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Abstract: In this paper, we explore model order reduction for large-scale square descriptor systems.
A balancing-free square-root method is proposed. The balancing-free square-root method is based on
two cross Gramians, one of which is known as the proper cross Gramian and the other as the improper
cross Gramian. The proper cross Gramian is the unique solution of a projected generalized continuous-
time Sylvester equation, and the improper cross Gramian solves a projected generalized discrete-time
Sylvester equation. In order to compute the low-rank factors of these two cross Gramians, we extend
the low-rank iteration of the alternating direction implicit method and the Smith method to the
projected generalized Sylvester equations. We illustrate the effectiveness of the balance truncation
method with one numerical example.
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1. Introduction

Model order reduction is essential in many applications. Modern systems are becom-
ing increasingly complex. Usually, at some stage in the design process, it is necessary to
use a sufficiently accurate and easy-to-implement reduced order modeling technology. In
typical applications, such as the semi-discretization of partial differential equations, VLSI
simulation, and multi-body dynamics, the state-space dimension of the system is very
large. In all these cases, the direct numerical simulations of such large-scale systems are
very expensive so they are not feasible to be implemented in a reasonable computation
time. This has inspired the concept of model reduction for large-scale systems (see, for
example, [1–4]).

We consider the model order reduction of a linear continuous-time time-invariant
descriptor system formulated using the following differential-algebraic equations:{

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are often called the states, the inputs, and
the outputs of the system, respectively, and the initial states are x(0) = x0. The matrices
E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are called the descriptor, state, input, and
output matrices. Linear descriptor systems appear frequently in engineering problems
including microelectromechanical system design [5] and electrical circuit design [6]. For a
comprehensive introduction to the descriptor system, including the structural properties,
system realization, and applications, interested readers can refer to the study in [7].

When E is an identity matrix, the system in (1) is called a standard system. There
are many model reduction methods for this system. The balanced truncation method [8],
which is based on Gramians, is the most classical model reduction method. Other methods
based on Gramians include singular perturbation [9] and optimal Hankel norm approxima-
tion [10]; see also, for example, [11–13] and the references therein. The moment-matching
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method is another kind of classical model reduction method. It exploits Krylov subspace
projections. For a comprehensive review of the moment-matching method, please refer
to the study in [14,15]. The balanced truncation method produces stable systems and has
bounds on the approximation error between the original systems and reduced systems
when it is applied to stable systems. This is its main advantage over the moment-matching
method. A main drawback of the balanced truncation method is that we must solve two
Lyapunov equations, which makes it impractical for large-scale systems. However, recent
developments in efficient implementations of numerical methods for Lyapunov equations
make the balanced truncation method attractive for the model reduction of large-scale sys-
tems. A balance model reduction has been proposed by applying the balanced truncation
method to the cross Gramian [16,17]. This approach is applied to symmetric systems and
only needs to solve one Sylvester equation. To make the cross-Gramian approach suitable
for nonsymmetric systems, a symmetrizer must be established (see, e.g., [17]).

For the model order reduction of the descriptor system in (1), we want to establish
a reduced-order descriptor, which has fewer states and is of the same form as (1). The
reduced-order system has the following form:{

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),
y(t) = Ĉx̂(t),

(2)

where the matrices Ê, Â ∈ Rl×l , B̂ ∈ Rl×m, and Ĉ ∈ Rp×l have fewer orders.
The balanced truncation model reduction method was extended to descriptor systems

by Stykel [18]. This approach is based on four Gramians (two controllability Gramians and
two observability Gramians). The main computational work is to solve two projected gen-
eralized continuous-time Lyapunov equations (PGCTLEs) and two projected generalized
discrete-time Lyapunov equations (PGDTLEs). The low-rank factors of the controllability
Gramian and observability Gramian can be efficiently computed by applying the low-
rank ADI iteration (LR-ADI) and the low-rank Smith iteration to the projected Lyapunov
equations (see, for example, [19]).

Inspired by the ideas in [16,17] for standard square systems, we propose in this paper
a model reduction method based on cross Gramians for large-scale square descriptor sys-
tems. This method is equivalent to the Gramian-based model reduction method presented
in [18] under some conditions. In this approach, we only need to solve two projected
generalized Sylvester equations. These two solutions are the proper cross Gramian and the
improper cross Gramian of the square descriptor system, respectively. For computing the
low-rank factors of the proper cross Gramian and the improper cross Gramian, we extend
the LR-ADI and the LR-Smith to the projected Sylvester equations.

So, the main contribution of this paper is the proposal of a cross-Gramian-based balanced
truncation model reduction for descriptor systems. For a SISO or a special square descriptor
system, we show that the cross-Gramian-based method and the Gramian-based method
theoretically generate the same reduced system. For square nonsymmetric systems, it is
shown through numerical experiments that the cross-Gramian-based method generates more
accurate reduced systems in the low-frequency range than the Gramian-based method.

In this paper, we use the following notations. Rm×n denotes the linear space of the
real m× n matrices. The spectral radius of A ∈ Rn×n is denoted by ρ(A). The 2-norm and
the Frobenius norms of a matrix are ‖A‖2 and ‖A‖F and κ(A) = ‖A‖2‖A−1‖2 is called the
condition number of the invertible matrix A.

The structure of the paper is as follows. We first review some concepts and results of
descriptor systems in Section 2 and then we outline the balanced truncation for descriptor
systems. The LR-ADI iteration and the Smith iteration for solving the projected Lyapunov
equations are listed for comparison. In Section 3, we propose a balancing-free square-root
model order reduction method for square descriptor systems. Numerical methods for
solving projected Sylvester equations are also developed. The numerical experiments are
presented in Section 4. Finally, we provide conclusions in Section 5.
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2. Model Reduction Based on Gramians

We first introduce some basic notations and briefly review the concepts of controllabil-
ity, observability, Hankel singular values, and balanced realization, and several important
results of studies on descriptor systems. Then we outline a balancing-free square-root
(BFSR) method for the model reduction of descriptor systems. Varga [20] first proposed
the BFSR method for standard systems. Stykel [18] generalized this method to descriptor
systems. Much of the material in this section is standard and can be found in [18,21].

2.1. Preliminaries

It is known that E, A have Weierstrass canonical decompositions [22]:

E = W
[

I 0
0 N

]
T, A = W

[
J 0
0 I

]
T, (3)

where W, T are nonsingular and J ∈ Rn f×n f , N ∈ Rn∞×n∞ are the block diagonal matrices.
We point out that each diagonal block is a Jordan block. The diagonal elements of J are the
finite eigenvalues of the pencil λE− A. The nilpotency index ν of N is named as the index
of the pencil λE− A.

Based on (3), we define Pl , Pr as

Pl = W
[

I 0
0 0

]
W−1, Pr = T−1

[
I 0
0 0

]
T. (4)

We know that Pr and Pl are the right and left deflating subspaces, which correspond
to the finite eigenvalues of the pencil λE− A, respectively.

Assume that the input u(t) = 0 for t < 0 and the initial state x(0) = 0. Then, by taking
the Laplace transform of the descriptor system in (1), we have{

sEx(s) = Ax(s) + Bu(s),
y(s) = Cx(s),

(5)

where x(s), y(s), u(s) represent the Laplace transforms of x(t), y(t), u(t), respectively. Elim-
inating x(s) in (5) results in the frequency domain of the input–output relation y(s) =
H(s)u(s), where H(s) is the transfer function

H(s) = C(sE− A)−1B.

For simplicity, we also denote the descriptor system in (1) by (E, A, B, C). Two sys-
tems (E, A, B, C) and (Ẽ, Ã, B̃, C̃) are called the restricted system equivalents if there exist
nonsingular matrices W̃, T̃ ∈ Rn×n such that

Ẽ = W̃ET̃, Ã = W̃AT̃, B̃ = W̃B, C = CT̃.

The pair (W̃, T̃) is called the system equivalence transformation. Note that under any
system equivalence transformation, the transfer function of the descriptor system in (1) is
invariant, i.e.,

H(s) = C(sE− A)−1B = C̃(sẼ− Ã)−1B̃ = H̃(s).

We assume that the descriptor system in (1) is stable, that is, the real parts of all finite
eigenvalues of λE− A are negative. As is shown in [18,21], the transfer function H(s) can
be written as

H(s) = Hsp(s) + P(s),

where

Hsp(s) = CPr(sE− A)−1Pl B, P(s) = C(I − Pr)(sE− A)−1(I − Pl)B
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are the strictly proper part and the polynomial part of H(s), respectively. For the strictly
proper part Hsp, its H∞ norm is defined by

‖Hsp‖H∞ = sup
ω∈R
‖Hsp(iω)‖2.

Definition 1 ([7,21,23,24]). The descriptor system H(s) = C(sE− A)−1B is called completely
controllable if

rank([αE− βA, B]) = n, ∀ (α, β) ∈ (C×C)\{(0, 0)},

and completely observable if square root

rank([αET − βAT , CT ]) = n, ∀ (α, β) ∈ (C×C)\{(0, 0)}.

Partition W−1B and CT−1 in blocks conformably to E and A in (3) as

W−1B =

[
B1
B2

]
, CT−1 =

[
C1 C2

]
.

Then, the following results hold for the descriptor system in (1) to be completely
controllable and completely observable.

Theorem 1 ([7,21,23,24]). Assume that λE− A is a regular pencil. Then, the following statements
are equivalent:

(a) the descriptor system H(s) = C(sE− A)−1B is completely controllable;
(b) rank([λE− A, B]) = n for all λ ∈ C and rank([E, B]) = n;
(c) rank([λI − J, B1]) = n f for all λ ∈ C and rank([N, B2]) = n∞;
(d) rank([B1, JB1, · · · , Jn f−1B1]) = n f and rank([B2, NB2, · · · , Nν−1B2]) = n∞.

Theorem 2 ([7,21,23,24]). Assume that λE− A is a regular pencil. Then, the following statements
are equivalent:

(a) the descriptor system H(s) = C(sE− A)−1B is completely observable;
(b) rank([λET − AT , CT ]) = n for all λ ∈ C and rank([ET , CT ]) = n;
(c) rank([λI − JT , CT

1 ]) = n f for all λ ∈ C and rank([NT , CT
2 ]) = n∞;

(d) rank([CT
1 , JTCT

1 , · · · , (Jn f−1)TCT
1 ]) = n f and rank([CT

2 , NTCT
2 , · · · , (Nν−1)TCT

2 ]) =
n∞.

Define

Gpc =
∫ ∞

0
F (t)BBTFT(t)dt, Gpo =

∫ ∞

0
FT(t)CTCF (t)dt,

where

F (t) = T−1
[

eJt 0
0 0

]
W−1.

The matrices Gpc,Gpo are the proper controllability and observability Gramians. We
also define

Gic =
ν−1

∑
k=0

FkBBT FT
k , Gio =

ν−1

∑
k=0

FT
k CTCFk,

where

Fk = T−1
[

0 0
0 −Nk

]
W−1, k = 0, 1, · · · , ν− 1.

The matrices Gic,Gio are the improper controllability and observability Gramians,
respectively.

Concerning the proper and improper Gramians, we have the following results.
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Theorem 3 ([18,21]). Let the pencil λE− A be stable. Then, the PGCTLEs

AGpcET + EGpc AT + Pl BBT PT
l = 0, Gpc = PrGpcPT

r , (6)

ATGpoE + ETGpo A + PT
r CTCPr = 0, Gpo = PT

l GpoPl , (7)

have unique symmetric, positive semidefinite solutions. Similarly, the unique solutions of the
PGDTLEs

AGic AT − EGicET = (I − Pl)BBT(I − Pl)
T , PrGicPT

r = 0, (8)

ATGio A− ETGioE = (I − Pr)
TCTC(I − Pr), PT

l GioPl = 0. (9)

are also symmetric, positive semidefinite. Moreover, the eigenvalues of GpcETGpoE and Gic ATGio A
are non-negative.

Definition 2 ([18,21]). Suppose that λE− A is a stable pencil. Let n f , n∞ be the dimensions of
the deflating subspaces of its finite and infinite eigenvalues, respectively. Then,

1. the proper Hankel singular values ζi are defined as the square roots of the largest n f eigenvalues
of GpcETGpoE.

2. the improper Hankel singular values θi are defined as the square roots of the largest n∞

eigenvalues of Gic ATGio A.

It was shown in [18,21] that after applying an equivalence transformation (W̃, T̃) to
the system, two controllability Gramians Gpc and Gic turn into

G̃pc = T̃−1GpcT̃−T , G̃ic = T̃−1GicT̃−T .

Similarly, two observability Gramians Gpo and Gio become

G̃po = W̃−TGpoW̃−1, G̃io = W̃−TGioW̃−1.

Moreover,

G̃pcẼTG̃po Ẽ = T̃−1GpcETGpoET̃, G̃ic ÃTG̃io Ã = T̃−1GicETGioET̃.

Thus, under any system equivalence transformation, the proper and improper Hankel
singular values of the descriptor system in (1) are invariant.

The concepts of the balanced realization and balance transformation of the standard
state-space system are generalized to the descriptor system in (1) as follows.

Definition 3 ([18,21]). Define Σ = diag(ζ1, ζ2, · · · , ζn f ) and Θ = diag(θ1, θ2, · · · , θn∞). If

Gpo = Gpc =

[
Σ 0
0 0

]
, Gio = Gic =

[
0 0
0 Θ

]
,

then (E, A, B, C) is called a balanced system.

Definition 4 ([18,21]). The system equivalence transformation (Wb, Tb) of the descriptor system
in (1) is called a balance transformation if the transformed realization (WbETb, Wb ATb, WbB, CTb)
is balanced.

2.2. Model Reduction Based on Gramians for Descriptor Systems

It is well known that Gramians are essential in a balanced truncation for standard
state-space systems. In this subsection, we outline the generalization for descriptor systems.
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Define the Cholesky factorizations [25] for the proper and improper Gramians
as follows:

Gpc = RpRT
p , Gpo = LpLT

p , Gic = RiRT
i , Gio = LiLT

i .

where Rp, Lp, Ri, Li ∈ Rn×n are the lower triangular matrices.
Then, we define the singular value decompositions [25] of LT

p ERp and LT
i ARi

as follows:
LT

p ERp = UpΣVT
p , LT

i ARi = UiΘVT
i .

Here, Up, Vp, Ui, Vi are orthogonal, and Σ = diag(ζ1, ζ2, · · · , ζn f ),
Θ = diag(θ1, θ2, · · · , θn∞). It was shown in [18,21] that if the descriptor system in (1)
is completely controllable and completely observable, then the system equivalence trans-
formation (Wb, Tb) defined by

Wb =

[
Σ−1/2UT

p LT
p

Θ−1/2UT
i LT

i

]
, Tb = [RpVpΣ−1/2, RiViΘ−1/2],

is a balance transformation of (1).
In [18], a balanced truncation square-root method was proposed for the model reduc-

tion of the descriptor system in (1). It is a direct generalization of the balanced truncation
square-root method for standard state-space systems.

As pointed out in [18], when the system is highly unbalanced, the balanced truncation
square-root method may be unstable. This will also happen when the deflating subspaces of
the finite and infinite eigenvalues have a small angle. To overcome this disadvantage, Stykel
proposed a BFSR model reduction method for descriptor systems, which is a generalization
of the BFSR method proposed in [20] for standard linear systems. This BFSR model
reduction method for the descriptor system in (1) is described in Algorithm 1.

Algorithm 1 The BFSR method based on Gramians

Input: the system matrices E, A, B, C.

Output: the reduced system matrices Ê, Â, B̂, Ĉ.

1. Compute the low-rank factors Rp, Lp, Ri, Li of Gpc,Gpo, Gic,Gio.
2. Compute the skinny SVD

LT
p ERp =

[
U1 U2

][ Σ1 0
0 Σ2

][
V1 V2

]T

with Σ1 = diag(ζ1, ζ2, · · · , ζl f
) and Σ2 = diag(ζl f +1, ζl f +2, · · · , ζrp)

with rp = rank(LT
p ERp).

3. Compute the skinny SVD
LT

i ARi = U3ΘVT
3 ,

where Θ = diag(θ1, θ2, · · · , θl∞) and l∞ = rank(LT
i ARi).

4. Compute the skinny QR factorization

[RpV1, RiV3] = QRR0, [LpU1, LiU3] = QLL0,

where the columns of QR, QL are orthonormal and those of R0, L0 are nonsingular.
5. Construct a reduced system

(Ê, Â, B̂, Ĉ) = (QT
L EQR, QT

L AQR, QT
L B, CQR).
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As shown in [18,26], the reduced system Ĥ(s) generated by the BFSR method is also
stable if the original system in (1) is c-stable. Moreover, the upper bound on the H∞ norm
of the error between the original system and the reduced system is given by

‖H − Ĥ‖H∞ ≤ 2(ζl f +1 + ζl f +2 + · · ·+ ζn f ). (10)

The main computational work in the BFSR method based on Gramians is to compute
the low-rank factors of the solutions of the PGCTLEs ((6) and (7)) and the PGDTLEs ((8) and
(9)). The low-rank factors of Gramians can be computed efficiently by the LR-ADI and the
LR-Smith [19]. These two methods are generalizations of the well-known LR-ADI and
LR-Smith [27] for standard continuous-time and discrete-time Lyapunov equations. For
completeness and comparison, we outline the LR-ADI and LR-Smith for solving the PGC-
TLEs and PGDTLEs in Algorithms 2 and 3, respectively. In [19,28], it was also proposed
how we should choose the shift parameters in the LR-ADI iteration.

Algorithm 2 LR-ADI for PGCTLE

Input: E, A, B; the shifts {τ1, τ2, · · · , τs}.

Output: Zk such that ZkZT
k is an approximate solution of the PGCTLE (6).

1. Compute Z(1) =
√
−2Re(τ1)(E + τ1 A)−1Pl B;

2. Set Z1 = Z(1);
3. For k = 2, 3, · · ·

Z(k) =

√
Re(τk)

Re(τk−1)
[I − (τ̄k−1 + τk)(E + τk A)−1 A]Z(k−1);

Zk = [Zk−1, Z(k)];
End For

Algorithm 3 LR-Smith for PGDTLE

Input: E, A, B.

Output: Z̃k such that Z̃kZ̃T
k is a solution of the PGDTLE (8).

1. Z̃(1) = A−1(I − Pl)B;
2. Set Z̃1 = Z̃(1);
3. For k = 2, 3, · · · , ν

Z̃(k) = A−1EZ̃(k−1);
Z̃k = [Z̃k−1, Z̃(k)];

End For

3. Model Reduction Based on Cross Gramians

In this section, we consider the model reduction method based on cross Gramians for
square descriptor systems. First, we present the definition of the proper cross Gramian
and improper cross Gramian and show that the proper cross Gramian of the square de-
scriptor system in (1) is the unique solution of a projected generalized continuous-time
Sylvester equation (PGCTSE), whereas the improper cross Gramian is the unique solution
of a projected generalized discrete-time Sylvester equation (PGDTSE). Then, a balancing
transformation for the square descriptor system in (1) is established by exploiting the proper
cross Gramian and improper cross Gramian. Finally, we develop a cross-Gramian-based
BFSR model reduction method. Moreover, we also consider the numerical solution of the
PGCTSE and PGDTSE and generalize the LR-ADI and LR-Smith methods to these two
matrix equations.
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3.1. Cross-Gramian-Based Balanced Realization

Cross Gramians [17,29] are another kind of Gramian and are defined only for standard
square systems. We can extend them to a square descriptor system as follows.

Definition 5. For a stable square descriptor system H(s) = C(sE − A)−1B, its proper cross
Gramian is defined as

X =
∫ ∞

0
F (t)BCF (t)dt (11)

and its improper cross Gramian is defined as

Y =
ν−1

∑
k=0

FkBCFk. (12)

It is easy to show that the proper cross Gramian X is the unique solution of the PGCTSE

AXE + EXA + Pl BCPr = 0, X = PrXPl , (13)

whereas the improper cross Gramian Y is the unique solution of the PGDTSE

AYA− EYE = (I − Pl)BC(I − Pr), PrYPl = 0. (14)

Theorem 4. Let (1) be a SISO descriptor system or a square descriptor system with C(PA)kPB =
(C(PA)kPB)T for all k ≥ 0, where

P = T−1
[

I 0
0 0

]
W−1.

Assume that this system is completely controllable and completely observable. Then, we have

(XE)2 = GpcETGpoE.

Proof. Define

X̂ = TXW =

[
X̂11 X̂12
X̂21 X̂22

]
,

where X̂11 ∈ Rn f×n f , X̂22 ∈ Rn∞×n∞ , X̂12 ∈ Rn f×n∞ , and X̂21 ∈ Rn∞×n f .
Partition W−1B and CT−1 appropriately as

W−1B =

[
B1
B2

]
, CT−1 =

[
C1 C2

]
.

We can show that the solution X of the PGCTSE (13) can be formulated as

X = T−1
(

X̂11 0
0 0

)
W−1, (15)

where X̂11 is the solution of
JX̂11 + X̂11 J + B1C1 = 0. (16)

Correspondingly, the solutions Gpc and Gpo of the PGCTLEs ((6) and (8)) can be
expressed as

Gpc = T−1

(
Ĝ(11)

pc 0
0 0

)
T−T , (17)

Gpo = W−T

(
Ĝ(11)

po 0
0 0

)
W−1, (18)
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where Ĝ(11)
pc and G(11)

po are, respectively, the solutions of

JĜ(11)
pc + Ĝ(11)

pc JT + B1BT
1 = 0, (19)

JTĜ(11)
po + Ĝ(11)

po J + CT
1 C1 = 0. (20)

Since H(s) = C(sE− A)−1B is completely controllable and completely observable, it
follows from Theorems 1 and 2 that the standard stable system C1(sI − J)−1B1 is control-
lable and observable. On the one hand, if H(s) is a SISO system, then C1(sI − J)−1B1 is
also a SISO system. On the other hand, if H(s) is a system with C(PA)kPB = (C(PA)kPB)T

for all k ≥ 0, it is easy to verify that C1 JkB1 = (C1 JkB1)
T for all k ≥ 0, i.e., C1(sI − J)−1B1

is a symmetric system. Thus, from [17], it follows that X̂2
11 = Ĝ(11)

pc Ĝ
(11)
po , and X̂11 can be

decomposed into X̂11 = ZXDXZ−1
X with DX being a real diagonal nonsingular matrix.

It follows from (15) and (3) that

XE = T−1
(

X̂11 0
0 0

)
W−1W

[
I 0
0 N

]
T = T−1

(
X̂11 0

0 0

)
T.

Thus, we obtain

(XE)2 = T−1
(

X̂2
11 0
0 0

)
T.

By (17), (18), and (3), we obtain

GpcETGpoE = T−1

(
Ĝ(11)

pc Ĝ
(11)
po 0

0 0

)
T. (21)

Thus,
(XE)2 = GpcETGpoE.

Theorem 5. Let (1) be a SISO descriptor system or a square descriptor system with C(P̃A)k P̃B =
(C(P̃A)k P̃B)T for all k ≥ 0, where

P̃ = T−1
[

0 0
0 I

]
W−1.

Assume that H(s) = C(sE− A)−1B is completely controllable and completely observable.
Then, we have

(YA)2 = Gic ATGio A.

Proof. Define

Ŷ = TYW =

[
Ŷ11 Ŷ12
Ŷ21 Ŷ22

]
,

where Ŷ11 ∈ Rn f×n f , Ŷ22 ∈ Rn∞×n∞ , Ŷ12 ∈ Rn f×n∞ , and Ŷ21 ∈ Rn∞×n f .
Similarly, it is easy to show that the solution Y of the PGDTSE (14) can be

formulated as

Y = T−1
(

0 0
0 Ŷ22

)
W−1, (22)

where Ŷ22 is the solution of
Ŷ22 − NŶ22N = B2C2.
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That is, Ŷ22 can be formulated as

Ŷ22 =
γ−1

∑
k=0

NkB2C2Nk.

We now consider the improper Gramians Gic and Gio, which are, respectively, the
solutions of these two PGDTLEs ((7) and (9)). We have

Gic = T−1

(
0 0
0 Ĝ(22)

ic

)
T−T , (23)

Gio = W−T

(
0 0
0 Ĝ(22)

io

)
W−1, (24)

where Ĝ(22)
ic and G(22)

io are the solutions of

Ĝ(22)
ic − NĜ(22)

ic NT = B2BT
2 ,

Ĝ(22)
io − NTĜ(22)

io N = CT
2 C2,

i.e.,

Ĝ(22)
ic =

γ−1

∑
k=0

NkB2BT
2 (NT)k, Ĝ(22)

io =
γ−1

∑
k=0

(NT)kCT
2 C2Nk.

Since H(s) = C(sE− A)−1B is a SISO descriptor system or a square descriptor system
with C(P̃A)k P̃B = (C(P̃A)k P̃B)T for all k ≥ 0, it follows that for any i, j ≥ 0,

NiB2BT
2 (NT)i ∗ (NT)jCT

2 C2N j = NiB2C2Ni ∗ N jB2C2N j.

Therefore, Ŷ2
22 = Ĝ(22)

ic Ĝ
(22)
io , i.e., (YA)2 = Gic ATGio A. Correspondingly, Ŷ22 can be

decomposed into X̂22 = ZYDYZ−1
Y , with DY being a real diagonal nonsingular matrix.

It is shown that GpcETGpoE has n f positive eigenvalues and Gic ATGio A has n∞ positive
eigenvalues. The square roots of the largest n f eigenvalues of GpcETGpoE, denoted by ζ j,
are called the proper Hankel singular values of H(s) = C(sE− A)−1B, whereas the square
roots of the largest n∞ eigenvalues of Gic ATGio A, denoted by θj, are called the improper
Hankel singular values of H(s) = C(sE− A)−1B.

From (21), it follows that the largest n f eigenvalues of GpcETGpoE are also the eigen-

values of Ĝ(11)
pc Ĝ

(11)
po . Thus, from [17], we have

|DX |1/2Z−1
X Ĝ

(11)
pc Z−T

X |DX |1/2 = |DX |−1/2ZT
XĜ

(11)
po ZX |DX |−1/2 = Σ, (25)

where Σ = diag(ζ1, ζ2, · · · , ζn f ). Similarly, we have

|DY|1/2Z−1
Y Ĝ

(22)
ic Z−T

Y |DY|1/2 = |DY|−1/2ZT
Y Ĝ

(22)
io ZY|DY|−1/2 = Θ, (26)

where Θ = diag(θ1, θ2, · · · , θn∞).
Partition T−1 and W−1 as

T−1 =
[

T1 T2
]
, W−1 =

[
W1
W2

]
,

where T1 ∈ Rn×n f and W1 ∈ Rn f×n.
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Define

Wb =

[
|DX |1/2Z−1

X W1
|DY|1/2Z−1

Y W2

]
, Tb = [T1ZX |DX |−1/2, T2ZY|DY|−1/2]. (27)

By (25) and (26), we obtain

T−1
b GpcT−T

b = W−T
b GpoW−1

b =

[
Σ 0
0 0

]
,

T−1
b GicT−T

b = W−T
b GioW−1

b =

[
0 0
0 Θ

]
.

Thus, (Wb, Tb) defined as in (27) is a balancing transformation of the descriptor system
H(s) = C(sE− A)−1B.

Assume that the proper cross Gramian X and the improper cross Gramian Y are
formulated as follows:

X = ZX Z̃T
X , Y = ZY Z̃T

Y .

Let Z̃T
XEZX = UXDXU−1

X and Z̃T
Y AZY = UYDYU−1

Y , respectively, be the Jordan de-
compositions of Z̃T

XEZX and Z̃T
Y AZY. Define

Wb =

[
|DX |1/2U−1

X Z̃T
X

|DY|1/2U−1
Y Z̃T

Y

]
, Tb = [ZXUX |DX |−1/2, ZYUY|DY|−1/2].

Similarly, we can show that (Wb, Tb) as defined above is also a balancing transforma-
tion of the descriptor system H(s) = C(sE− A)−1B.

For more details on the balancing transformation of a descriptor system, the interested
reader is referred to [18].

3.2. Cross-Gramian-Based Model Reduction

The cross-Gramian-based version of the BFSR method for standard state-space systems
was proposed by Baur and Benner [16]. In this subsection, we extend the idea to obtain a
cross-Gramian-based BFSR method for square descriptor systems.

The balancing-free square-root method is more stable numerically than the square-
root method when the system has poor balance (see, for example, [20]). The BFSR model
reduction method for the descriptor system in (1) is described in Algorithm 4.

As we know, the reduced system for the standard system generated by the BFSR
model reduction method is stable. Note that the transfer function H(s) can be written
as H(s) = Hsp(s) + P(s), where Hsp(s) and P(s) are the strictly proper rational part
and the polynomial part of H(s), respectively. Following [18], we can prove that the
reduced transfer function is Ĥ(s) = Ĥsp(s) + P(s), that is, that H(s) and Ĥ(s) have the
same polynomial part. Then, under the conditions in Theorems 4 and 5, the stability and
error bounds

‖H − Ĥ‖H∞ = ‖Hsp − Ĥsp‖H∞ ≤ 2(ζl f +1 + ζl f +2 + · · ·+ ζn f )

can be proved similarly to [16].
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Algorithm 4 The BFSR method based on cross Gramians

Input: E, A, B, C.

Output: (Ê, Â, B̂, Ĉ).

1. Compute the low-rank matrix ZX , Z̃X ∈ Rn×r of the proper cross Gramian X.
2. Compute the low-rank factors ZY, Z̃Y ∈ Rn×r of the improper cross Gramian Y.
3. Compute the real Schur decomposition

Z̃T
XEZX =

[
U1 U2

][ Φ1 ?
0 Φ2

][
U1 U2

]T ,

where Φ1 ∈ Rl f×l f , Φ2 ∈ R(r−l f )×(r−l f ) with |λi(Φ1)| ≥ |λj(Φ2)|, i = 1, 2, · · · , l f , j =
1, 2, · · · , r− l f .

4. Compute the real Schur decomposition

ZT
XET Z̃X =

[
Ũ1 Ũ2

][ Φ̃1 ?

0 Φ̃2

][
Ũ1 Ũ2

]T ,

where Φ̃1 ∈ Rl f×l f , Φ̃2 ∈ R(r−l f )×(r−l f ) with |λi(Φ̃1)| ≥ |λj(Φ̃2)|, i = 1, 2, · · · , l f , j =
1, 2, · · · , r− l f .

5. Compute the real Schur decomposition

Z̃T
Y AZY = VΘVT .

6. Compute the real Schur decomposition

ZT
Y AT Z̃Y = ṼΘ̃ṼT .

7. Compute the skinny QR decompositions

[ZXU1, ZYV] = QRR0, [Z̃XŨ1, Z̃YṼ] = QLL0,

where the columns of QR, QL ∈ Rn×l are orthonormal, and the matrices R0, L0 ∈ Rl×l

are nonsingular.
8. Construct the reduced system matrices

(Ê, Â, B̂, Ĉ) = (QT
L EQR, QT

L AQR, QT
L B, CQR).

3.3. Low-Rank Iterative Methods for PGCTSE and PGDTSE

We now study how to compute the low-rank factors of the solutions of the
PGCTSE (13) and the PGDTSE (14).

By multiplying Equation (13) by A−1 on the left and right, respectively, we obtain the
following projected matrix equation

(A−1E)X + XEA−1 + A−1Pl BCPr A−1 = 0, X = PrXPl . (28)

Following the idea of the ADI iteration, we can produce the iterates Xk for (28) by
solving the following matrix equations

(A−1E + τk I)Xk− 1
2
=− Xk−1(EA−1 − τk I)− A−1Pl BCPr A−1,

Xk(EA−1 + τ̄k I) =− (A−1E− τ̄k I)Xk− 1
2
− A−1Pl BCPr A−1.
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The real parts of the shift parameters are negative, that is, {τk} belong to C−. The
initial iterate is X0 = 0. These two iteration steps can be rewritten into one single iteration
step as follows:

Xk = (A−1E + τk I)−1(A−1E− τ̄k I)Xk−1(EA−1 − τk I)(EA−1 + τ̄k I)−1

−2Re(τk)(A−1E + τk I)−1 A−1Pl BCPr A−1(EA−1 + τ̄k I)−1. (29)

We can rewrite the iteration (29) as

Xk = (E + τk A)−1(E− τ̄k A)Xk−1(E− τk A)(E + τ̄k A)−1

−2Re(τk)(E + τk A)−1Pl BCPr(E + τ̄k A)−1. (30)

After some simple calculations, we can obtain the expression of the error matrix X−Xk
Let X denote the exact solution of (13).

X− Xk = (E + τk A)−1(E− τ̄k A)(X− Xk−1)(E− τk A)(E + τ̄k A)−1

= · · ·
= AkXÃk,

(31)

where X is the solution of (13), and

Ak = Pr(E + τk A)−1(E− τ̄k A) · · · (E + τ1 A)−1(E− τ̄1 A), (32)

and
Ãk = (E− τ1 A)(E + τ̄1 A)−1 · · · (E− τk A)(E + τ̄k A)−1Pl . (33)

By using (3) and (4), we obtain

Ak = T−1
[

Jk 0
0 0

]
T, Ãk = W

[
J̃k 0
0 0

]
W−1, (34)

where

Jk = (I + τk J)−1(I − τ̄k J) · · · (I + τ1 J)−1(I − τ̄1 J),

J̃k = (I − τ1 J)(I + τ̄1 J)−1 · · · (I − τk J)(I + τ̄k J)−1.

From Equation (31), it is obvious that we should choose the shift parameters {τk} so
that ‖Ak‖2 · ‖Ãk‖2 is as small as possible.

From Equations (31)–(34), it follows that for the ADI approximate solution Xk, the
following error estimate holds.

Theorem 6. Suppose that J in (3) is a diagonal matrix. Then, we have

‖X− Xk‖2 6 κ(W)κ(T)ρ(Ãk)ρ(Ak)‖X‖2.

Now, we consider constructing a low-rank ADI iteration. Assume that the iteration Xk
has a low-rank form as

Xk = ZkZ̃T
k .

We point out that since the initial iteration X0 is set to the zero matrix, the previous
assumption always holds. By using Xk−1 = Zk−1Z̃T

k−1, the low-rank ADI iteration step in
(30) can be rewritten as follows:

Xk = ZkZ̃T
k ,
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where

Zk =
[ √
−2Re(τk)(E + τk A)−1Pl B (E + τk A)−1(E− τ̄k A)Zk−1

]
,

Z̃T
k =

[ √
−2Re(τk)CPr(E + τ̄k A)−1

Z̃T
k−1(E− τk A)(E + τ̄k A)−1

]
.

Since both Z0 and Z̃0 are zero matrices, it follows that Zk and Z̃k are n× km. So, the
rank of the approximation solution Xk is less than or equal to km. By reversing the order of
the ADI parameters {τk} as in [30], we obtain the following iteration step

Zk =
[

Z(1) Z(2) · · · Z(k)
]
,

Z̃T
k =


(Z̃(1))T

(Z̃(2))T

· · ·
(Z̃(k))T

,

where

Z(1) =
√
−2Re(τ1)(E + τ1 A)−1Pl B,

Z(k) =

√
Re(τk)

Re(τk−1)
(E + τk A)−1(E− τ̄k−1 A)Z(k−1), k ≥ 2,

(Z̃(1))T =
√
−2Re(τ1)CPr(E + τ̄1 A)−1,

(Z̃(k))T =

√
Re(τk)

Re(τk−1)
(Z̃(k−1))T(E− τk−1 A)(E + τ̄k A)−1, k ≥ 2.

Summarily, we obtain LR-ADI for solving the PGCTSE (13), which is described in
Algorithm 5.

Algorithm 5 LR-ADI for PGCTSE

Input: E, A, B, C; the ADI shifts {τ1, τ2, · · · , τs}.

Output: Zk such that ZkZ̃T
k is an approximate solution of the PGCTSE (13).

1. Compute Z(1) =
√
−2Re(τ1)(E + τ1 A)−1Pl B, Z1 = Z(1);

2. Compute (Z̃(1))T =
√
−2Re(τ1)CPr(E + τ̄1 A)−1, Z̃T

1 = (Z̃(1))T ;
3. For k = 2, 3, · · ·

Z(k) =

√
Re(τk)

Re(τk−1)
[I − (τ̄k−1 + τk)(E + τk A)−1 A]Z(k−1);

Zk = [Zk−1, Z(k)];

(Z̃(k))T =

√
Re(τk)

Re(τk−1)
(Z̃(k−1))T [I − (τk−1 + τ̄k)A(E + τ̄k A)−1];

Z̃T
k =

[
Z̃T

k−1
(Z̃(k))T

]
;

End For

We note that we reuse these shift parameters circularly, as the number of parameters
in Algorithm 5 is less than the number of iterations required to obtain an approximation
solution, which has an error below a specified tolerance.

We now consider how to choose the shift parameters. These shift parameters are
extremely important to the success of LR-ADI. In Theorem 6, we can see that the spectral



Symmetry 2022, 14, 2400 15 of 20

radii of two matrices Ak and Ãk in (34) determine the rate of convergence of the ADI
iteration. Thus, we choose the shift parameters {τj}k

j=1 so that Ak and Ãk have as small
spectral radii as possible. This leads to a generalized minimax problem as follows:

min
{τ1,...,τk}∈C−

max
x∈E f

k

∏
j=1

∣∣∣∣∣ (1− τ̄jx)(1− τjx)
(1 + τjx)(1 + τ̄jx)

∣∣∣∣∣,
where E f denotes a set of finite eigenvalues of the pencil λE − A. In practice, we do
not know the exact eigenvalues of the pencil λE− A. Often, it is expensive to compute
these eigenvalues. So, we will replace E f with a domain, which contains the eigenvalues
of λE− A. Since A is a nonsingular matrix, the minimax problem can be reformulated
equivalently as

min
{τ1,...,τk}⊂C−

max
x∈E\{0}

k

∏
j=1

∣∣∣∣∣ (x− τj)(x− τ̄j)

(x + τj)(x + τ̄j)

∣∣∣∣∣, (35)

where E denotes the domains containing the spectra of the matrices A−1E.
In [19], Stykel extended the idea in [28] to propose a heuristic algorithm for choosing

the ADI parameters. By some simple calculation, we have

PA = T−1
[

J 0
0 0

]
T.

Note that the largest eigenvalues of PA are the reciprocals of the smallest non-zero
eigenvalues of A−1E. So, in order to obtain the smallest non-zero eigenvalues of A−1E, we
apply the Arnoldi process to the matrix PA. We point out that the matrices P, Pr, Pl , can be
computed easily from some special block structures of E, A in some applications.

Now, we consider how to solve the PGDTSE (14) numerically. It is easy to verify that
the solution Y of the PGDTSE (14) can be expressed as

Y =
ν−1

∑
i=0

(A−1E)i A−1(I − Pl)BC(I − Pr)A−1(EA−1)i.

So, we can rewrite the matrix Y in the low-rank form as

Y = ZZ̃T ,

where Z and Z̃T are given by

Z = [A−1(I − Pl)B, (A−1E)A−1(I − Pl)B, · · · , (A−1E)ν−1 A−1(I − Pl)B],

Z̃T =


C(I − Pr)A−1

C(I − Pr)A−1(EA−1)
...

C(I − Pr)A−1(EA−1)ν−1

.

From the low-rank expression of Y, we can propose the following low-rank Smith method
for the PGDTSE, which is described in Algorithm 6.
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Algorithm 6 LR-Smith for PGDTSE

Input: E, A, B, CT .

Output: low-rank factors Z and Z̃ of the solution Y of the PGDTSE (14).

1. Compute Z1 = A−1(I − Pl)B
2. Compute Z̃T

1 = C(I − Pr)A−1;
3. Z = Z1, Z̃T = Z̃T

1 ;
4. For k = 1, · · · , ν− 1

Zk+1 = A−1EZk;
Z̃T

k+1 = Z̃T
k EA−1;

Z = [Z, Zk+1];

Z̃T =

[
Z̃T

Z̃T
k+1

]
;

End For

We point out that the main cost of balanced truncation methods is in solving matrix
equations. For the cross-Gramian-based method and the Gramian-based method, two
systems of linear equations with coefficient matrices E + τA or A are required to be solved
in every iteration step of the low-rank ADI and the Smith methods. In the numerical test,
the low-rank ADI and the Smith methods have the same number of iterations. So, the
cross-Gramian-based approach has approximately the same computational complexity as
the Gramian-based BFSR method.

4. Numerical Experiments

In this section, we present an example to illustrate the performance of the cross-
Gramian-based BFSR method (Algorithm 4) for the model reduction of the descriptor
system in (1). For the purpose of comparison, we also present the test results obtained by
the Gramian-based BFSR method (Algorithm 1).

In the LR-ADI method and the Smith method for the computation of the low-rank
factors of Gramians or cross Gramians, we solve the linear systems with the coefficient
matrices A or E− τi A. In our test, we employ the LU factorization of the coefficient matrices
to solve the corresponding linear systems.

In the following test, the iteration of the LR-ADI method or Smith method for solving
the Lyapunov or Sylvester equations is stopped as soon as the normalized residual norm is
less than 10−10.

The example we choose is the 2D instationary Stokes equation. It describes the flow of
an incompressible fluid in a given domain. To construct a descriptor system, we discrete
spatially the Stokes equation by applying the finite difference method with a uniform
staggered grid. We obtain a descriptor system (1), where the matrices E, A are sparse and
have special block structures as follows:

E =

[
I 0
0 0

]
∈ Rn×n, A =

[
A11 A12
A21 0

]
∈ Rn×n.

We note that the projection Pl , Pr can be formulated explicitly as

Pl =

[
Π −ΠA11 A12(A21 A12)

−1

0 0

]
, Pr =

[
Π 0

−(A21 A12)
−1 A21 A11Π 0

]
,
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where the orthogonal matrix Π is defined as Π = I − A12(A21 A12)
−1 A21. Moreover, we

can formulate the product matrix PA as

PA =

[
ΠA11Π 0

−(A21 A12)
−1 A21 A11ΠA11Π 0

]
,

See [31,32] for more details. In this example, two matrices A12 and A21 are of full rank.
Thus, the pencil λE− A has an index of 2. In the numerical experiment, the descriptor
system has the state-space dimension n = 2132.

We first consider the SISO system, i.e., m = p = 1. In this case, the analysis in Section 3
showed that the Gramian-based BFSR method and the cross-Gramian-based BFSR method
should produce the same reduced system for the same reduced order. In Figures 1 and 2,
we present the absolute errors |H(iω)− Ĥ(iω)| for these two methods in a frequency range
[10−4, 106]. From Figures 1 and 2, it is clear that the errors for the Gramian-based BFSR
method and the cross-Gramian-based BFSR method are almost indistinguishable.
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Figure 1. The frequency response errors of the SISO reduced system generated by the Gramian-based
BFSR method and the cross-Gramian-based BFSR method with the reduced order l = 9.
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Figure 2. The frequency response errors of the SISO reduced system generated by the Gramian-based
BFSR method and the cross-Gramian-based BFSR method with the reduced order l = 11.
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In the following experiment, we test the model order reduction of the square MIMO
descriptor system with m = p = 2. In the experiment, the first column and rows B and C
are the same as those in the previous experiment. The second column of B is [1, 1, · · · , 1]T ,
whereas the second row of C is [0, 0, · · · , 0, 1]. Since the conditions of Theorems 4 and 5 do
not hold in this case, the reduced systems generated by the Gramian-based BFSR method
and the cross-Gramian-based BFSR method are usually different.

In Figures 3–5, we display the (1, 1)-th element of the absolute errors. We can see
that the errors for the cross-Gramian-based BFSR method are fewer than those for the
Gramian-based BFSR method in almost the whole frequency range [10−4, 102]. This shows
that the cross-Gramian-based BFSR method may generate more accurate reduced systems
in low-frequency ranges.

It was shown in [16] that the cross-Gramian-based BFSR method can generate more
accurate approximations for standard square nonsymmetric state-space systems since it
computes the projection matrices QL, QR from the cross Gramians. From the experimental
results above, we can see that this maybe also holds true for square descriptor systems.
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Figure 3. The frequency response errors of the MIMO reduced system generated by the Gramian-
based BFSR method and the cross-Gramian-based BFSR method with the reduced order l = 16.
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Figure 4. The frequency response errors of the MIMO reduced system generated by the Gramian-
based BFSR method and the cross-Gramian-based BFSR method with the reduced order l = 21.
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Figure 5. The frequency response errors of the MIMO reduced system generated by the Gramian-
based BFSR method and the cross-Gramian-based BFSR method with the reduced order l = 36.

5. Conclusions

We have proposed a balancing-free square-root model reduction method based on
cross Gramians for square descriptor systems in this paper. It is an extension of the
balancing-free square root-model reduction method based on Gramians for square stan-
dard systems. This model reduction method can be implemented efficiently by exploiting
the low-rank ADI and Smith methods for solving projected Sylvester equations. Numer-
ical experiments illustrate the effectiveness of the cross-Gramian-based balanced trunca-
tion method.

Funding: This research was funded by the Natural Science Foundation of Hunan Province under
grant 2017JJ2102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Acknowledgments: Yiqin Lin is supported by the Natural Science Foundation of Hunan Province
under grant 2017JJ2102, the Academic Leader Training Plan of Hunan Province, and the Applied
Characteristic Discipline at Hunan University of Science and Engineering.

Conflicts of Interest: The author declares that there are no conflict of interest.

References
1. Alfke, D.; Feng, L.; Lombardi, L.; Antonini, G.; Benner, P. Model order reduction for delay systems by iterative interpolation. Int.

J. Numer. Methods Eng. 2020, 122, 684–706.
2. Benner, P.; Gugercin, S.; Willcox, K. A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems.

SIAM Rev. 2015, 57, 483–531.
3. Lu, K.; Yu, H.; Chen, Y.; Cao, Q.; Hou, L. A modified nonlinear POD method for order reduction based on transient time series.

Nonlinear Dyn. 2015, 79, 1195–1206.
4. Lu, K. Statistical moment analysis of multi-degree of freedom dynamic system based on polynomial dimensional decomposition

method. Nonlinear Dyn. 2018, 93, 2003–2018.
5. Allen, J.J. Micro Electro Mechanical System Design; CRC Press: Boca Raton, FL, USA, 2005.
6. Günther, M.; Feldmann, U. CAD-based electric-circuit modeling in industry. i. mathematical structure and index of network

equations. Surv. Math. Ind. 1999, 8, 97–129.



Symmetry 2022, 14, 2400 20 of 20

7. Dai, L. Singular Control Systems; Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 1989;
Volume 118.

8. Moore, B.C. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans.
Automat. Control 1981, 26, 17–32. [CrossRef]

9. Liu, Y.; Anderson, B.D.O. Singular perturbation approximation of balanced systems. Int. J. Control 1989, 50, 1379–1405.
10. Glover, K. All optimal Hankel-norm approximations of linear multivariable systems and their l∞-errors bounds. Int. J. Control

1984, 39, 1115–1193. [CrossRef]
11. Benner, P.; Mehrmann, V.; Sorensen, D.C. (Eds.) Dimension Reduction of Large-Scale Systems; Lecture Notes in Computational

Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2005; Volume 45.
12. Antoulas, A.C. Approximation of Large-Scale Dynamical Systems; SIAM: Philadelphia, PA, USA, 2005.
13. Antoulas, A.C.; Sorensen, D.C.; Gugercin, S. A survey of model reduction methods for large-scale systems. Contemp. Math. 2001,

280, 193–219.
14. Bai, Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 2002,

43, 9–44.
15. Freund, R.W. Model reduction methods based on krylov susbspace. Acta Numer. 2003, 12, 267–319.
16. Baur, U.; Benner, P. Cross-gramian based model reduction for data-sparse systems. Electr. Trans. Numer. Anal. 2008, 31, 256–270.
17. Sorensen, D.C.; Antoulas, A.C. The sylvester equation and approximate balanced reduction. Linear Algebra Appl. 2002, 352,

671–700. [CrossRef]
18. Gramian-based model reduction for descriptor systems. Math. Control Signals Systems 2004, 16, 297–319. [CrossRef]
19. Low-rank iterative methods for projected generalized Lyapunov equations. Elect. Trans. Numer. Anal. 2008, 30, 187–202.
20. Varga, A. Efficient minimal realization procedure based on balancing. In Proceedings of the IMACS/IFAC Symposium on

Modelling and Control of Technological Systems, Lille, France, 7–10 May 1991; Volume 2, pp. 42–47.
21. Stykel, T. Analysis and Numerical Solution of Generalized Lyapunov Equations. Ph.D. Thesis, Technische Universität Berlin,

Berlin, Germany , 2002.
22. Gantmacher, F. Theory of Matrices; Chelsea: New York, NY, USA, 1959.
23. Cobb, D. Controllability, observability, and duality in singular systems. IEEE Trans. Automat. Control 1984, 29, 1076–1082.
24. Yip, E.L.; Sincovec, R.F. Solvability, controllability and observability of continuous descriptor systems. IEEE Trans. Automat.

Control 1981, 26, 702–707.
25. Golub, G.H.; Loan, C.F.V. Matrix Computations, 3rd ed.; Johns Hoplins University Press: Baltimore, MD, USA, 1996.
26. Mehrmann, V.; Stykel, T. Balanced truncation model reduction for large-scale systems in descriptor form. In Dimension Reduction

of Large-Scale Systems; Benner, P., Mehrmann, V., Sorensen, D., Eds.; Lecture Notes in Computational Science and Engineering;
Springer: Berlin/Heidelberg, Germany, 2005; Volume 45, pp. 83–115.

27. Li, J.; White, J. Low rank solution of lyapunov equations. SIAM J. Matrix Anal. Appl. 2002, 24, 260–280.
28. Penzl, T. A cyclic low-rank smith method for large sparse lyapunov equations. SIAM J. Sci. Comput. 2000, 21, 1401–1418.
29. Fernando, K.; Nicholson, H. On the structure of balanced and other principal representations of SISO systems. IEEE Trans.

Automat. Control 1983, 28, 228–231.
30. Benner, P.; Li, R.; Truhar, N. On the ADI method for Sylvester equations. J. Comput. Appl. Math. 2009, 233, 1035–1045.
31. Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl. 2006, 415, 262–289.
32. Lin, Y.; Bao, L. The projected generalized Sylvester equations: Numerical solution and applications. WSEAS Trans. Math. 2016,

15, 83–95.

http://doi.org/10.1109/TAC.1981.1102568
http://dx.doi.org/10.1080/00207178408933239
http://dx.doi.org/10.1016/S0024-3795(02)00283-5
http://dx.doi.org/10.1007/s00498-004-0141-4

	Introduction
	Model Reduction Based on Gramians
	Preliminaries
	Model Reduction Based on Gramians for Descriptor Systems

	Model Reduction Based on Cross Gramians
	Cross-Gramian-Based Balanced Realization
	Cross-Gramian-Based Model Reduction
	Low-Rank Iterative Methods for PGCTSE and PGDTSE

	Numerical Experiments
	Conclusions
	References

