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Abstract: The inverse problem and the direct problem are symmetrical to each other. As a mathe-
matical method for inverse problems, dynamic load identification is applicable to the situation when
the load acting on the structure is difficult to measure directly. In addition, in most practical fields,
the exact value of the structural parameters cannot be obtained precisely, which makes the inverse
problem beyond the capabilities of traditional dynamic load identification methods. Hence, in this
work, we propose a dynamic load identification algorithm based on the extended Kalman filter (EKF)
for a structure with unknown parameters. The algorithm is discussed under different conditions
where the unknown parameters are either the stiffness or the mass of the structure. Such a case has
not been considered in other literature yet. In order to verify the advantages of the proposed method,
the recursive least square method was also used to compare the results. A 5-Dof symmetric system
with unknown coefficients was selected for numerical simulation examples, and the influence of
noise on the algorithm was also considered in the simulation. The results show that the proposed
algorithm is effective for structures with unknown mass and stiffness coefficients. Compared with
the recursive least square method, the method proposed in this paper has the higher accuracy and a
wider application scope.

Keywords: dynamic load identification; extended Kalman filter; recursive least square method;
unknown parameter

1. Introduction

The research object of traditional dynamic load identification methods [1–8] is a
time invariant structure where the dynamic characteristics of the structure are known.
However, in engineering applications, due to the parameters of some engineering structures
which may be difficult to determine or change with time, the traditional dynamic load
identification method will fail in these situations.

To acquire the unknown structural parameters, a number of methods including Hilbert
transform-based methods, least squares methods and Kalman filtering methods have been
proposed. As an effective signal processing method, Shi et al. [9] proposed an algorithm
based on the Hilbert transform and empirical mode of the decomposition of response
data for the identification of linear time-varying multi-DOF systems. Wang et al. [10]
further developed a new recursive Hilbert transform method for the time-varying feature
identification of large shear-type buildings, in which observer techniques and branch-and-
bound techniques were used.

With the improvement in the least square estimation (LSE) method, it can also be
used to identify the parameters of the structure. For example, Sato et al. [11] used the
adaptive least squares method to identify the changing process of structural parameters;
Yoshida [12] proposed the sequential nonlinear least squares method in 2006. In order to
identify the dynamic load in structures with unknown parameters, Huang and Xu [13]
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proposed a dynamic load identification algorithm based on the recursive least square
method. Using the properties of a projection matrix, the unknown load and structural
parameters in the observation equation are separated then they can be identified using
the least square estimation at each time step. Yang and Pan [14] combined the unknown
excitation, unknown parameters and the state vector of the structure to form the generalized
state vector and identified unknown excitation using the least square algorithm. However,
it is necessary to know the response signals of the structure in all degrees of freedom
using the least square method. If there is a situation where some measuring points on the
structure cannot be measured, an LSE method cannot be used.

Kalman filtering is a well-known method for probabilistic inference with uncertainty
and can be used in dynamic load identification [15–17]. Due to the recursive and real-
time nature of the Kalman filter method, it can be used for the on-line identification of
dynamic load. In the case of unknown structural parameters, Yang and Pan [18] proposed
an adaptive Kalman filter algorithm to identify the dynamic load. Lei et al. [19] improved
the algorithm proposed by Yang et al. [18] and identified the load and state vectors in
stages. Naets et al. [20] used the extended Kalman filter algorithm to identify the load and
unknown parameters, in which PBH criterion judge the observability of the system.

All of the above methods only considered structures with mutation or invariant
parameters, and they only studied the cases of unknown stiffness coefficients, not the cases
of unknown mass coefficients. Furthermore, if the unknown parameters of the structure
slowly change, the parameters obtained by these methods may not be consistent with
the real parameters to a certain extent. In this way, this paper proposes a dynamic load
identification algorithm for structures with unknown parameters based on the extended
Kalman filter algorithm, which shows a good identification effect for both structures with
unknown stiffness parameters and mass parameters.

The paper proceeds as follows. In Section 1, the structure with unknown parameters is
introduced and described. In Section 2, the load identification method for the structure with
unknown parameters is presented in detail, which is applicable to the case of unknown
stiffness coefficients and mass coefficients. The advantages of the method proposed in this
paper are verified by comparing this method with the recursive least square method. In
Section 3, a numerical simulation example of a 5-Dof system with unknown slowly varying
parameters is proposed, which is processed by the proposed method and the recursive least
square method, respectively, to verify that the proposed method has the higher accuracy
and greater flexibility compared with the recursive least square method. The influence of
noise is also considered to better illustrate the identification capabilities of the proposed
algorithm, which can also be considered as an attempt to approximate a realistic structure.
In Section 4, some concluding remarks are listed.

2. Dynamic Load Identification Method for Structure with Unknown Parameters
2.1. Equation of Motion for System with Unknown Parameters

The general vibration differential equation of a multi-degree-of-freedom system is
written as:

M
..
p(t) + C

.
p(t) + Kp(t) = Buf(t) (1)

where M, C and K are the mass matrix, the damping matrix, and the stiffness matrix,
respectively. The variables

..
p(t),

.
p(t) and p(t) denote acceleration vector, velocity vector

and displacement vector, respectively, whereas f(t) represents the excitation vector. As the
parameters of the system are unknown, the vibration differential equation is transformed
into a nonlinear state update equation and the measurement update equation:

z(t) =
[

x(t)
α

]
=

p(t)
.
p(t)

α

 (2)
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Therefore, the state update equation and the measurement update equation can be
written as follows:

.
z(t) =

 .
p(t)

−M−1Kp(t)−M−1C
.
p(t) + M−1Buf(t)

0

 = f c(z(t), f(t)) (3)

y(t) = H0M−1(−Kp(t)− C
.
p(t) + Buf(t)) = h(z(t), f(t)) (4)

The variables x(t) and z(t) represent the state vector of the structure and the extended
state vector. The symbol α represents unknown parameters in matrix M, K or C. Bu
represents the influence matrix of the excitation, which is related to the action position of
the excitation on the structure. The form of measurement update equation is related to the
type of observation. In this paper, the measurement type is acceleration signal.

2.2. Equation of Motion for System with Unknown Parameters

The extended Kalman filter (EKF) algorithm is an efficient recursive filter developed
on the basis of the Kalman filter algorithm, which can be applied to nonlinear systems.
Due to the excellent characteristics of EKF algorithm, it is widely used in navigation,
controls, aerospace and structural health monitoring. The EKF algorithm can also be used
in dynamic load identification. By recursively calculating the extended state vector z(t) in
EKF algorithm each time, unknown structural parameters and dynamic loads are identified.

The EKF algorithm linearizes the nonlinear system using first-order Taylor expansion
then approximates the state estimation as in Kalman filtering algorithm. Thus, the nonlinear
state update Equation (3) and measurement update Equation (4) are transformed into
the sum of polynomials using Taylor expansion, and only the first-order polynomials
are retained.

f c(z(t), f(t)) ≈ f c(zk−1|k−1, f̂k−1) +∇z f c
k−1 · (z(t)− zk−1|k−1) +∇ f f c

k−1 · (f(t)− f̂k−1) (5)

h(z(t), f(t)) ≈ h(zk|k−1, f̂k−1) +∇zhk · (z(t)− zk|k−1) +∇ f hk · (f(t)− f̂k−1) (6)

where ∇z f c
k−1 and ∇zhk are the matrixes derived from the partial derivatives of the state

update equation and the measurement update equation to the extended state vector, re-
spectively, whereas∇ f f c

k−1 and∇ f hk are the partial derivative matrixes of the state update
equation and the measurement update equation to the load vector. zk|k−1 is the prior
estimation at k − 1 time point, and f̂k−1 is the estimation of load at k − 1 time point.

In order to identify the extended state vector and unknown load of the structure,
the extended Kalman filter can be divided into three steps: state update step, excitation
identification step and measurement update step.

(1) State update step

In the state update step, the prior estimation error can be written as:
~
zk|k−1 = zk − zk|k−1

= zk−1 − zk−1|k−1 + ∆t · [∇z f c
k−1 · (zk−1 − zk−1|k−1) +∇ f f c

k−1 · (fk−1 − f̂k−1)] + w

= (1 + ∆t · ∇z f c
k−1) ·

~
zk−1|k−1 + ∆t · ∇ f f c

k−1 ·
~
fk−1 + w

(7)

where
~
zk−1|k−1 is the posterior estimation error at k− 1 point and

~
fk−1 is the load estimation

error at k − 1 time point. Therefore, the variance of prior estimation error Pz
k|k−1 can be

written as:

Pz
k|k−1 = E(

~
zk|k−1 · (

~
zk|k−1)

T
)

=
[
1 + ∆t · ∇z f c

k−1 ∆t · ∇ f f c
k−1
][Pz

k−1|k−1 Pz f
k−1

P f z
k−1 P f

k−1

][
(1 + ∆t · ∇z f c

k−1)
T

(∆t · ∇ f f c
k−1)

T

]
+ Q

(8)



Symmetry 2022, 14, 2449 4 of 15

Among them, Pz
k−1|k−1 is the variance matrix of posterior estimation error; P f

k−1 is the

variance matrix of load error; Pz f
k−1 and P f z

k−1 are the cross-covariance matrixes of extended
state vector and load.

(2) Excitation identification step

The equation about the load can be established using Equation (6):

~
yk = yk − hk(zk|k−1, f̂k−1) +∇ f hk · f̂k−1

= ∇ f hk · fk +
~
e

(9)

where
~
e = ∇zhk ·

~
zk|k−1 + v and the mean value of

~
e is 0. The above equation shows the

analysis model of least square estimation. The estimation of f̂k can be written as:

f̂k = [(∇ f hk)
T ·

~
Rk
−1 · ∇ f hk]

−1
(∇ f hk)

T ~
Rk
−1 · ~

yk = Jk ·
~
yk (10)

where
~
Rk is the variance matrix of ẽ:

~
Rk = E(

~
ek

~
e

T
k ) = (∇zhk)

T · Pz
k|k−1 · ∇zhk + Rk (11)

In this case, the variance matrix of the error of the excitation estimation f̂k is as follows:

P f
k = [(∇ f hk)

T ·
~
Rk
−1 · ∇ f hk]

−1
(12)

(3) Measurement update step

In measurement update step, the posterior estimation error
~
zk|k is:

~
zk|k = zk − zk|k = zk − zk|k−1 −Kk(I−∇ f hk · Jk)(yk − h(zk|k−1, f̂k−1) +∇ f hk · f̂k−1)

= (I−Kk(I−∇ f hk · Jk)∇zhk) ·
~
zk|k−1 + Kk(I−∇ f hk · Jk)∇ f hk · fk + Kk(I−∇ f hk · Jk) · v

(13)

The variance of posterior estimation error is Pz
k|k = E(

~
zk|k · (

~
zk|k)

T
). In order to make

the posterior estimation optimal, the variance matrix Pz
k|k should be minimized:

∂Pz
k|k

∂Kk
= 0 (14)

According to the above formula, the Kalman filter gain Kk can be deduced as follows:

Kk = Pz
k|k−1(∇zhk)

T ~
Rk
−1 (15)

In this way, the variance matrix of posterior estimation error is obtained as follows:

Pz
k|k = Pz

k|k−1 −Kk · (
~
Rk −∇ f hk · P

f
k · (∇ f hk)

T) ·Kk (16)

The cross-covariance matrix of extended state vector and load can be written as:

Pz f
k = −Pz

k|k−1(∇zhk)
TJk

T = −Kk · ∇ f hk · P
f
k (17)

When using the algorithm, there are some initial inputs (e.g., z0|−1, Pz
0|−1 and Q, etc.)

that need to be determined. Among them, Pz
0|−1 and Q, etc., can be easily set as they have

specific physical meanings, whereas the unknown parameters α in the initial extended state
vector z0|−1 can only be set as a rough estimate, which may deviate from the true values
within a certain range, and the identification results can still be valid.
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In conclusion, EKF algorithm obtains the recursive recognition of the extended state
vector through a process composed of excitation identification step, measurement update
step and state update step, in turn. In this process, the unknown parameters and the
external excitation are acquired.

2.3. Unknown Parameter Type in EKF Algorithm

Most researchers only consider the system with unknown stiffness or damping coeffi-
cients. However, systems with unknown mass coefficients still exist in real life; sometimes,
it is necessary to identify the dynamic load acting on these system with unknown slowly
varying parameters.

In this paper, we choose to discuss two cases: the unknown parameter is stiffness or
damping coefficients, and the unknown parameter is mass coefficients. This is because the
algorithm flow of the two cases is the same. However, the partial derivative matrix of the
equation f c(z(t), f(t)), h(z(t), f(t)) with unknown parameters is different.

(1) The first case with the unknown parameter of stiffness or damping coefficients

In this case, it can be seen that the partial derivative matrix of the state update equation
and the measurement update equation to the extended state vector is as follows:

∇z f c
k−1 =

[
∂ f c

∂p
∂ f c

∂
.
p

∂ f c

∂α

] ∣∣∣z=zk−1|k−1

=

 0 I 0 · · · 0
−M−1K −M−1C −M−1 ∂K

∂α1
pk−1|k−1 −M−1 ∂C

∂α1

.
pk−1|k−1 · · · −M−1 ∂K

∂αm
pk−1|k−1 −M−1 ∂C

∂αm

.
pk−1|k−1

0 0 0 · · · 0

 (18)

∇zhk =
[

∂h
∂p

∂h
∂

.
p

∂h
∂α

] ∣∣∣z=zk|k−1

=

[
−H0M−1K −H0M−1C −H0M−1 ∂K

∂α1
pk|k−1 −H0M−1 ∂C

∂α1

.
pk|k−1

· · · −H0M−1 ∂K
∂αs

pk|k−1 −H0M−1 ∂C
∂αs

.
pk|k−1

]
(19)

The partial derivative matrix of the state update equation and the measurement update
equation to the load vector is as follows:

∇ f f c
k−1 =

 0
M−1Bu

0

 (20)

∇ f hk = H0M−1Bu (21)

(2) The second case with the unknown parameter of mass coefficients

For an N-DOF system, if all the mass coefficients of the structure are put into the
extended state vector, the partial derivatives of the state update equation and the measure-
ment update equation are obtained as follows:

∇z f c
k−1 =

[
∂ f c

∂p
∂ f c

∂
.
p

∂ f c

∂α

] ∣∣∣z=zk|k

=

 0 I 0
−M−1K −M−1C Ek

0 0 0

 (22)

∇zhk =
[

∂h
∂p

∂h
∂

.
p

∂h
∂α

] ∣∣∣z=zk|k−1

=
[
−H0M−1K −H0M−1C H0

¯
Ek

] (23)

The matrixes Ek and
¯
Ek can be written as:
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Ek =


− 1

m2
1
ξk(1)

− 1
m2

2
ξk(2)

. . .
− 1

m2
n

ξk(n)

,
¯
Ek =


− 1

m2
1
ξk(1)

− 1
m2

2
ξk(2)

. . .
− 1

m2
n

ξk(n)

 (24)

Let ξk(i) and ξk(i) be the i-th elements of the vector at k point, which can be written as:

ξk = −Kpk|k − Cpk|k + Bufk (25)

¯
ξ k = −Kpk|k−1 − Cpk|k−1 + Bufk−1 (26)

On the other hand, the partial derivatives of the state update equation and the mea-
surement update equation to the load vector can be obtained as Equations (20) and (21), in
which the mass coefficient will change in the filtering process.

3. Simulation

It can be seen from the previous derivation that the method proposed in this paper
can identify dynamic loads of the structure when the structural parameters are unknown,
even if the structural parameters change with time. The recursive least squares method
in Huang’s paper [13] can also achieve these goals. However, the two algorithms meet
different conditions.

The recursive least squares method needs to measure the response of all observation
points, and the acceleration, velocity and displacement signals of these measurement points
must be obtained. The algorithm will run normally only when these conditions are met
which is difficult to achieve in practical applications. On the other hand, the EKF algorithm
can still work with incomplete measuring points, and there are options for measuring
signal types, such as the acceleration signal.

In this section, a 5-DOF system with unknown structural parameters is selected as
the simulation model. In order to verify the effectiveness of the algorithm, the unknown
parameters on the structure were set to change with time. According to the different types of
unknown parameters in the algorithm, the simulation examples with slowly varying mass
coefficients and slowly varying stiffness coefficients are presented, respectively. Finally, the
influence of noise on the identification result of the algorithm is discussed. The identification
results are listed, including the case of the EKF algorithm using incomplete measuring
points, the EKF algorithm using complete measuring points and the recursive least square
method using complete measuring points. It proves the superiority of the algorithm
proposed in this paper.

(1) A 5-Dof system with slowly varying mass coefficients

A five-degree-of-freedom system was selected as the simulation example with
m1 = m2 = m3 = m4 = m5 = 10 kg and k1 = k2 = k3 = k4 = k5 = k6 = 200 N/m.
The damping of the system was assumed to be Rayleigh damping, and the damping coeffi-
cient as α = 0.05, β = 0.02. At 1.5 s, the mass coefficient m2 slowly decreased from 10 to 1 kg.
The structure is shown in Figure 1.
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An unknown load was applied to the mass block m1. As the mass coefficients were
unknown, we assumed the vector [m1, m2, m3, m4, m5]

T was inaccurate, which can be writ-
ten as [10, 7, 5, 8, 10]T . We substituted these mass coefficients into the extended state vector
as unknown parameters.

In order to verify the effectiveness of the EKF algorithm, four points (the response
signal from the mass blocks m1, m2, m3, m4) and five points (the response signal from the
mass blocks m1, m2, m3, m4, m5) were selected to form the measurement vector, respectively,
and the recursive least squares method was used for comparison.

We added 2% noise to the measurement vector. The identification results are shown
in the Figures 2–5 below. The left side shows the results of the EKF algorithm using the
5-point measuring signal, whereas the right side shows the results of the recursive least
squares method (LSE).

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 2. Identification effect of mass coefficient 1m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 3. Identification effect of mass coefficient 2m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 4. Identification effect of mass coefficient 3m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

Figure 2. Identification effect of mass coefficient m1. (a) EKF algorithm using 5 points, (b) results of
recursive least squares method.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 2. Identification effect of mass coefficient 1m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 3. Identification effect of mass coefficient 2m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 4. Identification effect of mass coefficient 3m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

Figure 3. Identification effect of mass coefficient m2. (a) EKF algorithm using 5 points, (b) results of
recursive least squares method.



Symmetry 2022, 14, 2449 8 of 15

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 2. Identification effect of mass coefficient 1m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 3. Identification effect of mass coefficient 2m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

  
(a) (b) 

Figure 4. Identification effect of mass coefficient 3m . (a) EKF algorithm using 5 points, (b) results 
of recursive least squares method. 

Figure 4. Identification effect of mass coefficient m3. (a) EKF algorithm using 5 points, (b) results of
recursive least squares method.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

  
(a) (b) 

Figure 5. Identification effect of unknown load. (a) EKF algorithm using 5 points, (b) results of 
recursive least squares method. 

The identification results errors are shown in Tables 1 and 2. 

Table 1. Parameter identification error. 

Mass Coefficient 
t = 1 s t = 5 s 

Identification  
(kg) 

True  
(kg) 

Error 
(%) 

Identification  
(kg) 

True  
(kg) 

Error 
(%) 

4 points 
(EKF) 

1m  10.01 10 0.1 9.939 10 0.61 

2m  10.08 10 0.8 1.014 1 1.4 

3m  10.2 10 2 10.05 10 0.5 

4m  8.222 10 17.78 9.105 10 8.95 

5m  9.933 10 0.67 10.87 10 8.7 

5 points 
(EKF) 

1m  9.996 10 0.04 9.998 10 0.02 

2m  10.09 10 0.9 0.9971 1 0.29 

3m  10.38 10 3.8 10.01 10 0.1 

4m  9.46 10 5.4 10.03 10 0.3 

5m  10.7 10 7 10.01 10 0.1 

LSE 

1m  10 10 0 10 10 0 

2m  9.975 10 0.25 1.006 1 0.6 

3m  9.992 10 0.08 10 10 0 

4m  9.849 10 1.51 9.993 10 0.07 

5m  9.251 10 7.49 9.989 10 0.11 

Table 2. Load identification error. 

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%) 
4 points (EKF) 7.2 99.79 
5 points (EKF) 5.77 99.87 

LSE 5.86 99.83 

(2) A 5-Dof system with slowly varying stiffness coefficients 
The 5-DOF system in Figure 1 was also selected as the simulation model with slowly 

varying stiffness coefficients. In this simulation model, the damping coefficient and mass 
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The identification results errors are shown in Tables 1 and 2.

Table 1. Parameter identification error.

Mass Coefficient
t = 1 s t = 5 s

Identification
(kg)

True
(kg)

Error
(%)

Identification
(kg)

True
(kg)

Error
(%)

4 points
(EKF)

m1 10.01 10 0.1 9.939 10 0.61
m2 10.08 10 0.8 1.014 1 1.4
m3 10.2 10 2 10.05 10 0.5
m4 8.222 10 17.78 9.105 10 8.95
m5 9.933 10 0.67 10.87 10 8.7

5 points
(EKF)

m1 9.996 10 0.04 9.998 10 0.02
m2 10.09 10 0.9 0.9971 1 0.29
m3 10.38 10 3.8 10.01 10 0.1
m4 9.46 10 5.4 10.03 10 0.3
m5 10.7 10 7 10.01 10 0.1

LSE

m1 10 10 0 10 10 0
m2 9.975 10 0.25 1.006 1 0.6
m3 9.992 10 0.08 10 10 0
m4 9.849 10 1.51 9.993 10 0.07
m5 9.251 10 7.49 9.989 10 0.11
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Table 2. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

4 points (EKF) 7.2 99.79

5 points (EKF) 5.77 99.87

LSE 5.86 99.83

(2) A 5-Dof system with slowly varying stiffness coefficients

The 5-DOF system in Figure 1 was also selected as the simulation model with slowly
varying stiffness coefficients. In this simulation model, the damping coefficient and mass
coefficient remained unchanged per the previous simulation example. The stiffness co-
efficient k4 of the structure slowly decreased from 200 to 120 N/m in 1.5 s. The mass m1
was excited by an unknown load. Assuming that the estimation of the stiffness coeffi-
cients k1 was accurate, the vector [k2, k3, k4, k5, k6]

T was inaccurate, which can be written
as [180, 120, 220, 160, 180]T . The inaccurate stiffness coefficients were substituted into the
extended state vector as unknown parameters.

We applied a 2% noise to the measurement vector. The EKF algorithm and the recursive
least square method were used to identify the unknown load, respectively. The recognition
effects are partly shown in the Figures 6–10 below. The left side is the identification result of
the EKF algorithm using the 5-point measuring signal, and the right side is the identification
result of the recursive least squares method (LSE).
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The identification results errors are shown in Tables 3 and 4.

Table 3. Parameter identification error.

Stiffness Coefficient
t = 1 s t = 5 s

Identification
(N/m)

True
(N/m)

Error
(%)

Identification
(N/m)

True
(N/m)

Error
(%)

4 points
(EKF)

k2 198.41 200 0.795 198.491 200 0.754
k3 197.537 200 1.232 198.689 200 0.656
k4 200.207 200 0.103 119.933 120 0.056
k5 197.321 200 1.34 177.42 200 11.29
k6 196.119 200 1.94 197.42 200 1.29

5 points
(EKF)

k2 198.93 200 0.535 197.77 200 1.12
k3 200.273 200 0.136 198.337 20 0.832
k4 199.634 200 0.183 120.601 120 0.5
k5 190.443 200 4.78 201.051 200 0.52
k6 196.213 200 1.89 194.054 200 2.9

LSE

k2 199.143 200 0.429 199.629 200 0.186
k3 198.394 200 0.803 199.418 200 0.291
k4 200.184 200 0.092 119.361 120 0.532
k5 199.255 200 0.373 194.905 200 2.55
k6 199.746 200 0.127 201.962 200 0.98

Table 4. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

4 points (EKF) 5.02 99.87

5 points (EKF) 4.04 99.92

LSE 4.35 99.91

(3) The influence of noise on EKF algorithm

The EKF algorithm is sensitive to noise. The noise in the response will adversely affect
the identification result. If the noise is too large, the identification result will be unsatisfac-
tory. The influence of noise on the identification results is different with structures.

Take the 5-Dof system with a slowly varying mass coefficient in this paper as an
example. In order to verify the influence of noise on the identification effect of the algorithm,
assuming the response contains 30% noise, the EKF algorithm using the 5-point measuring
signal and the recursive least squares method were used, respectively. The identification
results are partly shown in Figures 11 and 12.

It can be seen that the identification parameter value of the EKF algorithm is roughly
consistent with the actual value except for the mass coefficient m2, but the load identification
result is not satisfactory with large relative error. Using the LES algorithm, a long period of
iteration was needed to make the parameter identification result converge to a stable value
which shows no significant difference with the true value, and the load identification effect
is not good either.

It can be considered that when the noise level is 30%, the identification results of the
structural parameters are roughly accurate, but the identification results of the load are
not satisfactory.

The identification results errors are shown in Tables 5 and 6.
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Table 5. Parameter identification error.

Stiffness Coefficient
t = 1 s t = 5 s

Identification
(kg)

True
(kg)

Error
(%)

Identification
(kg)

True
(kg)

Error
(%)

5 points
(EKF)

m1 10.01 10 0.1 10.116 10 1.16
m2 9.88 10 1.2 4.955 1 395.5
m3 10.25 10 2.5 10.1 10 1
m4 9.29 10 7.1 9.667 10 3.33
m5 10.9594 10 9.59 10.1816 10 1.816

LSE

m1 10 10 0 10.01 10 0.1
m2 9.23 10 7.7 0.85 1 15
m3 6.12 10 38.8 9.35 10 6.5
m4 3.74 10 62.6 9.398 10 6.02
m5 0.48 10 95.2 9.4 10 6

Table 6. Load identification error.

Noise Level Relative Error (RE) (%) Correlation Coefficient (r) (%)

5 points (EKF) 72.66 90.99

LSE 72.53 80.64

It can be seen from the above simulation examples that if there is a high noise level
in the response, the identification result will not be satisfactory. The proposed method
can effectively identify the dynamic load on the structure with unknown slowly varying
parameters when the noise level is not too low. The results show that the algorithm is
still valid in the case of incomplete observation points, but the LSE algorithm will fail
in this case. Tables 2 and 4 show that the identification results in the case of incomplete
observation points are inferior to that in the case of complete observation points. The
recursive least square method requires strict conditions, and its identification accuracy is
slightly lower than that of the EKF method using complete observation points.

Thus, the algorithm proposed in this paper is effective in the case of incomplete or
complete observation points, indicating it has strong applicability. In addition the proposed
algorithm based on Bayesian ideas can make better use of prior information, e.g., Pz

0|−1 and
Q need to be set in the algorithm. If the parameters can be reasonably set, better results
will be obtained.

4. Conclusions

A novel dynamic load identification method based on the extended Kalman filter is
proposed in this paper. The algorithm is discussed in the case of unknown stiffness or
damping parameters and in the case of unknown mass parameters. The different unknown
parameter types only affect the Jacobian matrix, and the algorithm flow is the same in the
two cases.

Contrasting the algorithm proposed in this paper with the recursive least squares
method, it is known that the proposed algorithm has a wider range of applicability, which
means it can work with incomplete measuring points in the field of dynamic load iden-
tification. Furthermore, the greater utilization of prior information in the dynamic load
identification method shows that the method has better accuracy.

Through the numerical simulation, it is shown that the algorithm proposed in this
paper can identify the change in unknown structural parameters and the unknown load
acting on the structure at the same time, even if the measurement points are incomplete.
It is proved that the dynamic load identification algorithm is effective for structures with
unknown parameters. Compared with the recursive least square method, the algorithm
presented in this paper has the higher accuracy and applicability. Hence, the proposed
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algorithm can be used in multiple practice scenarios: for example, aircrafts are subject
to unknown loads during flights when their mass changes due to fuel reductions; the
parameters of buildings are damaged when buildings are subjected to external excitation.

It should be noted that the identification results of the EKF algorithm are sensitive
to noise in the response. If the noise level is too high, the identification results will not be
ideal. Furthermore, when all masses are significantly greater than one of them (for example,
m1 = m2 = m3 = m4 = 100 > > m5 = 0.1), some matrixes in the algorithm are ill-conditioned,
which makes the identification results of this algorithm unsatisfactory. When using the
EKF algorithm, the signal of the measuring points at the action location of unknown loads
must be obtained and the number of measuring points must be greater than the number of
location loads.

For large structures, the calculation of the matrix dimension is too large. Therefore,
the future research program is to improve the EKF algorithm using modal space. In the
modal space, the physical coordinates with larger dimensions can be converted into modal
coordinates with less dimensions, and the modal parameters of structure can be easily
obtained through modal tests.
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