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Abstract: In this paper, we consider a certain class of third-order nonlinear delay differential equa-
tions with distributed arguments. By the principle of comparison, we obtain the conditions for the
nonexistence of positive decreasing solutions as well as, and by using the Riccati transformation
technique, we obtain the conditions for the nonexistence of increasing solutions. Therefore, we get
new sulfficient criteria that ensure that every solution of the studied equation oscillates. Asymmetry
plays an important role in describing the properties of solutions of differential equations. An example
is given to illustrate the importance of our results.
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1. Introduction

The first kernel of differential equations and their associated asymmetric properties
began to appear in the middle of the seventeenth century and continued to develop until it
became an effective and indispensable tool for solving and explaining the various phenom-
ena of life. Differential equations have become an integral part of most sciences because of
their great impact on the progress of science and the support of its outputs. The qualitative
theory is one of the most important theories that has been associated with the study of
differential equations on a large scale, and one of its most important branches is the study of
the qualitative properties of solutions to differential equations.

Lately, the study of the oscillation of solutions to differential equations has received
great attention from scientists due to its multiple applications in various sciences, such as
engineering, economics, and physics. Especially the medical field, for example, the red
blood cell preservation model and the lung expansion model in patients with COVID-19,
in addition to a model for diagnosing diabetes patients [1].

In recent decades, many studies have appeared interested in obtaining sufficient
conditions to ensure the oscillation or non-oscillation of solutions of second-order (nonlinear
and linear) neutral delay differential equations; see [2—4]. In addition to the references
therein, few of these results were with distributed deviating arguments; for example,
Sahiner and Wang in [5,6] established some Philos-type oscillation criteria for the equation

(@0 +8woa—))) + [ 00,88(,8)de =0,

in canonical form. After a while, Xu et al. [7] were concerned with the oscillation problem
for the following neutral delay.
Equation with continuous distributed

(10 ((00) + 2080 — )Y ) + [ OwE)8(e(,8)de = 0.
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While the study of the oscillation of third-order differential equations is comparatively
less if any, they exist, and most of them revolve around delay differential equations, for
example, [8-13]. Over the previous few years, a number of results have appeared related to
the study and development of the oscillation of solutions of third-order neutral differential
equations with a continuously distributed delay [14-18].

Zhang et al. [19], by using different techniques, established some results that discuss
the oscillation of solutions to the equation

( CICORY D ))d§> ) + [[owofeena)de =0 o

with canonical form and with hypothesis

O<p(t)£/cdp(t)ds<p<1 2

On the other hand, Candan in [20] studied the following equation

(10020 0)]) + [ w006 -+ [ .00+ 535 =0, @)

where
@(1) = g1(1)8(1 — 61) + g2(1)8(1 + 62)

and used the condition ¢ > 1 to ensure that the solutions of the Equation (3) are either
oscillatory or converge to zero. Fu et al. [21] studied oscillation and asymptotic behavior of
solutions to equation

z) !

( [( )+ [ st o)

with canonical form and under conditions from (2) 0 < ¢ < 1 holds. Wanga et al. [22]
investigated a general third-order neutral delay differential equation

+ [ 00,27060.8)8 =0,

m

/ ‘ ! n
(h(z) (20)0600) + 50,0020, | ) + [ 06,0500 ) =0,
and assumed that
0<g(t)<go<1

and

/Z “1(1)de = ooand/ (1)dE = co.

They presented some conditions that ensure that the solutions to the equation are
either oscillatory or converge to zero. Further, Gaoa et al. [23] obtained some oscillation
criteria for Equation (1), but in the case of noncanonical equations under condition (2). For
more results for similar equations, see, for example, [24-34].

In this paper, we establish the oscillatory behavior of the solution of the following
third-order neutral differential equation with a continuously distributed delay

m

(m) (o) + g(z)ﬂ(g(z)))"]é)/ + [1 068" () =0, @

For 1 > 1y, where ¢ > 0 is the ratio of odd positive integers. Throughout this paper, the
following hypotheses are assumed to hold:
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M) 7,8 ¢ € C(Ty,), Q1,0), €(1,¢) € C(T,, x (m,n),R), where [19,00) = T, and j > 0,
g(1) < go < 00,Q(1,&) > 0 does not vanish identically such that

[ =

L) ¢(t) < 1,€18) <1,¢(1) > g0 >0, limseog(t) = oo, limee(1,¢) = o0 and
cog=c¢og.

A solution to (4) means ¢ € C([15,00),Ty) (where Ty = [0, 00)) with 15 > 19, which
satisfies the properties @ (1) € C2([t5,0), Tp), j(@")" € C1([1,0), Ty) and satisfies (4) on
[19,00). We consider the nontrivial solutions of (4) existing on some half-line |14, o0) and
satisfying the condition sup{|8(1)| : 19 < 1} > 0 for all 1y > 15. Moreover, solution ¢ is
called an oscillatory solution when it is neither positive nor negative eventually. Otherwise,
it is called a nonoscillatory solution.

The purpose of this paper is to derive some new results on the oscillation of all
solutions to (4). In contrast to the published results, which provide some almost oscillation
criteria for Equation (4) (See, for example [19-22]). The results obtained can be applied in
the case where ¢(7, &) > 1and g(1) < gg < oo. Therefore, the current results continue and
extend the results mentioned in the previous literature.

Remark 1. In this paper:
(a) We consider every inequality satisfied eventually. Thus, they are satisfied V1 large enough;
(b) Without loss of generality, we only deal with a solution § > 0 of (4) (a solution & < 0
is similar);
(c) We set
@(1) = 9(1) +g(1)9(5(1))-

Definition 1. Let @(1) > 0 and @" (1) > 0 and <](1)((D”(1))€

(i) class Y1 means the set of all solutions © of Equation (4) that satisfy @'(1) > 0;
(ii) class Y, means the set of all solutions ® of Equation (4) that satisfy @' (1) < 0.

/
) be nonpositive functions. Then

We present the following Lemma that will help us to prove our next results.

Lemma 1 ([35]). Let U and V be nonnegative functions. Then
U+ V)T <KUT+Vv7), @)

where
K=1if y€(0,1] and K=2""1if v € (1,00).

Lemma 2 ([36]). Assume that & > 0 is a solution of

(0] + o))" + 0w =o.

/: /: (7(@(1u)) /uw a, §)> dudg = e, ()
(1) = 0.

For conciseness, we provide the notes below:

If

then ¥ € Yo and lim,

n,n) = /le 1”1(@), 771(1,11):/11177(1,5)(:15,

60) : =min{0(,8),0c08)} e = [ Qe
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2. Nonexistence of Decreasing Solutions

In this section, we present conditions that ensure the nonexistence of positive decreas-
ing solutions of (4).

Theorem 1. If 3 a function {(1) € C(T,,, To) satisfying e(1,n) < {(1) and ¢~1({(1)) < 1, such
that the equation

/ kg ~ -~
v'(1) + m%@(z»e(w»m(z)v(g '(5@)) =0 @)

is oscillatory, then Y, = @.

Proof. Assume ¢ > 0 is a solution of (4). It is easy to see that
[ 00,08 )+ [ 00,88 elcw8)de
> [100,0) (¢ 8) + 0 els(0,2)) ) e ®)

From Lemma 1, we note that

2@ (0,6)) < (#(e(0, ) + 550" (c,))))-
In (8), we get
[ 60,8 (860, ) + 0'elc(1, ) e = ¢ [ A LIANC
Now, from (4), we obtain
7 (160 @ (6)) + [ GoONdE<o. (o
Combining (4) with (10), then using inequality (9), we have
0 > (j()(@" (1)) ! +/ d§+go( (g(z))(c@”(g(z)))({)/
+g£ /m Q(c(,8)9" (e(c(,8)))de.
That is
l ! no__
<](1)(‘9”(1))£+ i’](g(l))(w”(g(l)))ﬁ +%/m Q1,00 (e(1,0))dg < 0. (11)
Thus

<J(l)(w”(1)) e ())(w’%g(z)))f) F @l <0 (2)

Since (](z)(co”(z))f)/ <0, we find
10)(@" (1)) < 1(6() (@ (5(1))",

and hence

A {
10)(@" (1)) + %]@@)(@qg@))y < <1 + §g>]<g<z>><w"<g<z>>)"-
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Now, set
!

o(1) == () (@" (1) + %;(g(z)) (@"(5(1)))". (13)

That is

W ) @)

or

g - "
Qo—i?ggl)(G 1(6(1))) < 1EW) (@"(C(1))". 1

On the other hand, since (1) (@” ( l))é is nonincreasing, we note that

) 2 [ i e @)

n(o,u);" (v)@" (v)

v

and
@(u) > 1! (v)@" (0)m (0, u).

Thus, ,
@' (em) = (1 (()@" (1) H(E () e(am)). (15)
Using (14) and (15) in (12), it is easy to note that v is a positive solution of
joy L Som (), e(1,m)) & -
v+ e (o(s @) <0.

From (Theorem 1 in [2]), the associated Equation (7) also has a positive solution. The
proof is complete. [J

Corollary 1. If 3 a function {(1) € C(T,,, To) and e(1,n) < {(1) and ¢=1({(1)) < 1, such that

1 - K(s0+g5)
imint [ (000, el m)n(@)d > == (16)
or
He ) ~
/ () el m)(E)dz > 0, for 1 = 19 17)
and
00 ~ 167 H(C() ~
| @) m)ae n ( I quf?hg@nf@(ﬁ),e(z,n))ol@)da) di =, (18)
then Yo = @.

Proof. In view of [13,37], condition (16) or conditions (17) and (16) imply the oscillation of
7). O

3. Nonexistence of Increasing Solutions

Now in this section, we present conditions that ensure the nonexistence of positive
increasing solutions of (4).

Theorem 2. Assume that 3 a function p € C'(T,,, (0,00)) and (1) < ¢(1), such that

1 - { / 2
oy () -~ 2L ) 4z = e, (19)

lim su
b 460 (1) (m(e(t), 1)) (et m), )¢ (1, m)

1—00 %)




Symmetry 2022, 14, 2416 6 of 15

forig >19,1p > 11. Then Y1 = @.

Proof. Assume that ¢ is a positive solution to (4) and @ € Y;. From (11), and since
!/
(](z)(@"(z))f) < 0, we obtain

¢ ! B
(1<z>(w”<z>>f + fgm)(w"(g(z)))f) < — ' (e, m)00). 20)
and
!/ 1 1
@'(1) > / JW(QJW(G)w (€)dg
> y(,u)M ()@ (). (21)
Further,
]f‘/)(gl()l) > @" (1)1 (1,1). (22)
From (21) and (22), we have
@' (£(1)) o )@ @) e
@) @@y minEm)
> p(e(t),n) (m(e(),m)) . (23)
Since €(1) < g(1),we get
)é

@' e)@ () o (e(t) (@ (1)
HeM) (@ (c()"

]
> pe(1),n)(n(e(t), 1)) " (24)

We define the two functions
" l
0@ W) 25

and

" ¢
o = ot (S50

> 0. (26)

Differentiating (25) and (26), respectively, then using (23) and (24), we obtain
1\
w'(z) _ p/(1)](1) ((D (l))

L,
o) (0)(@" (1)) @' (el m))@ (e(o, m) e (1) -

IN

T
~
==
~ ~
—~

~

~

=) M) m) G e m), ) ), 28)

and
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gy o0 (@@)0) + 2 ()@ 0)')
W (1) + = @ (e(1, m
Go ( ’ ))
+8 wtw ~ E et m)m) O (e,m), ) 0
Lol e (1
20 (o) = (et m),m) O elom), ) 420 ).
Applying (20), (31), and
Bu — Au® < g, m >0,
we have
Z ~
w'(1) + %U’(z) < pl(;) O (1)
&
N (+8) (/)
A o) (ela,m), ) (e, m),n)e ()
Integrating (32) from 1, to 1, we get
1+ $0 2
et g _( go) (/1)) . 9,
L]0~ p(z)(m(s(z,m»zl)%1n<e<z,m>,zl>s'<z>] fE g o)

This contradicts (19). The proof is complete. [

Theorem 3. Assume that 3 a function p € C'(T,, (0,00)) and (1) > ¢(1), such that

. _ + ot PNVAS |
lmsup | [pf)m(@)— Ghes) 7' 0)) ]df;—oo,

co(t+ 1) (p(@)n (s, m),n)e (o,m))*
forig > 19,12 > 1. Then Y1 = @.
Proof. Let ¢ > 0 be a solution of (4) and @ € Y7. By (21), we obtain

@' (¢(1,m)) = (g (t,m), 1)1 (6(1,m)) (@" (6(1,m)))

@'(¢(1,m)) = 1(c(t,m),0)1" (1) (@" (1))

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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We define the two positive functions

and

v(1) = p(1)

From (36) and by using (35), we have

S = @)

IA
<
~
~~
-
N
—
=
)
—~
~
N
N
—
—
~
N
~—~
8\
I
—~
~— \N/
=
~
~—

Y0 = YR

)
~
~—~
-
=
~—~
N~—
)
~—~
-
=
N
—
—
Np
—
~
N
N—
—~
St
—~
N
—~
~
N
N
~
N

IA
!
‘i’i

t

o' (1) U (i,m) s
p(l)w(l) o) 1n(g(t,m), (1)

Applying the inequality

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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41 0t +1
Bu — Au 7 Smw, m > 0. (43)
Hence, we have
0v' (1) HOF!
w' (1) + L < - Q
O+42 < —Eda
1 (¢ ()™
(C+ 1) (o6l m), )6 m))
4
£0 /¢
@ (¢ ()" )
(C+ 1) (0 (eem),n)g (,m))
Integrating (44) from 1, to 1, this leads us to
: _ ¢ 11+ ‘
[0, - %8 W) ;42 < () + Do),
& (£+1)" g0 (p(0)n(g(t,m), 1)¢' (1, m)) 60
This contradicts (33). The proof is complete. O
Theorem 4. Assume that 3 a function o € C1(T,,, (0,00)) and (1) > ¢(1), such that
L
1+ go) 2
1 - ( G /
lim sup @01(5) — ’ (9'(0)) d¢ = oo, (45)
1—00 1) K 4£

0(&) (11 (s(1,m), 1)) (g1, m), 1)/ (1,m)

forig >19,12 > 1. Then Y7 = @.

Proof. By using (38) and (40), in a similar way as in proof of Theorem 2, we get condi-
tion (45). O
4. Philos-Type
Let
Oo={(g):1>&>1} and O={(1,8): 1> > 1o}
Moreover, the function L € C(O,R). If

L(1,1) = 0,1 >19; L(1,&) >0, (1,&) € Oy;

and L has a nonpositive continuous partial derivative with respect to the second variable
in Og. Then L is said to belong to the class P. For brevity, let us assume that

. _ (1 i f) (h(1,8)"""
Wi (1, ==L, 1)1 (1) —
1) = RO T ey, ) ) )

7

. _ (1 + f) (h(1,))°
W 1, : :—L 1, ZQ 1) — ’
28 = ) = T e ) (el e )

. N (1 * ié) (h(1,)""
Ws(1, o =—2L(, (1) —
3(1,&) K (1, 8) (1)1 (1) (1+£)71+€ (53(1)77(5(1)/11)9/(1))6

and
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1 _ (1+8) (11,8))?
Wa(1, &) := —L(3, M (1) — '
) i L ) = g ey i) e e ()

Theorem 5. Let e(1) < ¢(1) and €' (1) > 0. Moreover, suppose that 3 a function o € C'([19,0),
(0,00)), for all sufficiently large 11 > 19, a1, > 11 and L € P such that

— aagL(z,é) —L(1,¢) Z((g)) = h(z,@)(L(z,ij))ﬁ (&) (1,¢) € Oy, (46)
and
lim sup L(l) /l Wi(1,&)d¢ = 0. 47)
Then Y1 = @.

Proof. Suppose that @ is a positive solution of (4). By (21), we obtain
@'(e(1)) = n(e(),n)y (e() (@" (1))
> y(e(n,n) (e (i (48)

and by €(1) < g(1), we get
@' (e(1)) = 1(c(1), 1)) (6(1))@” ((1)). (49)

We define w and v as in Theorem 2 to get (27) and (29) then by (48), we get

1@ (1))
P N (LG

(
B ), )0 (). (50)
o7 (1)

By (49), we get

n(e(),n)o ™ (1). (51)

w'(1) + p—gv’(z)

Go < ol @t(e(1,m))
o' (1) t€' (1,m) -
+ p(z) w(l) - pé(l (S(l m)/ ll)w ¢ (Z)
5( ¢ ! (+1
+2 (f;((j))w )= ctom) zl>vf<z>>
< %Z)ﬁl(z)
p’(z)w 1) — te'(1,m) e,m),1)w T (i
+ p(l) ( ) p%(l ( ( )/ l) ( )
o ¢ ! (+1
+8 (Z((j))w = yetm) zl>ve<z>>
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/ L(1,€)

9@ e
K

or
%ﬁ(l) < —w’(z) o pg:;;(l)
POl W
L oy e e 0
Lo d 41
0 (2o - 2818"(8(1)”1)””1)>'
It follows that
1 ~ 1 1 l
[re0d0@n < - [ 00w @ - / 6,020 @)
@’(C
+/ @(C
- [16.0" E”’”)n(e(z ) nyo' T (@)dg
L P ()
o5 [ 9 (©)
r L0 e
{1~ !
£ ) e, m), )0 (£)dg
50 Jn ©7 (%)
This implies
tn@de < L0Oelac- [ (- 2208 -160 5 Je@a
t e (1,m ¢
10,0 e, m), )0 (@ + L0, 0) Do)
1 p?(g) 60
RNy . a2 @Y,
% ['(-5t0.0 - 1605 o
—p—g "L te'(a,m) e(1,m),11)0 T
o [, LoD petm), e T @)z
Thus
1 " 2
[ 160206100 < 1600+ 10,0 Do)
-/ h,8)(L0,E) T w(@)
1 o(%)
L G m)g (et m), n) LG, G T <¢>> a
0! (2) |
v [ h,8) (L0 E) o)
Go Jip @(g)
£ (o, m)y (e(t,m), n)L(1, )0 7 (2) ) i
ol (2)
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Using (43), we have
L[ 028 a, ) - (1+?§) (1, )) Y a
L(1:8) Ju | )T (@) (e, m), e (m))f

V4
< w(n)dE + Do)
Go

The proof is complete. [

Theorem 6. Let £(1) < ¢(1) and € (1) > 0. Moreover, assume that 3 a function o € C'([1g, )
(0,00)) and L € P, for all sufficiently large 11 > 19, 3 a 13 > 17 such that

J 9'(S)

Nl—=

- aigL(lré) - L(I,C) p(é) = h(lré)(L(er)) p(6)1 (116) € OO/ (52)
and
ligiilp L(lln) /12 W (1,§)dg = co. (53)
ThenY; = @.

Proof. By using (31) in Theorem 2, in a similar way to the proof of Theorem 5, we get
condition (53). O

Theorem 7. Let €(1) > ¢(1) and € (1) > 0. Moreover, assume that L € P and 3 a function
o € CY([19,0), (0,00)), for all sufficiently large 17 > 10, 3 a 1y > 11 such that (46) hold and

1

1i /w | E)dE = oo 54
imsup o5 . 3(1,6)dg = o (54)
ThenY; = @.

Proof. By using (46) in Theorem 3, similar to the proof of Theorem 5, we get condition
(54). O

Theorem 8. Let €(1) > ¢(1) and € (1) > 0. Moreover, assume that L € P and 3 a function
o € CY([19,0), (0,00)), for all sufficiently large 17 > 10, 3 a 1y > 11 such that (52) hold and

1 1
limsup /12 W (1, &)dE = oo, (55)

Then Y1 = @.

Proof. By using Theorem 4, similar to the proof of Theorem 5, we conclude (54). [

5. Oscillation Criteria

Now, combining Corollary 1 with Theorems 2—4 and combining Corollary 1 with
Theorems 5-8, respectively, it is easy to get new oscillation criteria for (4).

Theorem 9. Assume that 3 a functions {(1) € C(T,,, To) and p € C1(T,,, (0,00)), and e(1,n) <
2(1), ¢ H(Z(1)) < rand e(1) < ¢(1) such that (16) or (17) and (18) hold, if (19) is satisfied, then (4)
is oscillatory.

Theorem 10. Assume that 3 a functions {(1) € C(T,, To) and o € C(T,,(0,00)),and
e(,n) < ¢(1), ¢ UC()) < rand e(1) > (1), such that (16) or (17) and (18) hold, if (33) is
satisfied, then (4) is oscillatory.
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Theorem 11. Assume that 3 a function {(1) € C(T,,, To) and p € C1(T,, (0,00)), and e(1,n) <
2(1), ¢ 1 (¢(1)) < 1and (1) > ¢(1) such that (16) or (17) and (18) hold, if (45) is satisfied, then (4)
is oscillatory.

Moreover, combining Corollary 1 with Theorems 5-8, respectively, we present the
following Theorems:

Theorem 12. Assume that 3 a functions {(1) € C(T,,, To) and p € C'([i, ), (0,00)) and
e(1,n) < (1) and1 > ¢ Y(Z(1)), e(1) < ¢(1), € (1) > 0 such that (16) or (17) and (18) hold, if
and L € P such that (46) and (47) is satisfied, then (4) is oscillatory.

Theorem 13. Assume that 3 a functions {(1) € C(T,,, To) and p € C'([1g, ), (0,00)) and
e(1,n) < (1) and1 > ¢ Y(Z(1)), e(1) < ¢(1), € (1) > O such that (16) or (17) and (18) hold, if
L € P such that (52) and (53) is satisfied, then (4) is oscillatory.
Theorem 14. Assume that 3 a functions {(1) € C(T,,, To) and p € C'([i, ), (0,00)) and
e(,n) < (1) and1 > ¢ 1(Z(1)), e(1) > ¢(1), € (1) > O such that (16) or (17) and (18) hold, if
L € P such that (46) and (54) is satisfied, then (4) is oscillatory.
Theorem 15. Assume that 3 a functions {(1) € C(T,,, To) and p € C'([i, ), (0,00)) and
e(1,n) < (1) and 1> ¢ 1(Z(1)), (1) > ¢(1), € (1) > 0 such that (16) or (17) and (18) hold, if
L € P such that (52) and (55) is satisfied, then (4) is oscillatory.

Example 1. Consider the third-order neutral differential equation

<z [(19(1) +go(z)19(;))"r> + %193(%) =0, A>0. (56)

Setting o = 1°, by Theorem 4, we obtain

(5

3
A> 2 (1 + 2p0> (57)
or by Theorem 3, we obtain
5425 3
A> 5 (1+263). (58)

Thus, by condition (6) in Lemma 2, we see that (56) is almost oscillatory if (57) or (58) hold.
For this example, condition (58) is better than condition (57).

6. Conclusions

This paper presents new criteria for the oscillation behavior of third-order neutral
differential Equation (4) with continuously distributed delay in a form that is essentially
new and of a high degree of generality. We obtained different conditions that guarantee
the nonexistence of positive decreasing solutions by using the comparison technique with
first-order delay equations. We also obtained conditions that guarantee the nonexistence of
positive increasing solutions by using the Riccati transformation and integral averaging
method. Therefore, we concluded with criteria that ensure the oscillation of all solutions to
Equation (4).

It would be interesting to study (4) without restriction ¢ o ¢ = £ o ¢ and in cases where
p(2) is an oscillatory function.
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