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Abstract: The question about the closest symmetrical packing of chemical substance species (molecules,
ions, polymer chains, nanoparticles, etc.) is a subproblem of predicting the structure of matter, in
particular, the structure of a crystal, information about which makes it possible to predict almost
all of its properties. The design of mathematical models for the closest symmetrical packing is an
important and a challenging task for the practical application of optimization theory in theoretical
chemistry. Here, we report about the development of the algorithm for water molecules’ symmetrical
packing in a closed space of rectangular parallelepiped.
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1. Introduction

The question about the closest symmetrical packing of chemical substance species
(molecules, ions, polymer chains, nanoparticles, etc.) is a subproblem of predicting the
structure of matter, in particular, the structure of a crystal, information about which makes
it possible to predict almost all of its properties. The design of mathematical models for
the closest symmetrical packing is an important and a challenging task for the practical
application of optimization theory in theoretical chemistry. In this paper, we report the
development of the algorithm for water molecules’ symmetrical packing in a closed space
of the rectangular parallelepiped. In our model, water molecules were represented as
regular tetrahedrons, in which two vertices correspond to hydrogen atoms in the molecule
(vertices of type A), and the other two correspond to electron pairs (vertices of type B).
The connections between them are shown in Figure 1. It is also important to note that due
to the chemical properties of water, bonds between molecules in our model can only be
formed between hydrogen and an electron pair, i.e., only bonds of the form A∼B or B∼A
will be considered. Thus, it is necessary that the algorithm considers the types of vertices
when attaching molecules and does not allow connections of the form A∼A and B∼B. Note
also that this type of calculation has been performed non-quantum mechanically, and no
specific quantum effects (e.g., dealing with electron correlation) were taken into account in
our model.

The relevance of the topic is supported by numerous papers on structure prediction [1].
In [2] K. K. Fisher studied a way to search for crystal structures using machine learning and
modern quantum mechanical methods. N. Braun and G. Huttner developed an algorithm
that shows correlations between molecular shape and the type of packing [3]. In [4]
N. W. Thomas suggested an analytical approach to characterize organic molecular crystal
structures where close packing is an important factor.

The research team from the State University of New York at Buffalo presented the
evolutionary algorithm XtalOpt and its refinements [5]. A. R. Oganov and C. W. Glass
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developed a reliable methodology for predicting crystal structures based on evolution
algorithms and have demonstrated the efficiency of this method for systems with up to
30–40 atoms per cell [6]. Then, A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and C. Zhu Q.
further refined the previous algorithm and achieved a reliable representation for systems
of 200 atoms per cell [7]. It is worth noting that the algorithm presented in this work is
capable of packing a larger number of atoms: up to 3000 in a rectangular parallelepiped.

E. V. Peresypkina and V. A. Blatov determined the crystal structures of 33,575 monosys-
tem organic compounds within the first three coordination spheres, and demonstrated that
generally molecular packings are constructed according to one of the close packings [8].
In [9], A. Gavezzotti and L. Lo Presti introduced a new view of crystal packing that results
from joining static structural information from X-ray analysis with dynamic upgrades. The
main advantage of this algorithm is that it allows us to quickly and efficiently estimate
the number of molecules in a limited volume represented as a parallelogram. In the pre-
sented algorithm, a mathematical approximation of the water molecule is made, which
makes it easy to obtain the structure of the arrangement of molecules in the parallelepiped.
This approximation simplifies the calculations and reduces the running time of the algo-
rithm, which further leads to the possibility of scaling the problem. At the same time, the
possibility of adequate representation of the chemical structure of the substance is kept [10].

Figure 1. Representation of water molecule. Dotted circles refer to hydrogen atoms, while continuous
one depicts oxygen atom.

2. Algorithm

The designed algorithm has a practical value because it allows one to determine the
number of water molecules, which can be placed in a rectangular parallelepiped with
specified values of length, width and height. This algorithm can be easily used for the
creation of initial solvent massive for molecular dynamics’ simulations and theoretical
studies of the closest packing of molecules. Note that, in the future, we plan to adapt and
extend this approach to both the sphere and the ellipsoid, which could be very relevant for
fundamental colloid chemistry (problem of correct description of water drops). To the best
of our knowledge, to date there are no MATLAB implementations for such algorithms in
the literature. Hence, the constructed algorithm can be used as a new tool to estimate the
densest packing in specified area. The algorithm consists of the following steps:

Definition 1. The densest packing in crystallography is the shape of the arrangement of the atoms
in the crystal lattice, which is characterized by the largest number of atoms per unit volume of
the crystal.

1. Firstly, it is necessary to specify a volume that is available for completion.
2. Then, we form a matrix that will contain information about the coordinates of the

vertices of all added molecules.
3. In accordance with the representation of the water molecule, we need to determine

the coordinates of the vertices of the tetrahedron for the first molecule.
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4. The coordinates of the nodes of the molecule are recorded in the matrix formed in
step 2.

5. Afterwards, it is reasonable to apply the image of the tetrahedron corresponding to
the added molecule to the graph.

6. Two variables are defined that store the position of the last added tetrahedron. One of
them represents the coordinates of the tetrahedron vertex with the largest abscissa and
another one is the number of vertices with the largest abscissa (1 or 2). It is essential
to update these variables after each new molecule is added.

7. Similarly, we define two variables that store the position of the first tetrahedron in a
row. It is important to update them after moving to the new line.

8. The cycle of molecular attachment is carried out. Firstly, it is necessary to check the
ability to include a new molecule in one row with the previous one. If it is possible,
we add the molecule using the function that defines vertex coordinates. Steps 4–6 are
repeated. Otherwise, the molecule enters the next row. Steps 4–7 are repeated. If in
this instance it exceeds the allowable volume as well, the algorithm has to attach the
molecule in the first row of a new layer. In this case, steps 4–7 are repeated.

The cycle on step 8 of the algorithm uses a special procedure. It rotates the adding
molecule to be connected so as to create a hydrogen–electron pair connection. This pro-
cedure determines the coordinates of the vertices of the tetrahedron corresponding to
the added molecule, depending on the location of the previous molecule (subject to the
types A∼B, B∼A communication requirements). Futhermore, this procedure takes into
account the distance between molecules on the x, y, and z axes, which is set by the user,
thus avoiding overlapping and adjusting the distance between molecules depending on
the problem.

3. Procedure in MATLAB Language

We implement the algorithm described above in MATLAB. The program calculates the
number of molecules that could be stored in a given volume. Furthermore, it forms a table
with the coordinates of the vertices of the tetrahedra in the Cartesian coordinate system centred
at one of the vertices of the rectangular parallelepiped. This table can be used to interface the
results with a visualization program, which required the coordinates of the hydrogen atoms
to build atom-based system. The information about the vertices type (having hydrogen or not)
can be easily added to this table, because the table stores information about tetrahedron vertices
in an ordered way: of every four verticies of tetrahedron, the first two contain hydrogen and
the other two do not. Moreover, the program has the ability to determine the interval between
the molecules at any of the coordinates (by parameters hx, hy, hz).

The MATLAB procedure is presented below. Firstly, we define the supporting functions.
1. Addition a tetrahedron to a graph

function [] = DrawTriangle(new_a,new_b,new_c,new_d)

plot3(new_a(1),new_a(2),new_a(3),‘*b’,’MarkerSize’,8);
plot3(new_b(1),new_b(2),new_b(3),‘*b’,’MarkerSize’,8);

line([new_a(1),new_b(1)],[new_a(2),new_b(2)],[new_a(3),new_b(3)]);
line([new_c(1),new_b(1)],[new_c(2),new_b(2)],[new_c(3),new_b(3)]);
line([new_a(1),new_c(1)],[new_a(2),new_c(2)],[new_a(3),new_c(3)]);
line([new_a(1),new_d(1)],[new_a(2),new_d(2)],[new_a(3),new_d(3)]);
line([new_b(1),new_d(1)],[new_b(2),new_d(2)],[new_b(3),new_d(3)]);
line([new_c(1),new_d(1)],[new_c(2),new_d(2)],[new_c(3),new_d(3)]);

end

2. Determination of coordinates of the new tetrahedron along with the current vertex
type and vertex coordinates with the largest abscissa
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function [a,b,c,d,rightest,type] = NewPutTriangle(type, rightest,
step_x, step_y, step_z,h_x)
if type == 1
b = rightest;
b(1) = b(1) + h_x;
c = [b(1) + 3 * step_x, b(2) + step_y, b(3)];
d = [c(1), b(2)- step_y, b(3)];
a = [b(1) + 2 * step_x, b(2), b(3) + step_z];
rightest = d;
type = 2;
else
a = rightest;
a(1) = a(1) + h_x;
b = [a(1), a(2) + 2 * step_y, a(3)];
c = [a(1) + 3 * step_x, a(2) + step_y, a(3)];
d = [a(1) + step_x, a(2) + step_y, a(3) + step_z];
rightest = c;
type = 1;
end
DrawTriangle(a,b,c,d);
end

The body of the main program:

tic;
grid on; hold on; axis equal;

alph = 104.25 * pi /180; % angle in radians between two hydrogen atoms
HO = 95.84; % distance between oxygen and hydrogen
AB = sqrt(2 * HO^2 - 2 * HO^2 * cos(alph)); % cosine theorem
step_y = AB/2; % 1/2 the length of the side of the tetrahedron
step_x = AB * sqrt(3)/6; % 1/3 of the height of the triangle
step_z = AB * sqrt(6)/3; % height of the tetrahedron

stop_x = 600; % space where molecules can be
stop_y = 500;
stop_z = 300;

v = AB^3 * sqrt(2)/12; % volume of the tetrahedron
space = stop_x * stop_y * stop_z;
N = ceil(space/v);

% remember coordinates of tetrahedron points A; B; C; D respectively
in matrix where A and B has hydrogen and C and D not
% put that matrix in one big matrix
a = [0, 0, 0];
b = [0, 2 * step_y, 0];
c = [3 * step_x, step_y, 0];
d = [step_x, step_y, step_z];
M = zeros(4 * N, 3);
M(1,:) = a;
M(2,:) = b;
M(3,:) = c;
M(4,:) = d;
DrawTriangle(a,b,c,d);
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type = 1; % refer to number of dots with max x
rightest = c; % dot with max x and min y if there are two of them
type1str = 1; % to remember type of first molecule in the last string
r1s = c; % to remember dot from first molecule

stop = 0;
h_x = 10;
h_y = 45; % distance which we left between lines !=0
h_z = 30; % distance which we left between layers
k = 1; % to count molecules

while (stop == 0)
if (rightest(1)+ 3 * step_x + h_x) <= stop_x
k = k + 1;
[M(4 * k - 3,:), M(4 * k - 2,:), M(4 * k - 1,:), M(4 * k,:), rightest,
type] = NewPutTriangle(type,rightest, step_x, step_y,
step_z,h_x);

elseif ((type == 1)&&((h_y + 3 * step_y + rightest(2)) <= stop_y))||
((type==2)&&((h_y + 4 * step_y +rightest(2))<= stop_y))
k = k + 1;
if type1str == 1
b2 = [r1s(1) - 3 * step_x, r1s(2) + h_y + step_y, r1s(3)];
c2 = [b2(1) + 3 * step_x, b2(2) + step_y, b2(3)];
d2 = [c2(1), b2(2) - step_y, b2(3)];
a2 = [b2(1) + 2 * step_x, b2(2), b2(3) + step_z];
rightest = d2;
type = 2;
else
a2 = [r1s(1)- 3 * step_x, r1s(2) + h_y + step_y, r1s(3)];
b2 = [a2(1), a2(2) + 2 * step_y, a2(3)];
c2 = [a2(1) + 3 * step_x, a2(2) + step_y, a2(3)];
d2 = [a2(1) + step_x, a2(2) + step_y, a2(3) + step_z];
rightest = c2;
type = 1;
end
type1str = type;
r1s = rightest;
M(4 * k - 3,:) = a2;
M(4 * k - 2,:) = b2;
M(4 * k - 1,:) = c2;
M(4 * k,:) = d2;
DrawTriangle(a2,b2,c2,d2);

elseif (rightest(3) + h_z + 2 * step_z) <= stop_z
k = k + 1;
a3 = [0, 0, rightest(3) + step_z + h_z];
b3 = [a3(1), a3(2) + 2 * step_y, a3(3)];
c3 = [a3(1) + 3 * step_x, a3(2) + step_y, a3(3)];
d3 = [a3(1) + step_x, a3(2) + step_y, a3(3) + step_z];

rightest = c3;
type = 1;
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type1str = type;
r1s = rightest;

M(4 * k - 3,:) = a3;
M(4 * k - 2,:) = b3;
M(4 * k - 1,:) = c3;
M(4 * k,:) = d3;
DrawTriangle(a3,b3,c3,d3);
else
stop = 1;
end
end

y = 4 * k;
while y < size(M,1)
M(4 * k + 1,:) = [];
end

t_End = toc;
disp(t_End);

s1=sprintf(‘%d molecules were placed’, k);
disp(s1);

4. Conclusions

We developed the symmetrical packing algorithm for water molecules and imple-
mented it in the MATLAB environment. In addition, a series of numerical experiments
were carried out. The advantage of the implemented algorithm is that, unlike the common
problem of the dense packing of balls, it works with tetrahedra. In addition, algorithm takes
into account chemical bonds and is capable of laying more than a thousand molecules in
less than 6 s, while packing almost 4 thousand molecules in just 45 s (see Table 1). However,
packing 8.5 thousand molecules will take more than 3 min. Thus, the algorithm’s running
time increased almost 4.5 times after doubling the number of molecules. Therefore, for prac-
tical use, it is advisable to break down the entire volume so that the 4 thousand molecules
are the largest number of molecules in each cell. Note also that this type of calculation has
been performed non-quantum mechanically, and no specific quantum effects (e.g., deal
with electron correlation) were taken into account in our model.

In order to illustrate the location of the water molecules obtained as a result of the
algorithm, the program displays a graph with the image of tetrahedra (see Figures 2 and 3).
The asterisks mark the vertices of type A.

Table 1. Results of numerical experiments.

X, pm Y, pm Z, pm Volume, pm3 Number of Molecules Time, s

130 150 130 2.535 × 106 1 0.075858
290 330 290 2.7753 × 107 8 0.11618
290 330 550 5.2635 × 107 16 0.17162
290 690 550 1.1006 × 108 48 0.30239
570 690 550 2.1632 × 108 96 0.47833
980 980 980 9.4119 × 108 441 2.1261

1270 980 980 1.2197 × 109 567 2.8386
1270 980 1250 1.5558 × 109 729 3.6441
1550 1150 1250 2.2281 × 109 1089 5.6193
2550 1150 1250 3.6656 × 109 1782 10.339
2550 1750 1250 5.5781 × 109 2754 21.02
2550 1750 1850 8.2556 × 109 3978 45.271
2550 2550 2550 1.6581 × 1010 8424 201.57
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Figure 2. Illustration of the result of the algorithm for 8 molecules. The asterisks mark the vertices of
type A.

Figure 3. Illustration of the result of the algorithm for 24 molecules. The asterisks mark the vertices
of type A.
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