕ)

will reach its minimal value at ϕ = 0. For n2 > 2, d2r
dϕ2

∣∣∣
ϕ=0

> 0 when n1 and n2 have the
same sign, which means that r(ϕ) in Equation (3) will reach its minimal value at ϕ = 0; and

d2r
dϕ2

∣∣∣
ϕ=0

< 0 when n1 and n2 have the opposite sign, which means that r(ϕ) will reach its

maximal value at ϕ = 0. While for n2 = 2, d2r
dϕ2

∣∣∣
ϕ=0

= 0 since r(ϕ) = a, which represents a
circle of radius a.

All calculations and figures were accomplished by using the statistical software R
(version 4.2.0) [17] with the ‘biogeom’ package (version 1.0.8) [18].

3. Results

Graphs are used to explain the rotational symmetry and axial symmetry of Gielis
curves. An example of Gielis curves with parameter m taking a positive integer, and a
positive rational number but not an integer, is shown in Figure 1. The various cases which
are obtained from different values of n1 and n2 in Equation (13) will be discussed in the
following paragraphs (m = 5 in each case).
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Figure 1. Representative curves generated by Equation (3) with a = 1, n1 = 2, n2 = 5, m = 5 (a) and
with a = 1, n1 = 0.5, n2 = 0.5, m = 5/2 (b). (a) Gielis curve (red line) with 5 angles closes after one
rotation (0–2π) for m = 5, which is rotationally symmetric with rotation angle 2π/5; the green line
is the axis of symmetry y = tan(π/5)x; (b) Gielis curve (red line and blue line represent the curve
generated by r(ϕ) when ϕ ∈ [0, 2π) and [2π, 4π), respectively) with 5 angles closes after two rotations
(0–4π) for m = 5/2, which is rotationally symmetric with rotation angle 4π/5; the green line is the axis
of symmetry y = tan(2π/5)x.

• n1 > 0, n2 > 2;

r(ϕ) has two extreme points (ϕ = 0, π/m) and d2r
dϕ2

∣∣∣
ϕ= πm

< 0, d2r
dϕ2

∣∣∣
ϕ=0

> 0 when

n1 > 0, n2 > 2, which indicates that r(ϕ) in Equation (3) reaches its maximal value at
ϕ = π/m and its minimal value at ϕ = 0. Figure 2 shows the corresponding Gielis curves in
this situation, which manifests that all of the curves are circumscribed on the circle (r = a).
In addition, the curves are fuller with increasing n1; this change makes the differentiated
degree of angles of Gielis curves decrease gradually. The parameter n2 affects the steepness
of the corners to some extent, that is, the rmax values of the curves increase as n2 increases,
making the curves become more bent. The corners of Gielis curves are rounded by a small
value of n2 (Figure 2) and are sharpened by a large value of n2 (Figure A1b). Special cases
occur when the shape is a series of lines radiating from the center (Figure A1a) when n1 is
small enough and n2 is large enough, and the shape will be like a circle (Figure A1c) when
n1 is large enough and n2 is small enough.

Figure 2. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are 1 (a), 5 (b), 10 (c),
respectively, and the values of n2 are 2, 4, 6, 8 from the inside out in each panel.

• n1 > 0, n2 < 0;

r(ϕ) has only one extreme point (ϕ = π/m) and d2r
dϕ2

∣∣∣
ϕ=πm

< 0 when n1 > 0, n2 < 0, which

indicates that r(ϕ) reaches its maximal value at ϕ = π/m. Figure 3 shows the corresponding
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Gielis curves in this situation, which indicate that when n1 increases, the curves become fuller.
Further, when n2 increases, the values of rmax of the curves increase, making the corners rounded.
In addition, the shape recedes inward into lines (Figure A2a) when n1 and n2 are small enough,
while the shape expands outward into a circle (Figure A2c) when n1 and n2 are large enough. A

special case occurs when the curve turns into a circle (r = 2−
1

n1 a) with n2 = 0.

Figure 3. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are 0.5 (a), 2 (b),
10 (c), respectively, and the values of n2 are −6, −4, −2 from the inside out in each panel.

• n1 < 0, 0 < n2 < 2;

r(ϕ) has only one extreme point (ϕ = π/m) and d2r
dϕ2

∣∣∣
ϕ=πm

< 0 when n1 < 0, 0 < n2 ≤ 1,

which indicates that r(ϕ) reaches its maximal value atϕ = π/m; in contrast, r(ϕ) has two extreme
points (ϕ = 0, π/m) and d2r

dϕ2

∣∣∣
ϕ=0

> 0, d2r
dϕ2

∣∣∣
ϕ=πm

< 0 when n1 < 0, 1 < n2 < 2, which indicates

that r(ϕ) reaches its minimal value atϕ = 0 and its maximal value atϕ = π/m. Figure 4 shows
the corresponding Gielis curves in this situation, from which it can be seen that the curves
will be fuller as n1 decreases from 0 to −∞, with rmax values of the curves decreasing as n2
increases. In addition, the curves at ϕ = 0 are sharpened when 0 < n2 ≤ 1, and are flattened

when 1 < n2 < 2. Special cases occur when the shape expands outward into a circle (r = 2−
1

n1 a)
and shrinks inward into a circle (r = a) with n2 = 0 and 2, respectively.

Figure 4. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are −0.5 (a), −1 (b),
−2 (c), respectively, and the values of n2 from the outside in are 0, 0.2, 0.5, 1, 1.5, 2 in each panel.

• n1 > 0, 0 < n2 < 2;
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r(ϕ) has only one extreme point (ϕ = π/m) and d2r
dϕ2

∣∣∣
ϕ= πm

> 0 when n1 > 0, 0 < n2 ≤ 1,

which indicates that r(ϕ) reaches its minimal value at ϕ = π/m; while r(ϕ) has two extreme
points (ϕ = 0, π/m) and d2r

dϕ2

∣∣∣
ϕ=0

< 0, d2r
dϕ2

∣∣∣
ϕ= πm

> 0 when n1 > 0, 1 < n2 < 2, which indicates

that r(ϕ) reaches its maximal value atϕ = 0 and its minimal value atϕ = π/m. Figure 5 shows
the corresponding Gielis curves in this situation, similarly to the case of n1 < 0, 0 < n2 < 2,
where the curves are fuller as n1 increases from 0 to +∞, and the values of rmin increase as n2
increases. Additionally, the curves at ϕ = 0 are sharpened with 0 < n2 ≤ 1, and are flattened

with 1 < n2 < 2. Special cases occur when the shape shrinks inward into a circle (r = 2−
1

n1 a)
and expands outward into a circle (r = a) with n2 = 0 and 2, respectively.

Figure 5. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are 0.5 (a), 1 (b), 2 (c),
respectively, and the values of n2 are 0, 0.2, 0.5, 1, 1.5, 2 from the inside out in each panel.

• n1 < 0, n2 > 2;

r(ϕ) has two extreme points (ϕ = 0, π/m) and d2r
dϕ2

∣∣∣
ϕ=0

< 0, d2r
dϕ2

∣∣∣
ϕ= πm

> 0 when n1 < 0,

n2 > 2, which indicates that r(ϕ) reaches its maximal value at ϕ =0 and its minimal value at
ϕ = π/m. Figure 6 shows the corresponding Gielis curves in this situation, where all of the
curves are inscribed in the circle (r = a). Contrary to the case of n1 > 0, n2 > 2, the curves turn
fuller with decreasing n1, and rmin values of the curves decrease (even to zero) as n2 increases,
making the curves more bent. Special cases occur when the shape is similar to a series of
radiating lines (Figure A3a) when both n1 and n2 are large enough, and the shape will be
similar to a circle (Figure A3c) when both n1 and n2 are small enough.
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Figure 6. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are −1 (a), −5 (b),
−10 (c), respectively, and the values of n2 from the outside in are 2, 4, 6, 8 in each panel.

• n1 < 0, n2 < 0.

r(ϕ) has only one extreme point (ϕ = π/m) and d2r
dϕ2

∣∣∣
ϕ= πm

> 0 when n1 < 0, n2 < 0,

which indicates that r(ϕ) reaches its minimal value at ϕ = π/m. Figure 7 shows the corre-
sponding Gielis curves in this situation, where the curves become fuller with decreasing
values of n1, and the rmin values of the curves decrease as n2 increases. Noteworthy is that
r(ϕ) is not always continuous as r(0) = +∞, which means that the curves are not closed
under this circumstance.

Figure 7. Gielis curves generated by Equation (3) for a = 1, m = 5. The values of n1 are −0.5 (a), −1 (b),
−10 (c), respectively, and the values of n2 from the outside in are −0.6, −0.4, −0.2 in each panel.

4. Discussion and Conclusions

As a generalization of Lamé curves, in particular superellipses, Equation (2) with
its six parameters can generate various natural geometries providing a six dimensional
manifold or catalogue of shapes. We have a powerful representation with fewer parameters,
as in Equation (3) with A = B and n2 = n3, which diminishes the possibility of generating
an asymmetrical shape. The present work is a necessary step in the future for the applied
investigation of concave shapes, and the notion of invariants, which is exactly reflected by
examining the influence of negative exponents on geometries, is crucial for any studies
pertaining to natural shapes and phenomena. However, natural biological geometries
are more or less influenced by abiotic and biotic factors, which lead them to exhibit a
certain asymmetry [19–21]. Such a phenomenon is usually referred to as fluctuating
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asymmetry [22,23]. The ‘biogeom’ package [18] based on R (version ≥ 4.2.0) [17] is a
readily-available tool for fitting actual boundary coordinate data of natural shapes following
Equation (3), and the fluctuating asymmetry that has been found in nature, especially the
leaves of garden plants [24], can be quantified by the prediction error of data fitting.

Equation (3) displays a mathematical expression for natural geometries at an ideal state
without being influenced by environmental stress. Nevertheless, it is necessary to make
a symmetrical hypothesis to quantify the extent of deviation from perfectly symmetrical
geometries. In this study, we discussed the relationship of the parameter m (a rational
number) with symmetry of curves generated by Equation (3), investigated the invariants
(area, polar moment of inertia and distance under angle ϕ = k/m) when n1, n2 are negative
and m is a rational number and explored how the parameters n1, n2 control the shapes
of the curves. For any m = p/q, the denominator q determines how many rotation curves
are needed for the figure to close, and the numerator p determines the number of angles
for a closed curve. Additionally, the shapes generated by Equation (3) are rotationally
symmetric and axisymmetric, and m determines the rotation angle and the position of the
axis of symmetry.

It is noted that the meanings of invariants have changed since the integrals do not
always represent area or polar moment of inertia for a closed Gielis curve when m is any
rational number, and the integrals may diverge with negative numbers n1, n2. On the other
hand, the parameters n1 and n2 determine the shapes of the Gielis curves, which have
different influences on the curves. The shapes tend to be fuller when the absolute value of
n1 increases, and when the absolute value of n2 increases, the curves at ϕ = (2t + 1)π/m
(t ∈
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increases, and when the absolute value of n2 increases, the curves at φ = (2t + 1)π/m (t ∈ ℕ) ) become less flattened with n2 < 0 or n2 > 2, where r(ϕ) can take the maximal (or
minimal) value. We can see that curves of various shapes are obtained when the absolute
values of n1 and n2 are both large enough (Figures A1b, A2b and A3b). The shapes can be
circles (Figures 4 and 5) with n2 = 0 or 2, which indicates that the shapes tend to be circular
whether n2 increases or decreases with 0 < n2 < 2. However, the shapes can be radiating
lines or circles (Figures A1–A3) with n2 < 0 or n2 > 2 when the values of n1, n2 are large or
small enough, which represents a limiting case of Gielis curves. In addition, whether r(ϕ)
can reach its maximal or minimal value at ϕ = (2t + 1)π/m (t ∈
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Different from most previous research, we studied the cases when m takes any rational
number, and n1, n2 not only can take positive real numbers, but also negative real numbers.
This opens up a new catalogue of shapes and geometries. In this work, we focused
on the extremal property of the points (ϕ = 2tπ/m and (2t + 1)π/m, t ∈
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ferent influences on the curves. The shapes tend to be fuller when the absolute value of n1 

increases, and when the absolute value of n2 increases, the curves at φ = (2t + 1)π/m (t ∈ ℕ) ) of r(ϕ) in
Equation (3), and classified the curves based on various combinations of the values of n1
and n2, which can provide guidance for applying the Gielis equation to simulate the shapes
of natural biology. However, the geometries of biological organs and issues are not perfectly
axisymmetric or rotationally symmetric. Natural shapes are always asymmetrical, which
result from several abiotic and biotic factors, including radiation, temperature, nutrient
supply and physical pressure between individuals. We first need to build symmetric models
for describing natural shapes in biology, and then we can quantify these factors, which can
generate asymmetric geometries in the models to render the refined models to be more
powerful in describing natural geometries. Therefore, the present work might be a necessary
step in studying the fluctuating asymmetry in evolutionary biology. Future research on
the geometries extended from symmetry to asymmetry in this study area is worthwhile
because it can provide insights into the fluctuating asymmetry of natural geometries.
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Appendix A

Several Figures cited in the main text.

Figure A1. Gielis curves generated by Equation (3) for a = 1, m = 5. (a) n1 = 1, n2 = 1000; (b) n1 = 1000,
n2 = 1000; (c) n1 = 1000, n2 = 3.

Figure A2. Gielis curves generated by Equation (3) for a = 1, m = 5. (a) n1 = 1, n2 = −1000; (b) n1 = 1000,
n2 = −1000; (c) n1 = 1000, n2 = −1.

Figure A3. Gielis curves generated by Equation (3) for a = 1, m = 5. (a) n1 = −1, n2 = 10,000;
(b) n1 = −10,000, n2 = 10,000; (c) n1 = −10,000, n2 = 3.



Symmetry 2022, 14, 2475 12 of 12

References
1. Lamé, G. Examen des Différentes Méthodes Employées Pour Résoudre les Problèmes de Géométrie; V. Courcier: Paris, France, 1818.
2. Gridgeman, N.T. Lamé ovals. Math. Gaz. 1970, 54, 31–37. [CrossRef]
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