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Abstract: In this article, a new class of real-valued Euler-Lagrange symmetry additive functional
equations is introduced. The solution of the equation is provided, assuming the unknown function
to be continuous and without any regularity conditions. The objective of this research is to derive
the Hyers-Ulam—Rassias stability (HURS) in intuitionistic fuzzy normed spaces (IFNS) by applying
the classical direct method and fixed point techniques (FPT). Furthermore, it is proven that the
Euler-Lagrange symmetry additive functional equation and the control function, which is the IFNS of
the sums and products of powers of norms, is stable. In addition, a few examples where the solution
of this equation can be applied in Fourier series and Fourier transforms are demonstrated.

Keywords: Euler-Lagrange symmetry additive functional equations; generalised Hyers-Ulam-—
Rassias; stability intuitionistic fuzzy normed spaces; fixed point technique

1. Introduction

The study of functional equations is one of the most important aspects of modern re-
search and it is becoming an increasingly popular topic among academics all over the world.
As functional equations may be used in a diverse array of contexts, an increasing number of
empirical researchers and mathematicians are directing their attentions on studying them.
The study of functional equations in a variety of domains, including differential equations,
differential geometry, queueing theory, probability theory, abstract algebra, and number
theory has led to an increase in the significance of functional equations [1-3].

The stability of equations is essential because it gives a helpful approach to estimating
the error that is introduced when exact solutions are substituted for functions that fulfil
some equations approximately. Modern mathematicians state that an equation is stable
within a specific type of function if every function in that category that significantly
fulfils the equation is close to the optimal solution of the equation. Mathematicians have
investigated quite a number of stability problems with diverse functional equations (radical,
reciprocal, logarithmic, and algebraic) in recent times [4-8].

Ulam [9] posed a significant problem regarding the stability of group homomorphisms
in 1940. Hyers [10] found a solution to the problem for the Cauchy additive functional
equation in the subsequent year. Rassias [11] generalised Hyers’ result after more than two
decades, and Gavruta [12] then expanded Rassias’ result by introducing unbounded control
functions. Today, the term "generalised HURS" of functional equations is commonly used to
refer to the stability notion developed by Rassias and Gavruta. The Ulam stability analysis
can be studied using a number of different approaches, but one of the most well-known is
the FPT, which invokes a central result from fixed point theory [13-17].

The symmetry properties of functions used to define an equation or an inequality
can be studied in order to determine the solutions with particular properties. As far as
inequalities are concerned, the study of special functions such as hypergeometric functions
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and special polynomials based on their symmetry properties may provide some interesting
outcomes. The symmetry properties for different types of operators associated with the
concept of quantum functional calculus may also be investigated.

The functional equation

(61 +62) +D (61 — 62) =29(61) +2(6>) 1)

is related to a symmetric bi-additive mapping [18] . It is natural that this equation is called
a quadratic functional equation. In particular, every solution of the quadratic Equation (1)
is said to be a quadratic mapping. It is well-known that a mapping ) between real vector
spaces is quadratic if and only if there exists a unique symmetric bi-additive mapping B
such that 9)(6) = B(6,,6,) for all 9. The bi-additive mapping B is given by

B(01,62) = 1[0(61 +02) ~ (61— 62)].

Rassias introduced a variety of Euler-Lagrange functional equations [19-23] and
established the HURS.
The HURS of the Cauchy functional equation (CFE), defined as

(61 +02) = D(61) +D(62)

in random normed spaces was studied by Mihet et al. [24].
Kim et al. [25] proposed a generalised version of CFE, as follows:

@(61;92 +63> +@<62;93 +91) +®<93_91 +62) = (61 + 02+ 63).

n

In addition, Kim et al. determined the Ulam stability in fuzzy normed spaces for
any non-zero fixed integer n. Firstly, it is self-evident that a function ) satisfies the given
equation if and only if it is additive. Consequently, the equation is known as the CFE.
Baktash et al. [26] addressed the stability of cubic and quartic mappings in random normed
spaces, and Ghalffari et al. [27] demonstrated the stability of cubic mappings in fuzzy
normed spaces.

In the year 2020, Saha et al. [28] applied fixed point techniques to stability problems
in intuitionistic fuzzy Banach spaces. In the same year, Alanazi et al. [29] proved the
fuzzy stability results of a finite variable additive functional equation using direct and
fixed point methods. Madadi et al. [30] published ground-breaking work on the stability of
unbounded differential equations in Menger k-normed spaces using a fixed point technique.
Liu et al. [31] presented a fixed-point approach to the Hyers—Ulam stability (HUS) of
Caputo-Fabrizio fractional differential equations.

In the year 2021, Badora et al. [32] studied the applications of the Banach limit in Ulam
stability. Subsequently, Alzabut et al. [33] derived the existence, uniqueness, and stabil-
ity analysis of the discrete fractional three-point boundary value problem for the elastic
beam equation. Bahyrycz et al. [34] presented a survey on the Ulam stability of func-
tional equations in two-normed spaces. Tamilvanan et al. [35] investigated the Ulam
stabilities and instabilities of the Euler-Lagrange-Rassias quadratic functional equation in
non-Archimedean IFNS.

In 2022, Govindan et al. [36] derived the stability of an additive functional equation
originating from the characteristic polynomial of degree three. Lupas [37] presented a
summary of symmetry in functional equations and analytic inequalities. El-Hady et al. [38]
studied the stability of the equation of g-wright affine functions in non-Archimedean (7, B)-
Banach Spaces. Uthirasamy et.al [39] derived the Ulam stability and nonstability of additive
functional equations in IFNS and two-Banach spaces using different methods.
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Quite recently, Agilan et al. [40] investigated the generalised HUS of an additive
functional equation

D (1" 0y + o) + D (1 n" ) + 0Dy =) + "D — )
=2(4 (1) + 1"V ()

with 7+, 4" # 0 in Banach spaces and quasi B-normed spaces using direct and FPT.
The counter example for non-stable cases is also demonstrated. A few more results on
applying the fixed point techniques on fuzzy and dominated mappings are presented
in [41-47].

Extending the above research, a new class of real-valued Euler-Lagrange symmetry
additive functional equations is introduced in this article, and the generalised HURS of
various general control functions of this equation are established. The unique approach
of analysis of the HURS for this class of equations using two different techniques has not
been performed before. Hence, the results presented in the upcoming sections are novel
and significant in the study of functional equations.

The Euler-Lagrange symmetry additive functional equation introduced in this article
is defined as follows:

(c+p+h)3(gp + oq + It) + ¢3(ph(p — q))
+ 03(ch(q— 1)) + 13 (cp(t —p))
= (¢+p+M1)(c3(p) +p3(qa) +13(r)) )

where g, p, 1 € R, with g, p, i # 0and ¢ + p + /i # 0 in IFNS using direct and FPT.

In the following section, the general solution of the above equation is derived and
discussed. In Section 3, some basics concepts and notations related to IFNS are explained
briefly. In Sections 4 and 5, the stability results are derived using the direct and fixed
point techniques, respectively. In Section 6, the applications of the proposed equation are
analysed using Fourier series and Fourier transform over various intervals.

2. General Solution

In this section, the solution of the Euler-Lagrange symmetry additive functional
equation is discussed.

Lemma 1. Let A, B be non-empty sets, and let the mapping 3 : A — B satisfy the additive Cauchy
equation with 3(0) =0
3(01+62) = 3(61) + 3(62). 3)

If601,0, € Aand if 3 : A — B satisfies the functional equation, then

(c+p+h)3(gp+ pq + t) + g3 (ph(p — q))
+ 03(ch(q — 1)) + 13 (cp(r —p))
= (c+p+n)(c3(p)+ p3(q) +713(x)) (4)

forallp,q,v € A

Proof. Let A, B be non-empty sets and the mapping 3 : A — B. From (3), the following
conditions are derived:

(1) 61 =0,=0in(3) = 3(0) =0;

(2) 6 = —6,in (3) = 3(—b2) = —3(67) then 3 is odd;

(3) 6, =01,201in (3) = 3(291) = 23(91),3(391) = 33(91),‘

(4) Ingeneral, 3(a61) = a3(6,), for any a.
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From (3)
3(01 + 6024 63) = 3(61) + 3(62) + 3(63).

Replacing (61,62, 63) by (¢p, g, iir) in (3) and using condition (4),
3(gp +pa+hiv) = ¢3(p) + p3(a) +13(v).

Multiplying (6) by (¢ + ¢ + 1),

(c+p+M1)3(cp+ pq+hr) = (¢ + o +N1)[g3(p) + p3(q) +13(x)].

Replacing (61, 607) by (php, —phq) in (3) and by (4)

3(ph(p —q)) = ph3(p) + ph3(—q).
Multiplying by ¢ in (8), and by (2), the following result is obtained.

63(ph(p —a)) = ¢ph3(p) — cpN3(q).
Replacing (61, 62) by (¢hq, —¢hr) in (3), and by (4),

3(gh(a =) = ¢h3(q) + ¢h3(—v).

Multiplying by g in (10) and applying condition (2),

©3(ch(a —r)) = pch3(q) — pch3(v).
Replacing (61, 62) by (gpr — ¢pp) in (3), and using condition (4),

3(cp(t—p)) = cp3(r) +cp3(—p).

©)

(6)

@)

®)

)

(10)

(11)

(12)

Multiplying by # on both sides of (10) and by condition (2), the following result is obtained.

h3(cp(t —p)) = hgp3(v) — hgp3(p).

(13)

Finally, adding these derived Equations (7), (9), (11), and (13), Equation (4) can be ob-

tained. O

3. Fundamentals of Intuitionistic Fuzzy Normed Spaces

The basic definitions and notations in the context of IFNS are provided in [48-56].

Definition 1. The five-tuple (A, jta, Va, *,©) is said to be an IFNS if A is a vector space, x is a
continuous k-norm, < is a continuous k—conorm, and u, v are fuzzy sets on A x (0, 00) satisfying

the following conditions. For every p,q € A and s, x > 0,
(AD) pa(p, ) + va(p, ) <1,

(A2) pa(p,x) >0,

(A3) pa(p,x) =1, ifand only ifp = 0,

(A9 o wp, ) = pa (p, 5] ) for each a 70,
(A5) pa(p, 1) * Ha(0,8) < pa(p +49,€ +5),
(A6) 1a(p,-) : (0,00) — [0,1] is continuous,
(A7) Klgx(}o Ha(p,x) = 1and 1{1{)1‘(1) wa(p,x) =0,
(A8) va(p, k) <1,

(A9) va(p,x) = 0, ifand only if p = 0,

(A10) va(ap, k) = v(p, ﬁ) foreach « # 0,
(A11 )y, (p,K) OVa(q/S) > Vu(p +q,k +5)/
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(A12) va(p,-) : (0,00) — [0,1] is continuous,
(A13) lim v,(p, k) = 0and im v,(p, k) = 1.
K—00 x—0

Example 1. Let (A, ||-]|) be a normed space. Let axb = aband aob = min{a + b, 1} for all
a,b € [0,1]. Forall p € A and every k > 0, consider

K : 0.
_ ) e i x>0 i
u(p, x) { 0 if k<0 an
ol .
vp,) =4 e e x>0
0 if ©<O0.

Then, (A, pa, Va, *,©) is an IFNS.

4. Stability Results: Direct Method
Let A be a linear space and (B, u},, v}) be an IFNS. Then,

H3" (b, 9,v) = (¢ + o +1)3(sp + pq + hir) + 63 (ph(p — q))

cph
+ 03(ch(q — ) + 13 (cp(r —p))
—(c+p+n)(c3(p) + p3(q) +13(r))

where g, o, h € Rwith¢, p,ii #0forallp,q,v € A.

Theorem 1. Let A, B be non-empty sets,and ¥ : Ax A x A — B

Ul
such that 0 < (p) < 1. Then,
c+p+h

(¥ ((c+o+m)"p, (c+p+1)"q,(c+p+1) ")) > uy(p"¥(p,q,¢),x) }

(14)
v (F((c+o+1)"p, (c+o+1)"q,(¢+p+1)"t),«x) < vy(p"¥(p,q,1),x)

and

lim p, (¥ ((c+eo+1)"p, (c+9+1)""q,(c+p+1)"),a"x) =1

n—oo

(15)
Jim v (Y((c+ o +1)"p, (¢ + 9+ 1), (¢ + 9+ 1)), a) = 0.
Let the odd function 3 : A — B satisfy the inequality
pa (H3%5 (b, 9,%), ) = if (E(p, ), %)
(16)
va (H3%0:(0,0,1),%) < v4(¥(p,q,v),5)
3 unique additive mapping £ : A — B
Ha(3(p) = £(p), %) = wa(¥(p,0,0), (6 + 9 +R)l( + 9 +1) — plx) }
(17)
va(3(p) = £(p), %) < va(¥(pb,p), (6 + 9 +1)|(¢ + o + 1) —plK)

wheren € {1, —1}.
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Proof. Replacing the variables (p, q,t) by (p, p,p) in (16),

Ha((6+ 9+ m)3((c +p+1p) = (¢ + 9+ 1)3(p),x) = Ha(¥(p,p,p),K)
(18)

va((6+ 9+ m3((c+p+1p) = (6 +p+1)3(p), x) < vA(¥(p,p,P), ).
Using intuitionistic fuzzy conditions (A4) and (A10), the following result is arrived.

3((c+p+h)p) , /
a(w —3(p), W) >, (Y (p,p,p),x)
(19)
3((c+p+n)p) , /
o <W —3(n), W) < v, (¥(p,p,p),5).

Replacing p by (¢ + o + 1)"p in (19),

3((c+p+h)"p) " K
(Frprn 3erornn )

> (¥((g+o+n)"p, (c+p+h)"p, (c+p+h)"p),x) 20

20

, (3((g +p+n)""p)
’ (c+p+h)

-3((c+p+n)"p),

)
(c+p+h)?

<v(Y((c+o+n)"p (c+eo+n)"p, (c+p+1)"p),x).

It is understood from (20) and the intuitionistic fuzzy conditions (A4) and (A10) that

3((c+e+m)"Mp)  3((ct+e+n)"p) K - /<\I, K>
yﬂ( (g—i—p—l—h)(”ﬂ) (c+p+n)" ,(g+p+h)"+2)_ya (p,p,p),pn
(21)
3((ctp+m"p)  3(c+p+m"p) x - (T K>
ol (c+ p+m)nD (c+p+n)" '(g+p+h)”+2>_v” (b 0): 5 )
Taking x into p"x in (21),
3((c+e+n)"p)  3((c+p+h)"p) K p" oy
S B s e ORI
(22)

3(c+p+h)p) K- p" /
N (g+p+h)n ’ (€+ p+h)”+2) § Vu(‘PQJ,p,p),K),

WEGEE ")
(¢+p+h)Y

the following result is obtained,

3o+ Lo "H3cte+h) T 3(ctpth)p)
(c+p+n) 3@)_1';() (c+p+m)Y crorny P
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From the above two equations,

3((c+p+n)"p) (= p'
T =30, )
( (c+p+h) (p)g(€+@+h)l+2>
(fl Setptm™p)  3etoth)n) §F_ px )
= g+ p+m)iTy c+p+n) S (c+p+n)t?
3((c+p+n)"p) Pk
. 30,y ——
V< (¢+p+h) (®) §<g+p+hy+2>
(i (ctp+n)™p) 3((cto+n'p) = p'x )
= (c+p+n)tith c+p+h)' " (c+p+n)T
From the above equations,
3(c+p+m"p) L v p'x
( (c+o+h)" p)’z(ﬁwh)l”)
T (3<<g+p+h>f“p>_3<<g+p+h>f’p> pixe )
T N (gt e+ (c+o+n) "(g+p+n)?
3(c+o+M)"p) L, & pix
o (c+p+n)" 3(p)'§(g+p+h)’+2)

_3((g+o+m)'p)

p'x

"(cHp )t

odyo---ody.

v (¥ (p, p,p), x).

i=0 (c+ p+n)i+D (c+p—+h)
where
ch:cl*cz*u~*cn and " }d; = dy
Finally,
3((c+p+n)"p ,
3(p), P (p,p,p),x) = Y(p,p,p)x
(Ut 50 'L ) =TT ¥ ) = ¥l 0) )
3((c+p+Mn)"p) = P nd
1% — 3(p), ——05 Y(p, p,p),
a( (c+p+n)" ()Z_Zé(g+p+h)l“) 1:[0 k) =

)

(24)

(25)

(26)
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Replacing p by (¢ + ¢ + 1)"'p in (26) and using (15), (A4), (A10),

(3((g+p+h)”+’”p) 3 +Hp+n)"p) P
(¢ + p +h)tt™ +o+m)" "5 (¢+p+n)litmt?

>u(Y((c+o+n)"p, (c+p+1)"p, (c+p+1)"p),x)

)

= ¥4 (‘i’(p,p,p), p’,{ﬂ)
(27)
Va<3(<g+p+h)”+’”p) 3(c+p+n)" i P K )
(4 p+n)em (c+o+m"™ "5 (c+p+n)titmt?
<UL (¥((g+p+1)"p, (¢ +p+1)"p, (c+ o +1)"p),k)
= v, (¥(p, ,").
v ( (b, b, ) o
Replacing x by p™x in (27),
3(c+p+m)" ") 3((c+p+n)"p) = pitm ,
4 Z T 77 /K
( (g+p+h)(”+m) c+p+m)" "= g—i—p—i—h) l+m+2)) ua(E(p,p,p), %)
(28)
+ o+ h)"" +p+h)" n-1 i+
va<3(<g p+1)""p)  3((ctp , b 5 ) <V (¥(p,p,p) x)
(c+ p + 1) tm c+p+m)" "= g+p+h)(z+m+ )
3(c+o+m"™p)  3((g+p+n)"
( ((g+ p_i_h 2n+m)p> o (§§+g+h)>mp)’1() Z ]’lél II[(p/p/p)/ 1 7
(c+p+h) o S N
29

. (3<<g+p+h>”+%> (et o)) ) < v ¥opp), -
P N TR T

3((c+p+1)"p)

n .
Since 0 < p < Tand ¥ (¥)" < co. The sequence {
i '0(1) a (c+p+n)"

} is Cauchy in

=
(B, pa,va). Since (B, pga,v,) is a complete IFNS, this sequence converges to some point

£(p) € B. Defining £ : A — B by

3((c+p+n)"p) _
lim 1 ( croth) (p),x> =1,
, 3((c+p+m)"p) _
Jﬂv( c+o+m" (p)’K) -0

Then,
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c+p+h)

c+p+n)"

Substituting m = 0in (29),

3((c+e+m"p) |y K
]/la n —B(P)/K Z ]’lg (p/p/p)/ i
( (c+p+h) ) " 7@@1 e

(30)

3((c+p+1)"p) / K
Vg — —3(p),x) <vy | ¥(p,p,p), —— |-
( (c+p+h) ) . (QWPW

Asn —> oo in (30),

Ha(£(0) = 3(0), %) = 1t (¥ (b, ,0), (6 + 9+ 1) k(6 + 9+ 1) = ) }
(31)

v (£(p) = 3(0),%) < Vo(E(ppp), (e + 9+ 1) k(6 + 9 +1) —p)).

Finally, £ satisfies (2). Replacing (p, g, t) by
(c+e+n)™ (c+p+n)", (c+p+n)")

in (16),

1
H3P% (6 + 9 +1)", (¢ + o +1)", (¢ + o+ h)'”)ﬂf)

>y (Y((c+o+1)", (c+o+0)", (c+p+1)"), (c+ p+1)"k)
(32)

1
H3 (e + 9+ 1), (c+p+1)", (¢ + p+h)"t),;c)

<Y+ o+n)"™, (c+p+n)", (c+p+h)"), (c+p+h) k).
Here,

a(S(ph(p — a)) + 9L(ch(a — )+
he(gp(v—p)) + (G +p+1)L(cp+pa+1)
— (+ 9+ 1)(6L(p) + pL(a) + () )

> pa€(o(p =) = 3 (ohle — ) )

pa(92(eh(a = 1)) = ———z3(ch(a — 1)), )

(c+p-+h)"
(c+p+h)

K
(ct+o+h)

(c+p+n)

(63(0) + 93(0) +13()) ) # o (e (0le = )

Y h
+ m:)’(gh(q —t))+ m3(€@(t —p))

(c+p+h) (ct+o+h) X
o TP pa i) = EE N (E3() 93 + 3 g) 6

“aa((6+ 9+ 1) Slcp+ pa+ ) +

o = (6 + 9+ 1) (62(p) + pE(a) +AE(r)) +

+
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and

va (62 (ph(p — ) + pL(ch(a — 1))+
he(cp(r—p)) + (6 + o +1)L(gp + pq + 1)
— (s + 9+ 1)(6L(p) + pL(a) +hL(x)))

> va(2(oh(p =) = 3ot~ a), )

o (9L(eh(a—1) = ———=3(ch(a— 1)), 7 )

(c+p+hn)"
(c+p+h)

K
m:’?(gp + pq+1), g)

(c+p+h)
(c+p+h)"

(63(0) +93(0) +13(0), £) 0w (e 3l — )

<>w((g+p+h)£(gp+@q+h) +

ovn( = (6 + 9 +H)(6L(p) + pL(a) +hE(¥)) +

Y 3(ch(a—v))+ 3(cp(t—p))

+7 -
(c+p+hn)" (c+p+hn)"

(c+p+h) (c+p+h) K
m3(gp +pq+h) - m(éﬁ(l’) + p3(q) +73(x)), g)- (34)

Also,
: 1
m jha ( (ct+p+h)"

o0 "\ (ctp+h)"

cph

H3P5 (4 0+ )™, (g +p+1)", (g +p+1)™), &) =0.

H3T ((c+p+1)", (c+p+1)", (c+p+h)"),5) =1,
(c+e+m)"™ (c+o+m)", (c+p+1)") 6) } 35)
cph

As n — o0 in (33), (34), and applying (35), £ fulfills (2). Hence, £ is an additive function.
Here, it is proven that £(p) is unique. Let £'(p) be another additive map (2) and (17).
Therefore,

pa(L(p) — £'(p), )
> o (2((9 +p+1)") = 3((c+p+1)"p), W)

<pa(3((6+ o 1)) — (e + wh)”m,W)

>up(Y((c+p+n)", (c+e+n)", (c+e+h)"p),

n+1
kgt+p+n)"" |(g—|—p—|—h)—p>

2

k(g+p+n)"g+p+h) —
Zy;<‘F(p,p,p), crpan et p+n)=sl)
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va(L(p) — £'(p), )

< Va (2(@ +p+n)"p) = 3((c+p+1)"p), W)

2

7 (3((g +o+1)"p) =2 ((c+p+h)"p), ’W)

<vp(¥((c+p+n)", (c+p+n)"™, (c+p+h)"p),

Kk(c+p+h)"t!
KEXOED gy prm) -l

k(c+p+h)"(c+p+h) —
§%<w%%m,@ o+ 1)" (g +p+h) —pl)

2.pn

n+1 _
Since th(Q—i—p—i—h) (g +p+1) P|:

n—oo 2 pn ’

o K (cHo+m) " (crp+h)—p| | _
nlgrolo ,ua (T(p/p/p)/ 2-pht ) - ]"

. o+1)" 1 h)—
lim v (\P(p,p,p),"(”“” reteth) p) 0.

Hence,

Thus, £(p) = £/(p). Hence, £(p) is unique.

Category 1. Assume 1y = —1. Substituting p by m in (18),
(c+p+m)3p) — (c+o+n) V(=P ), x) > ul(¥(5, 5, 5),%)
.uﬂ g % p g @ (Q+K)+h) 7 _]’lu 2/ 9792 )

va((g+p+m30) — 6+ 9+ 1D () ) Sva(¥(5,3.8).%)
O

Corollary 1. Let 3 be an approximately additive mapping that satisfies the inequality

.ull (HBEZ;Z (p/ qr t)/ K)
#a(Q,x),
e (Q(IIpI+ llal[® +11¢]1) ), a,b,c # 1

>3 i (Qllpllfall*[[e]1, K ), a+b+c # 1
Q{1111 all® [¢]1° -+ (IlplI7+0% + [lal |70 4+ [Jel|+0+) }, ),
a+b+c#1
Vﬂ (Hsgz);’l (p/ CI/ t)/ K)

vz (Q, %),
vi(Q(llpll*+11all* + IIellc) ) a b, £ 1
vi(QllplllplPlalle,x) o+ b +e #1

vi (Q{I1pl1” Hall® [1elle + (11pli+ 0% + [[al |0 4 [[e] |7 0+¢) 1 &),
a+b+c#1

IN
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such that

Ha(3(p) —
Ha(Q,

a

i
i

A%

va(3(p) — £(p),x)

a

(c+eo+h)

IN

(c+p+h)

£(p),x)
(c+p+n)x|(c+p+h)—1]),

[@WH&+@+M”+@WHm+@+hW+QWHM+p+M]
(c+o+n)k[|(c+p+h)—(c+p+n)
Hg+p+n) = (c+p+m)'|+Ic+p+) — (c+p+r)]]),

Ql[pl|"0*¢lg + o + H|*HTe,

(c+9+m) kl(c+p+h) = (c+p+n)"H),
Q||p||“+b+c|g + p+;>l|a—s—b—s-c

+[QlIplI?lg + o+ 117 + QllplI*lg + o+ 7I” + QllplIlg + o+ I¢],
(c+9+m) kl(c+p+h) = (c+p+mn)"H),

va(Q, (6 + o +h)xl(c+p+h) —1]),
vi([Qlpll"l + o+ 17 + Qllp| Pl + o + 1l + Qllpl I + o + 1],

k[l(c+p+n) —(c+p+n)

+H+p+n) — (c+p+m)'|+|(c+p+1) - (c+p+h)l]),
V;(Q||p||“+b+c|g—|— o+ h|rrbEe

Kl(g+p+1) = (g+p+ 1)),

V’;(Q||p||u+b+c|g+p+h‘u+b+c
+| Qllsl1%lg + o+ 17+ Qllpl|*lg + o + Al + Ql[pl[lg + o+ €],
(6+p+m)Kl(c+p+h) = (g+p+n) ).

5. Stability Results: Fixed Point Method
Using the FPT [57], the generalised HURS of the functional Equation (2) is derived.

Theorem 2.

Let¥ : A x A x A — B such that

N g (¥ (T, T, T'), T'%) = 1,
T v, (¥(T7", T, T7'), T'%) = 0,

where
boif i—0
R IV A
W lf 1= 7
then
pa (H3%5 (b, 9,%), ) = ih (¥ (p, 0,1, %)
va(H3205(p,a,0), ) < V(¥ (p,q,7), ).
IfL = L(i),

1 p p p )
p— T 7 V2 7
3(p) c+p+h <g+p+h c+p+h ¢c+p+h

(38)

(39)

(40)

(41)

(42)

(43)
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and
(44)
then
(45)

Proof. Let
Q={hlh:p—Y, 3(0) =0}

d(h, f) = inf{L € (0,00) :
{ #a(3(p) — 3(p), k) > u4(3(p), Lx),x > 0 }}

va(3(p) — 3(p), %) < vp(3(p), Lx), k>0

(46)

Now, from (46)

1a(73(Tip) — 7-3(Tiw), k) > uh(3(Tiw), Tik) }

Ha(73(Tiw) — 73(Tib), k) = pa(3(p), Lx)}

#a(J3(p) — J3(p), %) > pa(3(p), Lx)}
infd L € (0,00) :

va(7:3(Tip) — 73(Tib), k) < vi(3(Tib), Tix) }

va(7:3(Tip) — 7.3(Tib), k) < v4(3(p), Lx)}

va(J3(p) — J3(p), %) < vz(3(p), Lx) }

and

inf{1 € (0, c0) :
{ Ha(3((s+ 9+ 1)p) — (c+ 9+ 1)3(p), k) = Wo(¥(p,bb), (¢ +p+ 1)) }}

>
- 47
Vg (3((g +p+)p)—(c+p+ Fl)3(p),f<) < vy (¥, 0,p), (c+ p+h)x) @
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Assuming i = 0, and

inf{LlfO € (0,00) :

Ifi=1,and

3(p) = J3(0), %) = pa(3(), )

v (30) = 6+ 9+ MY (e e ) )
< u;(w(m),(ﬁ @+h)’<>

and

{ ‘ { pa(3(p) = J3(p), k) > po(3(p), L' '),
inf{ L'~ € (0,00) : |
va(3(p) — J3(p), k) < v4(3(p), L' 'x),

Hence property [57] Condition: 1 holds.

u4a@+p+mm @+p 1)3(p),x) = 1y (¥(p,p,p), (5 + 9+ 1K)

pa(* EI% p)x) = un (¥ (o, w,p), (6 + 9+ 1)K

Ha(]?) 3(p), ) > 1/(3(p), Lx)

pa(13(6) = 3(0),%) > 14 (3(0), L)

Ha(J3(0) = 3(p),%) = pa(3(p), Lr)

v 3((c+p+h)p)— (¢ + )S(p) t) VL (E(p,p,p), (¢ + o + 1))
3

(48)

(49)

) -
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By [57] Condition: 2, there exists a fixed point £ of | in Q such that

. 3(T"

pim (205 - oo ) =1,
. 3(7"

nll_{rgova< (ﬁnp) —ﬂ(p),x> =0.

To show 3 is additive, replacing (p, q,t) by (7,"p, 7,"q, T"t) and applying the neces-
sary condition, the functional equation is derived.

By [57] Condition: 3, £ is the unique fixed point of [ intheset A = {€ € Q : d(3,A) <
oo},
£ is a unique function, such that

#a(3(p) — L(p), %) = up(3(p), L i), p € A }

va(3(p) — £(p), %) < v4(3(p), L' k), p € A,

Finally, using [57], condition: 4

Hence, proven. [

Corollary 2. Let 3 be an approximately additive mapping satisfying the inequality

o (H3!, (0, 0), %)
Ha(Q %),

pa(QUIPI" + lall® + [[e][), %), a #1
pa(Qllpl " Malll[el|% %), 3a#1

wa(QUUIplI” lall™ (el + (el P+ 1lal P+ [[]P) },x), 32 #1

Y

(51)

va (H3!7, (b, ,1), %)
vi(Q %),

va(QUl ol + [lal|” + [[¢[|*), x),a # 1

IN

va(QlIpl*[lal*[[<l]%, %), 3a #1

va (Q{UIplI* Nl el + (el P* + Hal P + [[elP*) } %), 3a#1

such that
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Ha(3(p) — £(p), x)
/< Q C+p+h) K)
Fa\la+ o+ 1—(c+p+h)
;/( Ql|p||” 3 (c+p+h) K)
N+toe+h)lc+p+h" (c+p+h)"—(c+p—+h)
>
o (Ll 1 (c+p+h) .
NG+tp+n)lg+e+hP (c+p+n)> —(c+p+h)
o (el 3., 1 (c+p+h) .
NG+o+m) \lcto+rP " [c+p+hP (4 o1rn)> —(c+p+h)
(52)
va(3(p) — £(p), x)
y Q (c+p+h) K)
“Ne+p+h)'1-(c+p+h)
o Cllpll” 3 (c+p—+h) K)
NG+e+h)lc+e+n" (c+p+h)'—(c+p+h)
<

(c+o+n)lc+e+nP" (c+p+n)> —(c+p+h)

a

(
(
( Qllpl* L (c+p+h) )
<

Qlp[I** 3. . 1 (c+pth) )
G+o+n) \lc+p+hP " lc+p+hP (c+p+n)> = (c+ p+h)
Proof. Let
o (F (T, T, T, T
]’lﬂ 1 p’ 1 q’ 1 r [ K
#i(QTH),
Ma Q(I|p||”+||qH”+||t||”)/T,-"’”K)/
i ( Qo llal| el 1, T757%),
e (QUUIBI a1 el1” + (o113 + [Jal P+ [[¢] *7) 1, 7<),
—1las k— o0
—las k— o

—las k— o
—1las k— o0
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vi (BT, Ta), T%)

1%

Q, 7).,

Vv,

i
vh (Q(HP||0+Hq||a+||tH LT ”K),
(QHPH [al]?]]e]|?, TX 3% )

d

Vv,

O lpl* llall“lle + (lpIP + llalP* + 1€l ) }, 7-%x),

—0as k— o
—0as k —
—0as k —
—0as k— o

At the end, the relation (40) holds; hence

Mo ( (g+;,+h) ‘Y( (g+§)+h) ) K)
Ha W)
(c+p+h)

Qllp||* 3 )
(c+o+h)|c+p+hn

( Qo] 1 )
c+p+n)lc+p+nP’

(2 ()
(c+p+n)\|lc+p+nPP*  |c+p+hnP)’

v ( (G+;+h) ( (9+g>+h 2

(g+@+h) =

Ql|p||” 3 )
c+p+h)|c+p+n

Qllp** 1 )

4l
<€+p+h|g+@+hW

=

1/

Q|p| > ( 3 N 1 )K)
(c+e+hn) \lc+p+nP  |c+p+np )" )
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From (44),
1y (Q, Tix)
Ql[pl|” 3 1- )
/ -1—a
”“(<g+p+h>g+p+h|ﬂ’7’ ‘
V;(S(T?{ p)/K> = 3a
i V’( Qllpl| 1 TlBaK)
N(+p+n)[c+p+nP ™
Q||PH3” < 3 1 > 1-3 )
/ -1-3a
V”((9+p+h) T pram lerpanp )"
v,(Q, Tix)
o Qllpll” 3 ,1a>
%(@+p+m@+p+mfﬁ "
1 ( 3(Tip) _
V”( Ti 'K>_ v’( Qllp|[3 1 TlBaK)
"N(e+p+h)|c+p+nP "
Q[p|>* < 3 1 > 1-3 )
’ ST ).
““((gwwz) cro+P Jorprap ) F

Hence, (45) is true for

L a,i=0 L ai=1
1. (c+p+h) 0 (c+p+n)"1 0
2. (g+p+n) " a<1 (c+p+m™ a>1
3. (c+p+n)™ 30 <1 C+p+n¥ " 32>1
4 (g+p+mn! 32 <1 c+p+n* " 32>1.

Criterial. Fori =0,

1-0
a(3(6) — £(p), ) 2 <3<p>, %)

o Q (c+p+h) .
_””((g+p+h)’1—(g+p+h) )

, (c+p+m)'™"
Vg (3(!3)/ 1—(G+MK>

IN

va(3(p) — £(p),x)

_1/< Q (ct+o+h) K)
Ne+p+m)'1-(c+p+h) )
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Criteria2. Fori =1,

g+@+h)) hHrt
Ha(3(p) — > Hg (3 (CTo17)T x)

— (c+p+h) K>

(c+p+h) (¢c+p+h)—1

9+p+h)) Hi 1K>
((c+p+n))t

=,

(e
va(3(p) - < (3
(s

(c+p+h) K)
c+p+h) (c+p+h)—1

Criteria 3. Fori =0,

1-ay1-0
pa(3(p) — £(p),x) > pg (3(13), 1<(_g zr(?:;ll h)>1—a) K)

_ o Lllell® 3 (c+p+h)
P\ Gr o+ g+ +a a K"
6T cTe (c+p+n)" —(c+p+h)

1-ay1-0
va(3(p) = £(p), %) < g (3(13), 1((5 &fjgl h))lu) K)

_V< Qllp||” 3 (c+p+h) )
(c+p+h)lg+tp+nh* (c+p+h)"—(c+p+h)

Criteria 4. Fori =1,

a—1y1-1
pa(3(p) — £(p),x) > pg (3(13), 1<(_g zr(?:;ll h)l_l) K)

_ [ Cllpll? 3 (c+p+h) .
Cro+h)lcte+n (ct+p+n)f—(c+p+h)

a—1y1-1
Vg (3(}3) - S(p),K) S thz (3(]3), 1((_9 —(I_(f_:_;l:_ h))al) K)

:M( Q||p||” 3 (c+p+h) K>.
(c+p+h)lgtp+h" (c+p+n) —(c+p+h)

O

6. Applications of the Euler-Lagrange Symmetry Additive Functional Equation

In this section, the various applications of the solutions of the Euler-Lagrange symme-
try additive functional equation are analysed using Fourier series and Fourier transform
for various intervals.

Example 2. If an odd mapping 3 : A — B satisfies the additive functional Equation (2) and the
solution of the functional equation is 3(p) = p, then its Fourier cosine series for the interval (0, T") is

T O 4
3(p) ==+ —— cosnp
2 n=;3,5... Tnz
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to deduce the series 1 7T ! + ! +.. T4 using Parseval’s theorem.
38 TEE T g M

Proof. The cosine series is 3(p) =

30 + Z ay cosn’T; we have to find ag and a,,
=1

2 2T 2, g
_T/pdp—,r[z]o— 720 =T

2T

-

2 2 n

7—./ pcosnp dp = ﬁ[(_l) —1]
0

—4
4, = 2T ifn=1,3,5,..,
O/ if n = 2,4, 6,

The required Fourier cosine series is

T > —4
3(p)==+ cos np.
2 n:;% Tn?

Let the Parseval’s identity for the Fourier cosine series be

T T? =1
T 1T Loa
n=135.."
1 1 1 T4
14+34+?+....—%.
O

Example 3. If an odd mapping 3 : A — B satisfies the additive functional Equation (2) and the
solution is 3(p) = p, then the Fourier series in the interval —1 < p < lis

2 <] )i’l+1 ) TlTP
? ; sim 7 .

Proof. Since the given function is odd, the Fourier series is

We have to find b;,.
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The required Fourier cosine series is

O

Example 4. If an odd mapping 3 : A — B satisfies the additive functional Equation (2) and the
solution is 3(p) = p, then the Fourier series for the interval 0 < p < 21 is

21 &1 . nTyp
3(p)=1- Ty;asm—g )
Proof. The General Fourier series is

S(D)Z%Jr Y ancosnTTer Y bnsinﬁ.

n=1 n=1
We have to find ag, a,, and b,,.
1 20 2?
ao—Z/B(p)dp =3 /pdp] =2l
0 0
1 nTp Tp 12 a7pl?
a, = O/B(p)cos 7 dp = g[o/pcos 7 dp zg[nszco 7 ]020
1Y nTy 17wy 17—pl  nTp)? -2
an—eo/:’)(p)smgdp—élo/psmgdp E[’TCO 7 ]O_nT'
Then, the required Fourier series is
) =1-2% Lsin™TP.

O

Example 5. If an odd mapping 3 : A — B satisfies the additive functional Equation (2) and the
solution is 3(p) = p, then the Fourier Transform of the function

3(p):{p,zfa<p<a,

0, otherwise,

is

3(s) = .\/z[(sinsa S;zscossa)}

3(p)_{p,if—a<p<a,

0, otherwise.

Proof. Given

The Fourier transform 3(p) is
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—a a [e9)
1 . . C
3(s) = — /OelSpdp+/pels”dp+/O e*Pdp
V2T |- o .

3(s cossp + isinsp) dp.

)—\/;7/”9(

/2 sinsa — as cos sa
s [(mpems)]

O

7. Conclusions

In this study, a new class of real-valued Euler-Lagrange symmetry additive functional
equations has been introduced, and its general solution has been derived. Subsequently,
the HURS of the equation has been determined by applying direct and FPT in IFNS. Also,
it has been proven that if the control function is the IFNS of the products of powers of
norms, then the additive functional equation is stable. The results obtained are useful as the
estimates for the difference between the exact and approximate solutions of the equation of
interest can be further determined. The computed results will bridge the gap existing in the
literature concerning the stability results of equations of interest in IFNS. Some significant
potential applications of the results have also been explored in this article. This article
improves on several earlier outcomes presented in the literature. Finally, some applications
in which the solution of this Euler-Lagrange symmetry additive functional equation can
be applied by the Fourier series, and Fourier transforms with various intervals are also
demonstrated. In addition, the stability of a given FE can also be determined in some other
known spaces such as Felbin’s and Menger probabilistic normed spaces, as they have not
been explored yet. This is left as an open problem for future research.
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