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Abstract: In previous work, we described the geometry of Bayesian learning on a manifold. In this
paper, inspired by the notion of modified double contingency of communications from sociologist
Niklas Luhmann, we take two manifolds in equal parts and a potential function on their product
to set up mutual Bayesian learning. Particularly, given a parametric statistical model, we consider
mutual learning between two copies of the parameter space. Here, we associate the potential with
the relative entropy (i.e., the Kullback–Leibler divergence). Although the mutual learning forgets
all elements about the model except the relative entropy, it still substitutes for the usual Bayesian
estimation of the parameter in a certain case. We propose it as a globalization of the information
geometry.

Keywords: Bayesian learning; relative entropy; Kullback–Leibler divergence; information geometry;
double contingency; communication; autopoiesis; cybernetics

1. Introduction

This is the sequel of the author’s research [1] on the geometry of Bayesian learning.
We introduce mutual Bayesian learning by taking two manifolds, each of which is the
parameter space of a family of density functions on the other. This setting has the following
background in sociology that seems more ideological than practical.

Talcott Parsons [2] introduced the notion of double contingency in sociology. Here,
the contingency is that no event is necessary and no event is impossible. A possible under-
standing of this definition appeals to probability theory. Specifically, even an event with
probability P = 1 does not always occur, and even that with P = 0 sometimes occurs, as
a non-empty null set appears, at least conceptually. We consider the contingency as the
subjective probabilistic nature of society. In fact, updating the conceptual subjective proba-
bility according to Bayes’ rule should be a response to the conventional contingency that
the prior probability is not a suitable predictor in reality. However, the double contingency
is not straightforward, as it concerns mutually dependent social actions. In this article,
we describe the double contingency by means of Bayesian learning. In our description,
when one learns from another, the opposite learning also proceeds. This implies that, in
contrast to sequential games such as chess, the actions in a double contingency have to be
selected at once. Niklas Luhmann [3] leveraged this simultaneity to regard people not as
individuals but as a single agent that he called a system. This further enabled him to apply
the double contingency to any communications between systems. We introduce a function
λ on the product of two manifolds to understand his systems theory.

From a practical perspective, we consider a family {hx : W → R>0}x∈X of probability
density on a manifold W and regard the parameter space X as a manifold. The product
X× X carries the function ϕ : X× X → R≥0 induced from the relative entropy. Recall that
the information geometry [4] is a differential geometry on the diagonal set ∆ ⊂ X × X,
which deals with the 3-jet of ϕ at ∆. The author [5] began exploring the global geometry
of (X× X, ϕ). Now we take exp(−ϕ) as the above function λ, and show that the mutual
Bayesian learning between two copies of X substitutes for the original Bayesian estimation
on W in a certain case. We notice that the global geometry of ϕ, as well as the information
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geometry, forgets the original problem on W, and addresses a related problem on X. In this
regard, our mutual Bayesian learning is a globalization of the information geometry.

2. Mathematical Formulation
2.1. Geometric Bayesian Learning

We work in the C∞-smooth category. Take a possibly non-compact and possibly
disconnected manifold X equipped with a volume form dvolX . Note that a discrete set is
a 0-dimensional manifold on which a positive function is a volume form. Suppose that
each point x of the manifold X presents a possible action of a person. A positive function
f : X → R>0 on X is called a density. If its integral | f |dvolX :=

∫
X f dvolX is finite, it defines

the probability f /| f |dvolX on X. Suppose that the selection of an action x is weighted by a
density f0 on X. In our story, the person believes that a density ρx : Y → R>0 on another
manifold (Y, dvolY) depends on his action x. That is why the person perceives a given
point y0 ∈ Y by multiplying the density f0 by the function

l : X → R>0 : X 3 x 7→ ρx(y0) > 0,

which is called the likelihood of the datum y0 ∈ Y. The perception updates the prior
density f0 to the posterior density f1(x) := l(x) f0(x) = ρx(y0) f0(x). Indeed f1/| f1|dvolX is
the Bayesian posterior probability provided that f0/| f0|dvolX is the prior probability. The
only change from the description in [1] is the aim of the learning, i.e., prediction is replaced
with action. Although the word action has an active meaning, an activity consisting of
countless actions would be a chain of automatic adaptations to the environment.

2.2. Mutual Learning

It is natural to symmetrize the above setting by altering the roles of X and Y. Specifi-
cally, we further suppose that a point y of the second manifold Y parameterizes a density
ρ′y : X → R>0 of the first manifold X, and the perception of a datum x0 ∈ X by the second
person updates a prior density g0 : Y → R>0 on the second manifold to the posterior
density g1(y) = ρ′y(x0)g0(y). This models the double contingency of Parsons [2]. We
further modify it as follows. Fix volume forms dvolX, dvolY, and dvolX×Y on X, Y, and
X × Y, respectively. Take densities f0 : X → R>0, g0 : Y → R>0, and λ : X × Y → R>0.
Suppose that prior densities f0 and g0, respectively, changes to the posterior densities

f1 = λ(·, y0) f0 : x 7→ λ(x, y0) f0(x) and g1 = λ(x0, ·)g0 : y 7→ λ(x0, y)g0(y).

This models the double contingency of Luhmann [3]. We say that f0 is coupled with g0 in the
mutual learning through Luhmann’s potential λ on the product X×Y. Since the potential λ
is also a density, it can be coupled with a density σ0 on another manifold Z. Specifically, if
there is a datum ((x, y)0, z0) and a density τ0 : (X×Y)× Z → R>0, the pair of two persons
can change the tendency of its action selection. This mathematics enables us to consider the
double contingency not only between persons but also between systems. Here we suppose
that the points (x, y)0 and (x0, y0) are given as the same point. We emphasize that what we
are discussing is not how the datum appears objectively, but how we perceive it or how
we learn from it subjectively. We discuss in Section 4 the discordance between (x, y)0 and
(x0, y0) to understand a proposition in Luhmann’s systems theory saying that no system is
a subsystem.

2.3. Relative Entropy

Shannon [6] introduced the notion of entropy in information theory. As for continuous
distributions, Jaynes [7] pointed out that the notion of relative entropy

DdvolX

(
f1

| f1|dvolX

∣∣∣∣∣∣∣∣ f0

| f0|dvolX

)
:=
∫

X

f1

| f1|dvolX
log
(

f1

| f1|dvolX
·
| f0|dvolX

f0

)
dvolX
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is rather foundational to the notion of entropy

HdvolX

(
f

| f |dvolX

)
:= −

∫
X

f
| f |dvolX

log
(

f
| f |dvolX

)
dvolX .

Indeed, the entropy takes all real values even for normal distributions, whereas the relative
entropy is non-negative for any pair of distributions, where the non-negativity is obvious
from log(1/t) ≥ 1− t and is called the Gibbs inequality. Further, if we multiply the volume
form by a positive constant, the entropy changes while the relatrive entropy does not. In
any case, putting f = f1/ f0 and using the volume form f0dvolX , we have

H f0dvolX

(
f1/ f0

| f1/ f0| f0dvolX

)
= log | f0|dvolX − DdvolX

(
f1

| f1|dvolX

∣∣∣∣∣∣∣∣ f0

| f0|dvolX

)
.

Note that we cannot put f0 = 1 unless dvolX is finite. If we multiply the volume form by a
non-constant density, the relative entropy varies in general. We notice that the choice of the
volume forms in the above mutual learning does not affect the result of the learning.

2.4. Mutual Learning via Relative Entropy

The information geometry [4], as well as its partial globalization by the author [1,5],
starts with a family of probability distributions. Slightly more generally, we consider a
manifold W equipped with a volume form dvolW and a family {hx}x∈X of densities with
finite total masses on it. We regard the parameter space X as a manifold, and define the
function ϕ : X× X → R≥0 on its square by

ϕ(x, y) := DdvolW

(
hx

|hx|dvolW

∣∣∣∣∣∣∣∣ hy

|hy|dvolW

)
.

The information geometry focuses on the 3-jet of ϕ at the diagonal set ∆ ⊂ X × X. From
the Gibbs inequality, the symmetric quadratic tensor defined by the 2-jet of ϕ is positive
semi-definite. If it is positive definite, it defines a Riemannian metric called the Fisher–Rao
metric. Then the symmetric cubic tensor defined by the 3-jet of the anti-symmetrization
ϕ(x, y)− ϕ(y, x) directs a line of torsion-free affine connections passing through the Levi-
Civita connection of the Fisher–Rao metric. This line of connections is the main subject of
the information geometry. On the other hand, developing the global geometry in [1,5], we
define Luhmann’s potential for mutual learning between two copies of X as

λ := exp(−ϕ) : X× X → R>0.

We couple a prior density f0 : X → R>0 on the first factor with a prior density g0 : X → R>0
on the second factor through the potential λ on the product X × X. Here, the mutual
learning updates f0 and g0, respectively, to the posterior densities

f1 = λ(·, y0) f0 : x 7→ λ(x, y0) f0(x) and g1 = λ(x0, ·)g0 : y 7→ λ(x0, y)g0(y).

Note that the function ϕ changes if we multiply the volume form dvolW by a non-constant
density in general. Thus, the choice of the volume form is crucial. The volume form dvolX
might be related to the Fisher–Rao metric, although the choice of dvolX is indeed irrelevant
to the mutual learning. We can also imagine that the other volume forms dvolX×X and
dvolW have been determined in earlier mutual learnings “connected” to the current one.

3. Results

We address the following problem in certain cases below.

Problem 1. Does the mutual learning via the relative entropy substitute for the conventional
Bayesian estimation of the parameter of the family {hx}?
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Remark 1. The mutual learning uses only the relative entropy, whereas the conventional Bayesian
estimation needs all the information about the family. Thus, Problem 1 also asks if the mutual
learning can “sufficiently restore” the family from the relative entropy. To clarify this point, we use
the constant 1 as the formal prior density in the sequel even when the total volume is infinite. Then
one may compare the family with the particular posterior g1 to see “how much” it is restored.

3.1. Categorical Distributions

Let W be a 0-dimensional manifold with N + 1 unit components, i.e., W = {0, . . . , N}
with volume form dvolW = 1. A point x of the open N-simplex

X = {x = (x0, . . . , xN) ∈ RN+1 | x0, . . . , xN > 0, x0 + · · ·+ xN = 1}

with the standard volume form dvolX presents a categorical distribution (i.e., a finite
distribution) on W. We take the product manifold X× X with Luhmann’s potential

λ(x, y) = exp
(
−x0 log(x0/y0)− · · · − xN log(xN/yN)

)
.

Suppose that the prior densities are the constants f0(x) ≡ 1 and g0(y) ≡ 1 on the first and
second factors of X× X. Then, the iteration of mutual Bayesian learning yields

fn(x) = exp
(
nx0log y0 + · · ·+ nxNlog yN − nx0 log x0 − · · · − nxN log xN),

gn(y) ∝ exp
(
nx0 log y0 + · · ·+ nxN log yN)

where the overlines denote arithmetic means x0 =
x0

0 + · · ·+ x0
n−1

n
etc.

Proposition 1. We have the following maximum a posteriori (MAP) estimations:

x0 : · · · : xN = exp(log y0) : · · · : exp(log yN) ⇒ fn(x) = max fn

y = x = (x0, · · · , xN) ⇒ gn(y) = max gn

We notice that the probability gn/|gn|dvolX for the posterior density gn on the second
factor of X× X is known as the Dirichlet distribution.

Definition 1. The Dirichlet distribution Dir(α) for α = (α0, . . . , αN) ∈ RN+1
>0 is presented by

the probability f /| f |dvolX on the open N-simplex X ⊂ RN+1 for the density

f (x) = exp
(
(α0 − 1) log x0 + · · ·+ (αN − 1) log xN

)
.

In particular, the constant Dir(1, · · · , 1) is called the flat Dirichlet distribution.

We identify the set W with the 0-skeleton of the closure cl(X) of the open N-simplex
X ⊂ RN+1. If the prior is the flat Dirichlet distribution Dir(1, . . . , 1), the Bayesian learning
from categorical data x′0, . . . , x′n−1 ∈W yields the posterior Dir((1, . . . , 1) + x′0 + · · ·+ x′N).
This is the conventional Bayesian learning from categorical data. On the other hand, the
above probability gn/|gn|dvolX is the Dirichlet distribution Dir((1, . . . , 1) + x0 + · · ·+ xN).
Here we believe that the data xk ∈ X obey the probability λ(x, yk)/|λ(x, yk)|dvolX , which
we can consider as a continuous version of the categorical distribution. Imagine that a
coarse graining of the data xk on X yields data x′k obeying a categorical distribution on
the 0-skeleton W of the closure of X. Then the probability gn/|gn|dvolX for the new data x′k
reaches the posterior probability of the conventional Bayesian learning.

The following is the summary of the above.
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Theorem 1. Instead of the conventional Bayesian learning from categorical data, we consider the
mutual learning on the product of two copies of the space of categorical distributions via the relative
entropy. Then a coarse graining of the data of the first factor into the 0-skeleton of the closure of the
domain deforms the second factor of the mutual learning into the conventional Bayesian learning.

Thus, the answer to Problem 1 is affirmative in this case.

3.2. Normal Distributions

In the case where X is the space of normal distributions, we would like to change
the coordinates of the second factor of the product X× X to make the expression simpler,
although one can reach the same result through a straightforward calculation.

3.2.1. The Coordinate System

Let X be the upper-half plane {(m, s) | m ∈ R, s ∈ R>0} and W the line {w | w ∈ R}.
Suppose that any point (m, s) of X presents the normal distribution N(m, s2) on W with
mean m and standard deviation s. The relative entropy is expressed as

Ddw

(
N(m, s2)

∣∣∣∣∣∣N(m′, s′2)
)
=

(m−m′)2 + s2 − s′2

2s′2
− log

s
s′

=
(m−m′)2 + (s− s′)2

2s′2
+

s− s′

s′
− log

(
1 +

s− s′

s′

)
.

This implies that the Fisher–Rao metric is the half of the Poincaré metric. We put

dvolX :=
1
s2 dm ∧ ds = d

(
1
s

dm
)

,

and consider the symplectic product (X, dvolX)× (X, dvolX) = (X × X′, dvolX − dvolX′).
In [5], the author fixed the Lagrangian correspondence

N =

{
((m, s), (M, S)) ∈ X× X

∣∣∣∣ m
s
+

M
S

= 0, sS = 1
}

,

which is the graph of the symplectic involution

F : X → X : (m, s) 7→ (M, S) =
(
−m

s2 ,
1
s

)
.

Using it, the author took the “stereograph” D̃ : X × X → R≥0 of the relative entropy as
follows. Regard a value D of the relative entropy Ddw

(
N(m, s2)

∣∣∣∣N(m′, s′2)
)

as a function
of the pair of two points (m, s) and (m′, s′) on the first factor of the product X × X; take

the point (M, S) =

(
−m′

s′2
,

1
s′

)
on the second factor, which N corresponds to the point

(m′, s′) on the first factor; and regard the value D as the value of a function D̃ of the point
(m, s, M, S) ∈ X× X. That is, the function D̃ is defined by

D̃(m, s, M, S) :=Ddw

(
N(m, s2)

∣∣∣∣∣∣N(−M/S2, 1/S2)
)

=
1
2

(
M
S

+ sS
m
s

)2
+

s2S2 − 1− log(s2S2)

2
.

The function D̃ enjoys symplectic/contact geometric symmetry as well as the submanifold
N. See [1] for the multivariate versions of D̃ and N with Poisson geometric symmetry.
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3.2.2. The Mutual Learning

In the above setting, we define Luhmann’s potential by

λ(m, s, M, S) := exp(−D̃(m, s, M, S))

=sS exp

(
−1

2

(
M
S

+ sS
m
s

)2
− s2S2 − 1

2

)

Put f0(m, s) ≡ 1 and g0(M, S) ≡ 1. Then, the iteration of the mutual learning yields

fn(m, s) ∝ sn exp

(
−nS2

2

{(
m− −M

S2

)2

+ s2

})

≤ sn exp

(
−nS2

2
s2

)
,

gn(M, S) ∝ Sn exp

(
−nS2

2

{(
−M
S2 −m

)2
+ m2 −m2 + s2

})

= (s′)−n exp
(
− n

2(s′)2

{
(m′ −m)2 + m2 −m2 + s2

})
.

Since
d
ds

sn exp

(
−nS2

2
s2

)
=
(

nsn−1 − nS2sn+1
)

exp

(
−nS2

2
s2

)
, we see that the density

fn reaches the maximum at (m, s) =

(
−M

S2
,

√
1

S2

)
. Similarly, we can see that the density

gn reaches the maximum when m′ =
−M
S2 = m and s′2 =

1
S2 = m2 −m2 + s2 hold.

Definition 2. The normal-inverse-Gamma distribution NIG(µ, ν, α, β) on the upper-half plane
X̂ = {(m, v) | (m, s) ∈ X, v = s2} equipped with the volume form dvolX̂ = dm ∧ dv is the
probability density proportional to

v−α−1 exp
(
−ν(m− µ)2

2v
− β

v

)
.

Its density form is the volume form with unit total mass, which is proportional to

v−α−1 exp
(
−ν(m− µ)2

2v
− β

v

)
dvolX̂ .

Using our volume form dvolX , we can write the density form of NIG(µ, ν, α, β) as

const · s−2α+1 exp
(
− ν

2s2

{
(m− µ)2 +

2β

ν

})
dvolX .

This is proportional to gndvolX on the second factor of X× X when

(µ, ν, α, β) =

(
m, n,

n + 1
2

,
n(m2 −m2 + s2)

2

)
.

We identify the line W with the boundary of X. The conventional Bayesian learning of the

normal data m0, . . . , mn−1 yields the posterior NIG

(
m, n,

n + 1
2

,
n(m2 −m2)

2

)
provided

that the prior is formally 1. Thus, we have the following result similar to Theorem 1.
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Theorem 2. Instead of the conventional Bayesian learning from normal data on R, we consider the
mutual learning on the product of two copies of the space X of normal distributions via the relative
entropy. Then a coarse graining of the data of the first factor into the boundary ∂X = R by taking
s→ 0 deforms the second factor of the mutual learning into the conventional Bayesian learning.

Thus, the answer to Problem 1 is also affirmative in this case.

3.3. Von Mises Distributions with Fixed Concentration in Circular Case

A von Mises distribution Mk(m) with a fixed large concentration k(� 1) is a circular
analogue of a normal distribution with a fixed small variance that is parametrized by
a point m of X = R/2πZ. Its density is proportional to the restriction of the function
exp(k cos(m)x + k sin(m)y) to the circle W = {(x, y) | x = cos w, y = sin w, w ∈ R/2πZ}

with dvolW = dw. Then, using the easy formula
∫ 2π

0
exp(k cos x) sin x dx = 0, we obtain

the following expression of the relative entropy:

D(Mk(m)||Mk(m′)) =
∫ 2π

0
exp(k cos(w−m′))

(
k cos(w−m′)− k cos(w−m)

)
dw

= c(1− cos(m−m′))

where c is a positive constant. (When k ∈ Z, using modified Bessel, we have c =
kI1(k)
I0(k)

.)

Thus, Luhmann’s potential is λ(m, m′) = exp(−c(1− cos(m−m′)). We put f0(m) ≡ 1 and
g0(m′) ≡ 1. Then, the iteration of mutual Bayesian learning on the torus X× X yields

fn(m) = exp
(
−nc(1− cos m′ cos m− sin m′ sin m)

)
,

gn(m′) = exp
(
−nc(1− cos m cos m′ − sin m sin m′)

)
.

On the other hand, the conventional Bayesian learning on W yields the posterior probabil-
ity density proportional to exp

(
nkcos(m) cos w + nksin(m) sin w

)
, which looks like gn(w).

This suggests the affirmative answer to Problem 1.

3.4. Conclusions

We have observed that the answer to Problem 1 is affirmative in some cases. Specifi-
cally, the mutual Bayesian learning covers at least a non-empty area of parametric statistics.
The author expects that it could cover the whole from some consistent perspective.

4. Discussion
4.1. On Socio-Cybernetics

In our setup of mutual learning, a system must be organized as the product of two
manifolds with Luhmann’s potential before each member learns. Further, the potential is
the result of an earlier mutual learning in which the system was a member. In Luhmann’s
description [3], the unit of society is not the agent of an action but a communication or
rather a chain of communications. In mathematics, a manifold is locally a product of
manifolds and is characterized as the algebraic system of functions on it. By analogy,
Luhmann’s society seems to be a system of relations between certain systems of functions.
Some authors criticize his theory for failing to acquire individual identity, but an individual
is a relation between identities that are already represented by manifolds.

As a matter of course, reality cannot be explained by theories. Instead, a theory which
can better explain something on reality is chosen. In Section 2.2, we have assumed that
(x, y)0 and (x0, y0) are given as the same point in reality. Then there are two possibilities:
(1) The potential λ is updated by using (x, y)0 as a component of a datum, or (2) the mutual
learning of (x0, y0) is performed under the undated potential λ. The discordance between
(1) and (2) does not affect the reality. Further, there is no consistent hierarchy among
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Luhmann’s systems that choose either (1) or (2), and therefore there is no system that is
a proper subsystem of another system. Perhaps, the social system chooses either (1) or
(2), which can better explain the “fact” in relation to other “facts” in a story on reality.
Undertaking all of the above, the notion of autopoiesis that Maturana and Varela [8] found
in living organisms can be the foundation of Luhmann’s socio-cybernetics.

4.2. On the Total Entropy

In objective probability theory, one considers a continuous probability distribution as
the limit of a family of finite distributions presented by relative frequency histograms and
the entropy of the limit as the limit of the entropies. Since the entropy of a finite distribution
whose support is not a singleton is positive, a distribution with negative entropy, e.g., a
normal distribution with small variance, does not appear. On the other hand, we take the
position of subjective probability theory, and regard a positive function on a manifold that
has the unit mass with respect to a fixed volume form as a probability density. From our
point of view, the relative entropy between two probability densities is essential as it is
non-negative; it presents the information gain; and it does not change (while even the sign
of entropy does change) by multiplying the volume form by any positive constant. We
notice that an objective probability is a subjective probability, and not vice-versa.

We know that the lowest entropy at the beginning of the universe must be relative to
higher entropy in the future. In this regard, the total amount of information decreases as
the order of time. However, it is still possible that the amount of consumable information
increases, and perhaps that is how this world works. Here we would like to distinguish
the world from the universe, even though they concern the same reality and therefore
communicate with each other. The world consists of human affairs, including the possible
variations of knowledge on facts in the universe—there is no love in the universe, but
love is the most important consumable thing in the world. We consider that the notion
of complexity in Luhmann’s systems theory concerns such consumability as it relates to
coupling of systems. Now the problem is not the total reserve of information, but how to
strike it and refine it like oil. At present, autopoiesis is gaining ground against mechanistic
cybernetics. Our research goes against this stream: Its goal is to invent a learning machine
to exploit information resources to be consumed by humans and machines.

4.3. On Geometry

In this paper, we have quickly gone from the general definition of mutual learning
to a discussion of the special mutual learning via relative entropy. However, it may be
worthwhile to stop and study various types of learning according to purely geometric
interests. For example, the result of previous work [1] is apparently related to the geometry
of dual numbers, and fortunately this special issue includes a study [9] on a certain pair of
dual number manifolds. Considering mutual learning for pairs of related manifolds such
as this is something to be investigated in the future.

In addition, in proceeding to the case of the mutual learning via relative entropy,
one basic problem was left unaddressed: Given a non-negative function ϕ on a squared
manifold M×M that takes zero on the diagonal set, can we take a family of probability
densities with parameter space M so that the relative entropy induces the function ϕ?
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