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Abstract: A topological index being a graph theoretic parameter plays a role of function for the as-
signment of a numerical value to a molecular graph which predicts the several physical and chemical
properties of the underlying molecular graph such as heat of evaporation, critical temperature, surface
tension, boiling point, octanol-water partition coefficient, density and flash points. For a (molecular)
graph Γ, the Lanzhou index (Lz index) is obtained by the sum of deg(v)2 ¯deg(v) over all the vertices,
where deg(v) and ¯deg(v) are degrees of the vertex v in Γ and its complement Γ̄ respectively. Let Vβ

α

be a class of unicyclic graphs (same order and size) such that each graph of this class has order α and
β leaves (vertices of degree one). In this note, we compute the lower and upper bounds of Lz index
for each unicyclic graph in the class of graphs Vβ

α . Moreover, we characterize the extremal graphs
with respect to Lz index in the same class of graphs.

Keywords: extremal graphs; Lanzhou topological index; unicyclic graphs

1. Introduction

A topological index (TI) is a function that associates a numerical value with a (molecu-
lar) graph that predicts its various chemical and structural properties, such as boiling point,
stability, melting point, volatility, chirality, solubility, and connectivity. TIs are also used in
cheminformatics to study the quantitative structure activities and property relationships
(QSAR and QSPR) [1], which connect a molecular structure with some biological properties
with the help of a mathematical formula

P = F(M),

where P represents the property, M shows a molecular structure, and F plays the role of the
function, which depends on the molecular structure. In general, TIs are divided into four
classes (distance, degree, spectral, and polynomial based) but our focus is on degree-based
TIs, which are mathematically defined as

TI(Γ) = ∑
uv∈E(Γ)

F(deg(u), deg(v)),

where F is a function.
If F(deg(u), deg(v)) = deg(u) + deg(v), then we first have the Zagreb index, and

for F(deg(u), deg(v)) = deg(u)deg(v), we obtain the second Zagreb index. These TIs are
defined by Gutman and Trinajstić in 1972 [2] to measure the total π − electron energy
of molecules in the molecular structures. In the literature, there exists a large number of
results related to these Zagreb indices for different graphs, such as nanotubes [3], dendrimer
structures [4], silicate & oxide networks [5], and carbon structures [6]. In [2], another TI is
defined by the sum of the cube of the degrees of all vertices. Furtula and Gutman in 2015 [7]
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re-investigated this index by studying its basic properties. After years of the obliviousness
to this TI, they gave this index a new name: the forgotten topological index (F-index). For
more details on various TIs, see [8–11].

Vukicevic et al. (2018) [12] defined the Lanzhou index (Lzindex) as the sum of the
product between ¯deg(v) and the square of deg(v) over all vertices v of Γ where deg(v)
represents the degree of v in Γ and ¯deg(v) represents the degree of v in the complement
graph of Γ. It is important to note that this index can be formed by the relation between the
forgotten index and the first Zagreb index as

Lz(Γ) = (n− 1)M1(Γ)− F(Γ),

where M1(Γ) and F(Γ) present the first Zagreb and forgotten indices of the (molecular)
graph, respectively. Furthermore, they found the bounds of the Lz index for acyclic graphs.
Dehgardi and Liu in 2021 extended these results of the Lz index for acyclic graphs under the
condition of maximum degree [13]. Zeng and Wu (2021) determined the sharp upper bound
of the Lz index for a special class of graphs that was obtained by some transformations on
acyclic graphs [14]. Recently, Liu et al. (2022) determined the lower and upper bounds of
unicyclic graphs [15]. Javaid et al. (2018) [16] found the upper and lower bounds of the
forgotten index for a family of graphs known as unicyclic graphs with certain pendent
vertices (leaves). In this note, we compute the bounds (lower and upper) for the Lz index on
the class of unicyclic graphs under the condition of fixed leaves. Moreover, we characterized
the extremal graphs with respect to the Lz index in the same class of graphs.

2. Preliminaries

Let Γ(V(Γ), E(Γ)) be a graph with edge-set E(Γ) and vertex-set V(Γ), such that e =
|E(Γ)| and u = |V(Γ)| are the size and order of the graph Γ, respectively. The adjacent
vertices r and s were treated by an edge e = rs. The edges that have the same starting
vertex and end vertex are known as loops. A connected graph Γ with |V(Γ)| = |E(Γ)| − 1
is called a tree (acyclic graph). Moreover, for a graph Γ, if |V(Γ)| = |E(Γ)|, then Γ is called a
unicyclic graph. This paper deals with simple (no loops and multiple edges) and undirected
graphs. For a detailed study of graph-related notions, please refer to [17]. We define some
TIs that are used in the present study for the development of our main results.

Definition 1 ([2,7]). The first Zagreb index and forgotten index (F-index) for a molecular graph Γ
are M1(Γ) = ∑

pq∈E(Γ)
[deg(p) + deg(q)] and F(Γ) = ∑

p∈V(Γ)
[deg(p)]3.

Definition 2 ([12]). The Lanzhou index (Lz index) for a molecular graph Γ is

Lz(Γ) = ∑
p∈V(Γ)

(deg(p))2( ¯deg(p)).

For more details on TIs, see [18–20].

If a graph is connected and ϕ-cyclic, then s = α− 1 + ϕ, where s is the total number of
edges (size) and α is the total number of vertices (order) of the graph. If ϕ = 0, then the
graph is a tree, if ϕ = 1 then the graph is unicyclic, and if ϕ = 2, then the graph is bicyclic.

Now, by using base graphs, we can use more unicyclic graphs. For u = α− lx, assume
that Cu is a cycle of order u, then the unicyclic graphs V(α, l, x) are obtained from Cu by
joining l leaves to the x ≥ 2 vertices of Cu, where α = |V(α, l, x)|. Moreover, suppose that
Py, Cv, and S1,l′ present the path, cycle, and star graph of order y, v, and l

′
+ 1. Then the

graph V ′(α, l
′
, y) is obtained by emerging one vertex of degree one of the path with Cv and

the other vertex of degree one with the central vertex of S1,l′ , where v = α− l
′ − y + 1 and

2 ≤ y ≤ α− l
′ − 2. If V = V(α, l, x) and V

′
= V ′(α, l

′
, y) then Tables 1 and 2 present the

vertex partition with respect to their degrees respectively as follows:



Symmetry 2022, 14, 2408 3 of 7

Table 1. Degree-vertex partition of V

deg(v), for v ∈ V 1 2 l + 2

|deg(v)| xl u− x x

Table 2. Degree-vertex partition V
′

deg(v), for v ∈ V
′

1 2 l
′
+ 1 3

|deg(v)| l
′ v + y− 3 1 1

For 2 ≤ x ≤ u, then Vx−l is obtained from the graph Vx−2 by removing (x − 1)l
leaves from the vertex whose degree is (x− 1)l + 2 and connect these vertices to the end
vertex whose degree is l + 2; for more details of this transformation, see Figure 1.

Γ Γ'

Figure 1. Γ
′

is constructed from Γ by the transformation (deleting a leaf from a cycle vertex of degree
three and joining to the vertex of degree six).

Now, we define V β
α = {Γ : |V(Γ)| = α and Γ have β leaves}; suppose three subclasses—

V1, V2, and V3 of V β
α , such that leaves are connected with the tree vertices, cycle vertices,

and both (and vice versa).

3. Main Results

In this section, we present our main findings related to the Lz index on the uni-
cyclic graphs.

Lemma 1. For two connected graphs, Γ1 and Γ2, of the same size and order with degree sequences
< deg1

1, deg1
2, deg1

3, . . . , deg1
α > and < deg2

1, deg2
2, deg2

3, . . . , deg2
α > if deg1

j = deg2
j for 1 ≤ j ≤ α,

then Lz(Γ1) = Lz(Γ2), where degi
j is the degree of vertices vi

j in Γi
j for 1 ≤ i ≤ 2 and

α = |V(Γ1)| = |V(Γ2)|.

Proof. If graphs are isomorphic, then we are done. Suppose that the graphs are non-
isomorphic. As deg1

j = deg2
j for 1 ≤ j ≤ α, consequently,

< deg1
1, deg1

2, deg1
3, . . . , deg1

α >=< deg2
1, deg2

2, deg2
3, . . . , deg2

α > .

Thus, for 1 ≤ j ≤ α
deg1

j = deg2
j

, then
α− 1− deg1

j = α− 1− deg2
j

, which implies that
¯deg1

j =
¯deg2

j



Symmetry 2022, 14, 2408 4 of 7

for 1 ≤ j ≤ α. Therefore,
α

∑
j=1

(deg1
j )

2 × ¯deg1
j =

α

∑
j=1

(deg2
j )

2 × ¯deg2
j , which implies that

Lz(Γ1) = Lz(Γ2).

Lemma 2. For a graph Γ(V(Γ), E(Γ)) and xy ∈ E(Γ), if Γ
′

is obtained from Γ by the deletion of
xy and joining x to z, i.e., Γ

′
= Γ− xy + xz. Then,

(1) Lz(Γ
′
) = Lz(Γ) if deg(z) = deg(y)− 1, or 3(deg(x) + deg(w)) = 2(α− 1)

(2) deg(z) > deg(y)− 1
(i) If 3(deg(z) + deg(y)) > 2(α− 1) then Lz(Γ) > lz(Γ

′
)

(ii) If 3(deg(z) + deg(y)) < 2(α− 1) then Lz(Γ
′
) > Lz(Γ)

(3) deg(z) < deg(y)− 1
(i) If 3(deg(z) + deg(y)) < 2(α− 1) then Lz(Γ) > Lz(Γ

′
)

(ii) If 3(deg(z) + deg(v)) > 2(α− 1) then Lz(Γ
′
) > Lz(Γ)

where deg(y) and deg(z) are degrees of y and z in Γ, and vice versa.

Proof. As deg(y) and deg(z) denote the degrees of y and z in Γ, and vice versa, we have

Lz(Γ)− Lz(Γ
′
) = (deg(y)2)(α− 1− deg(y)) + (deg(z)3)(α− 1− deg(z))

−((deg(y)− 1)2)(α− 1− (deg(y)− 1))− ((deg(z) + 1)2)(α− 1− (deg(z) + 1)

= (3deg(z) + 3deg(y)− 2α + 2)(deg(z)− (deg(y)− 1)).

Now, we face three cases for deg(z) = deg(y)− 1, deg(z) > deg(y)− 1, and deg(z) <
deg(y)− 1. So, we obtain the required results. Thus, we are done.

Lemma 3. For l ≥ 2, u, v ≥ 3, 2 ≤ x ≤ u, 2 ≤ y ≤ v− 3 and 0 ≤ i ≤ x− 1, Lz-index of Vi
and V

′
are

(i)Lz(Vi) = lx(α− 2)+ 4(u− x+ i)(α− 3)+ (l + 2)2(x− i− 1)(α− l− 3)+ ((i+ 1)l + 2)2(α− 3− (i+ 1)l)

(ii)Lz(V
′
) = l

′
(α− 2)+ 4(y+ v− 3)(α− 3)+ 9(α− 4)+ (l

′
+ 1)2(α− 2− l

′
).

Proof. By Definition 2, and Tables 1 and 2, the results are done.

Putting i = 0 in Lemma 3, we obtain the following results:

Corollary 1. For unicyclic graphs V, the Lz index is

Lz(V) = lx(α− 2) + 4(u− x)(α− 3) + x(l + 2)2(α− 3− l).

where l ≥ 2, u ≥ 3, and 2 ≤ x ≤ u.

Theorem 1. Let l ≥ 2, u, v ≥ 3, 2 ≤ x ≤ u, 2 ≤ y ≤ v− 3 and 0 ≤ i ≤ x− 1. Then,

(i) Lz(V ′(α, l, 2)) > Lz(V(α, l, 1)),

(ii) Lz(V ′(α, l, y)) = Lz(V ′(α, l, y+ 1)),

(iii) Lz(V(α, l, x)) > Lz(V ′(α, l, 2)),

(iv) Lz(V0) > Lz(V1) > . . . > Lz(Vx−1),

(v) Lz(V ′(α, l, y)) > Lz(V(α, l, 1)).
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Proof. (i) By placing x = 1 in Corollary 1, we have,

Lz(V(α, l, 1)) = l(α− 2) + 4(u− 1)(α− 3) + (l + 2)2(α− 3− l).

For y = 2, Lemma 3 (ii) gives

Lz(V ′(α, l
′
, 2)) = l

′
(α− 2) + 4(v− 1)(α− 3) + 9(α− 4) + (l

′
+ 1)2(α− 2− l

′
).

Since u = α− lx, v = α− l
′ − y + 1, l

′
= lx and u− v = l

′ − l + 1, for x = 1 and y = 2
we have

Lz(V ′(α, l
′
, 2)− Lz(V(α, l, 1))) = 11l + 3l2 + 2α− 14− 2lα > 0

Therefore, Lz(V ′(α, l
′
, 2)) > Lz(V(α, l, 1)) for l ≥ 2.

(ii) By using Lemma 3 (ii),

Lz(V ′(α, l
′
, y)) = l

′
(α− 2) + 4(v + y− 3)(α− 3) + 9(α− 4) + (l

′
+ 1)2(α− 2− l

′
).

Since for y = y + 1, we have v = v− 1. Hence,

Lz(V ′(α, l
′
, y + 1)) = l

′
(α− 2) + 4(v + y− 3)(α− 3) + 9(α− 4) + (l

′
+ 1)2(α− 2− l

′
).

Thus, Lz(V ′(α, l
′
, y)) = Lz(V ′(α, l

′
, y + 1)).

(iii) With the help of Corollary 1 and Lemma 3, we have

Lz(V ′(α, l
′
, 2)) = l

′
(α− 2) + 4(v− 1)(α− 3) + 9(α− 4) + (l

′
+ 1)2(α− 2− l

′
)and

Lz(V(α, l, x)) = lx(α− 2) + 4(u− x)(α− 3) + x(l + 2)2(α− 3− l).

Since u− v = l
′ − lx + 1, l

′
= lx and y = 2; hence,

Lz(V ′(α, l
′
, 2))− Lz(V(α, l, x)) = 2α+ l2x2(α− 4− lx)+ lx(13+ 7l− lα+ l2− 4α)− 14 < 0.

Therefore Lz(V(α, l, x)) > Lz(V ′(α, l
′
, 2)).

(iv) With the help of Lemma 3 (i), we have

Lz(Vi+1)− Lz(Vi) = 17il3− 8lα− 14l2− 6l3 + 4il2− 4lα− 2l2α− 6il2− 2il3− 4ilα+ 4i2l2.

By Lemma 2 (iii), Lz(Vi) > Lz(Vi+1). Using i = 0, 1, 2, 3, . . . , x− 2, we have Lz(V0)>
Lz(V1)> . . . > Lz(Vx−1).

(v) With the help of (i) and (ii), we have

Lz(V ′(α, l, 2)) > Lz(V(α, l, 1)) and Lz(V ′(α, l, y)) = Lz(V ′(α, l, y + 1)).

Therefore,

Lz(V ′(α, l, 2)) = Lz(V ′(α, l, 3)) = . . . = Lz(V ′(α, l, v− 3))

Thus, Lz(V ′(α, l, y)) > Lz(V(α, l, 1)) where 2 ≤ y ≤ v− 3.

Theorem 2. If l ≥ 2, u ≥ 3, 2 ≤ x ≤ u, β = lx and α ≥ 5 then, for every Γ ∈ V β
α

(a) Lz(V(α, l, x)) ≥ Lz(Γ),

(b) Lz(Γ) ≥ Lz(V(α, l, 1)),
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Furthermore, equality holds if Γ ∼= V ′(α, l, x) and Γ ∼= V(α, l, x) respectively.

Proof. (a) The proof is computed with the help of the following cases.
Case 1: Suppose that Γ ∈ V1 and Γ ∼= Vi where 1 ≤ i ≤ x− 1. Since, V(α, l, x) = V0;

therefore, by using Theorem 1 (iv) V(α, l, x)) ≥ Γ ∼= Vi where 1 ≤ i ≤ x− 1.
Case 2: If Γ ∈ V2, such that Γ ∼= V ′(α, l

′
, y). By using Theorems 1 (ii) and (iii), we have

Lz(V(α, l, x)) > Lz(V ′(α, l
′
, 2)) and

Lz(V ′(α, l
′
, 2)) = Lz(V ′(α, l

′
, 3)) = . . . = Lz(V ′(α, l

′
, y)).

Hence, Lz(V(α, l, x)) > Lz(V ′(α, l
′
, y)) for each y ≥ 2. If Γ ∈ V2 is other than

V ′(α, l
′
, y), then by applying the transformation of the addition and deletion of an edge, we

have Γ ∼= V ′(α, l
′
, y). Then by Theorem 1 (ii) and Lemma 2, we have

Lz(V(α, l, x)) > Lz(V ′(α, l
′
, y)). Therefore, Lz(V(α, l, x)) > Γ for each Γ ∈ V2.

Case 3: If Γ ∈ V3, then we have the following possibilities. (i) By applying the
transformations of the addition and deletion of the edges, we have Γ∗ ∈ V1 or Γ∗ ∈ V2,
such that Lz(Γ∗) ≥ Lz(Γ) by using Lemma 2. (ii) There exists Γ∗ ∈ Γ1 ∪ Γ2, Γ, and Γ∗,
which have the same degree sequence. Then, with the help of Lemma 2(i), Lz(Γ) = Lz(Γ∗);
eventually, we proved the above result with the help of case (i) and case (ii).

From the above cases, Lz(V(α, l, x)) ≥ Lz(Γ) for every Γ ∈ V β
α .

(b) The proof was done on the same pattern as in the above part (a) using Theorem 1
and Lemmas 2.

Theorem 3. Let V β
α be a class of unicyclic graphs in such a way that every graph has α order and β

leaves. Then,

4α(α− 3)− β2(β + 7)− β(6− αβ) + αβ ≤ Lz(Γ) ≤ 2(αβ + 2α2 − 7β− 6α)

for each Γ ∈ V β
α , where the upper bound is obtained if and only if Γ ∼= V(α, 1, x) and the lower

bound is obtained if and only if Γ ∼= V(α, l, 1).

Proof. With the help of Corollary 1, we have Lz(V(α, l, 1)) = 4α(α − 3) − β2(β + 7) −
β(6− αβ) + αβ and Lz(V(α, 1, x)) = 2(αβ + 2α2 − 7β − 6α) for β = lx leaves. Further-
more, with the help of Theorem 2, (a) Lz(V(α, l, x)) ≥ Lz(Γ) implies that Lz(V(α, 1, x)) ≥
Lz(V(α, l, x)) ≥ Lz(Γ) and Lz(Γ) ≥ Lz(V(α, l, 1)) for each V β

α Therefore, we obtain

4α(α− 3)− β2(β + 7)− β(6− αβ) + αβ ≤ Lz(Γ) ≤ 2(αβ + 2α2 − 7β− 6α)

for each Γ ∈ V β
α . Furthermore, the upper bound is obtained if and only if Γ ∼= V(α, 1, x)

and the lower bound is obtained if and only if Γ ∼= V(α, l, 1).

4. Conclusions

In this article, we computed the Lz index for each graph that belonged to the class
of unicyclic graphs with fixed pendent vertices. Moreover, we characterized the extremal
graphs with respect to the Lz index in the same class of graphs. For the illustration of the
obtained results, we presented the exact values of the Lz index (obtained by the definition)
and bounded values of the Lz index (using Theorem 3) for some unicyclic graphs in Table 3.
This table shows that the exact values fall within our established bounds.
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Table 3. The values of the Lz index for unicyclic graphs.

V(α, l, x) Exact value of Lz index Lower Bound of Lz index Upper Bound of Lz index

V(8, 2, 2) 152 120 168

V(6, 1, 3) 66 36 66

V(10, 2, 1) 220 216 292

V(11, 3, 2) 400 310 400

Open Problem: Investigate the lower and upper bounds of the Lz index for the classes
of bicyclic and tricyclic graphs with fixed pendent vertices.
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