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Abstract: With the rapid development of the Internet of Vehicles, the increase in vehicle functional
requirements has led to the continuous increase in complex electronic systems, and the in-vehicle
network is extremely vulnerable to network attacks. The controller area network (CAN) bus is the
most representative in-vehicle bus technology in intra-vehicular networks (IVNs) for its flexibility.
Although the current framework to protect the safety of CAN has been proposed, the safety commu-
nication mechanism between electronic control units (ECUs) in the vehicle network is still weak. A
large number of communication protocols focus on the addition of safety mechanisms, and there is a
lack of general protocol formal modeling and security assessment. In addition, many protocols are
designed without considering key updates and transmission, ECUs maintenance, etc. In this work,
we propose an efficient in-vehicle authentication and key transmission scheme. This scheme is a
certificateless framework based on identity cryptography, which can not only ensure the security
of the in-vehicle network but also meet the real-time requirements between ECUs. Moreover, this
scheme can reduce the complexity of key management for centralized key generators. To evaluate
the security of this scheme, we adopt a protocol model detection method based on the combination
of the colored Petri net (CPN) and the Dolev–Yao attack model to formally evaluate the proposed
protocol. The evaluation results show that the proposed scheme can effectively prevent three types of
man-in-the-middle attacks.

Keywords: CAN protocol; CPN Tools; Dolev–Yao; formal analysis; security assessment

1. Introduction

The rapid integration of vehicles and information technology has led to the rapid
rise of connected cars, and cars have moved from being independent and closed to being
interconnected and open. The increase in open interfaces brings attack risks to the in-vehicle
network [1]. The nodes of electronic control units in the vehicle use different bus protocols
for network communication, such as, CAN, FlexRay, LIN, MOST, and other protocols [2].
Among them, the CAN protocol and the Ethernet protocol are the most used, but they lack
corresponding security mechanisms [3]. Only simple verification cannot guarantee the
security of the in-vehicle network, nor can it adapt to the development of connected cars.

The in-vehicle network security architecture can be divided into four levels according
to different functions. Each level has different definitions and requirements for security. The
information interaction process between different levels is strictly controlled to meet a series
of network security requirements. ECUs at Level 4 have relatively the highest risk among the
four levels. Therefore, the security of in-vehicle network communication protocol is extremely
important. The in-vehicle network security architecture is shown in Figure 1.

For the security protection of the in-vehicle network, the symmetric cryptosystem
combined with the fixed key is used between the ECUs, which is mainly used for symmetric
encryption and message authentication code (MAC) mechanisms. Although the symmetric
cryptosystem has high computational efficiency, each ECU needs to store a large number
of keys and lacks effective key management [4]. At the same time, manufacturers need to
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register and maintain all keys, which further increases the difficulty and complexity of key
usage. Therefore, such schemes are difficult to implement in real-world scenarios [5].

Figure 1. In-vehicle network security architecture.

The public key cryptosystem uses a framework based on digital certificates for au-
thentication. Although digital certificates have a strong authentication mechanism, they
require third-party infrastructure. Although key management has extremely high security,
the process is relatively complicated, which leads to the high complexity of the security
mechanism in the in-vehicle network and is not feasible in real scenarios [6]. To solve the
information security problem of the in-vehicle network in the IVN environment [7], many
experts and scholars are devoted to the research of secure in-vehicle network architecture.
E-safety vehicle intrusion protected applications (EVITA) defines the reference architecture
of the in-vehicle network [8], which mainly includes in-vehicle electronic components, such
as ECUs, sensors, actuators, etc., the links between components and ECUs, and various
software in ECUs. EVITA mainly focuses on research on trust-based hardware security
modules (HSM) [9]. The HSM is responsible for performing important cryptographic appli-
cations and plays a vital role in the in-vehicle network. Open vehicular secure platform
(OVERSEE) builds an open in-vehicle information platform [10], which reduces the risk of
vehicle system paralysis caused by malware running through a modular operation method.

2. Related Work

For the specific protocol design in the vehicle system architecture, researchers have also
developed different solutions. Koscher et al. [11] completed a comprehensive experimental
analysis of the attack surface of vehicle information security and summarized the specific
vulnerabilities in CAN bus communication. Attackers can use the OBD interface in the
vehicle diagnostic mechanism to launch malicious attacks. Wi-fi, phone synchronization,
etc. provide attackers with new opportunities for malicious injection. Szilagyi et al. [12]
proposed the use of time-triggered message authentication to improve the efficiency of the
protocol, but it lacks consideration in real-time performance. Koopman and Lin et al. [13,14]
used HMAC to authenticate CAN message, but it has certain defects in communication
overhead. Van et al. [15] proposed CANAuth, which uses HMAC for replay attacks, but still
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relies on the assumption of pre-shared keys between ECUs. Furthermore, these protocols
above lack an efficient key management mechanism.

Some protocols use shared keys based on ECUs groups. Goza et al. [16] designed mech-
anisms such as EPSB and Libra-CAN to complete CAN bus authentication. Wang et al. [17]
proposed a trust-based key distribution method, but it relies on a fixed group, which
reduces the security accordingly.

Woo et al. [18] considered the key management scheme, and proposed the AES
lightweight symmetric encryption algorithm for the case of attackers using wireless de-
vices to attack the CAN bus, and verified the efficiency of the algorithm based on ECUs.
Mun et al. [19] separated the key functions and used the HMAC mechanism to optimize
the ECUs. Palaniswamy et al. [20] proposed a symmetric key-based key management solu-
tion to solve the problem of mutual authentication between ECUs. Mundhenk et al. [21]
proposed LASAN, a lightweight authentication protocol for secure in-vehicle networks.
LASAN uses a hybrid cryptosystem that combines symmetric and asymmetric cryptog-
raphy for key management. The SM acts as a fully centralized key distribution unit
responsible for ECUs authentication and session key generator for each message flow.
Groza et al. [22] analyzed the performance of identity-based signature and identity-based
key exchange protocols, they studied the classic WolfSSL library in automotive micro-
controllers. Han et al. [23] proposed an attribute-based encryption solution to protect
the in-vehicle network, which implements key management flexibly. Table 1 provides a
comparative analysis of the above articles.

Table 1. Comparison of related works.

Main Contribution Drawbacks

Szilagyi et al. [12] Proposed a time-triggered
message authentication protocol Real-time performance is not considered

Koopman and Lin et al.
[13,14]

Proposed authentication protocols based on
symmetric encryption The cost of computation is not considered

Van et al. [15] Proposed a broadcast authentication protocol
based on HMAC Without key management

Goza et al. [16] Proposed a lightweight broadcast group
authentication protocol Inefficient key exchange

Wang et al. [17] Proposed a protocol based on a trust-based key
distribution method

Relies on a fixed group, which reduces the
security accordingly

Woo et al. [18] Proposed a protocol based on the AES lightweight
symmetric encryption Inefficient key management

Mun et al. [19] Proposed a protocol based on the segregation of
critical functionalities

Lack receiver authentication and
message confidentiality

Palaniswamy et al. [20] Proposed a symmetric key-based key
management protocol Relies on the assumption of pre-shared keys

Mundhenk et al. [21] Proposed LASAN, a lightweight
authentication protocol

Use a third external party and impractical for
large-scale vehicle production

Groza et al. [22] Proposed an identity-based key
exchange protocol

The cost of computation and implementation
performance for practical use is not considered

Han et al. [23] Proposed an attribute-based encryption
solution protocol

Isolated ECUs according to their attributes and
impractical for vehicle production

To sum up, a secure IVN environment needs to be protected from physical attacks and
remote attacks. Physical attacks such as OBD-II interfaces, malicious nodes, etc. Remote
attacks through wireless interfaces such as Bluetooth, Wi-Fi, etc. To protect the IVN from
attacks, the communication between the ECUs and the gateway should be focused, and a
cryptographic protocol with high security should be constructed.

Compared with the existing research results, the main contributions of this paper
include three aspects:

1. For the in-vehicle network lack strong security mechanisms, we propose an identity-
based certificateless framework that considers device updates and maintenance;

2. According to the specification of our proposed protocol, we use CPN Tools to formally
model the proposed protocol and complete the model consistency verification;
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3. We employ a protocol model detection method that combines the Colored Petri
Nets (CPN) theory and the Dolev–Yao attack model for security evaluation of the
proposed protocol.

3. Background
3.1. Vehicle Architecture

The vehicle contains various functional modules, and each module consists of corre-
sponding ECUs [24]. The vehicle architecture is shown in Figure 2. Different bus technolo-
gies connect the ECUs. In the future, the demand for automotive functions will continue to
increase, and the number of complex electronic systems and ECUs will increase [25]. In
particular, how the safety-related electronic system can improve the safety at the communi-
cation level of the bus and meet the real-time performance is crucial.

Figure 2. Vehicle architecture.

As the most representative technology in automobiles, the CAN bus will also be a
mandatory standard for most vehicles in the future. The CAN bus is internally connected
to the various functional modules composed of the ECUs of the vehicle. The CAN data bus
is responsible for data transmission and is divided into two data lines: CAN-high (CAN-H)
and CAN-low (CAN-L). Data are transmitted through the potential difference between the
two data lines [26].

The SM (security module) is the centralized key manager for the ECUs. The SM is
the centralized point of key management for each ECU within the vehicle network IVN,
and key distribution can be simplified by using a security module (SM) or gateway as the
centralized point for key management.

A manufacturing company (MC) mainly assembles and produces based on the needs
of customers and the design of the company, etc. In specific applications, it can act as a
private key generator (PKG), allowing public key mechanisms to be implemented without
relying on third parties such as public key infrastructure (PKI).

3.2. Identity-Based Encryption

The IBE uses the identity identifier to generate the user’s public key. As long as the
identifier involved in the application system has unique characteristics, it can be directly
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used as a public key for cryptographic applications. In this system, users do not need
to apply for and exchange certificates and do not need additional management between
entity identifiers and public keys. Users can directly use identity information to perform
cryptographic operations, thus solving the problem of public key authenticity and fully
reflecting the flexibility of public keys, and greatly simplifying the complexity of key system
use and management.

Compared with traditional public key infrastructure (PKI), IBE has great flexibility,
scalability, and simplicity. A centralized key manager for IBE, called the private key
generator (PKG), allows public key mechanisms to be implemented without relying on
third parties. Because the system encryption process directly uses the identifier involved
in the application as the public key, there is no need to distribute, query the certificate, or
apply for a policy certificate, which fully reflects the convenience of encryption operations.

3.3. CPN Tools

A large number of research works have shown that only formal analysis methods
can make the verification of security protocols more efficient and credible [27]. BAN logic,
string space, and state machine are the methods used in the formal analysis of protocols in
the early days. These methods focus on the formal analysis of theorem proving without
formal verification of protocol semantics. In recent years, the emergence of powerful formal
analysis tools such as ProVerif, Scyther, Tamarin Prover, and CPN Tools can finish formal
security verification and semantic analysis for protocols [28].

The CPN Tools modeling tool we adopted is based on the colored Petri net (CPN)
theory. CPN is based on the original Petri net theory and effectively combines the standard
ML [29], a network system programming language, which belongs to the category of
advanced nets. CPN can not only express data sets by color, but also multiple sets of
states can be represented by places and tokens, and the ability of data expression has been
greatly improved compared with the original Petri net [30]. Before analyzing the functional
consistency of the protocol and conducting the security assessment, it is necessary to
establish the original specification model of the protocol. The hierarchical model established
by CPN can describe the concurrent state and behavior of the system at the same time,
which lays a foundation for model consistency and security assessment.

Compare CPN with current mainstream security protocol detection tools:

1. ProVerif is a protocol security detection tool based on logic programming, which can
calculate the attack path. However, it only contains one attack path, and the calculated
attack path is not comprehensive, which makes it difficult for the modeler to extract
attack nodes;

2. Scyther is a protocol model detection tool with high performance and has the function
of multiple path analysis. However, it uses the same algorithm to analyze all security
protocols. Although the attack path can be found, the error rate is high, and the attack
path cannot be comprehensively found for more complex protocols;

3. Tamarin Prover has a powerful state space search capability, which can collect all
the state space of the protocol execution and analyze it, but the establishment of the
protocol model is not intuitive, and cannot provide the observer with an intuitive
description of the protocol execution.

Compared with the above formal analysis tools, CPN Tools require the modeler to
dynamically simulate the protocol model according to the protocol process. The visual
interface intuitively and vividly shows the steps of the protocol, the modeler can add, delete
or modify according to the execution specification of the protocol [31]. CPN Tools can deal
with common concurrent systems. The state space generated by the model can clearly
indicate the attack state. To query data related to system attack events, Modelers can add
necessary termination points and conditions to stop the system process in the model, and
establish information collectors in the model. CPN Tools modeling can implement specific
modeling and analysis methods for different protocols, so it is usually more effective than
other verification tools to verify security protocols.
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CPN features state space analysis capabilities that enable incremental syntax checking
and code generation while building models, generate and analyze complete state spaces,
and use simulation capabilities for state space analysis and model checking to verify system
model properties. Its expression is easy to understand and is widely used in many fields.

3.4. Dolev–Yao Attacker Model

The Dolev–Yao attacker model is a model specially designed to verify secure crypto-
graphic protocols [32]. So far, most of the attacker models introduced in the research of
security protocols adopt the Dolev–Yao model. The Dolev–Yao model is generalized as a
black-box security analysis with five assumptions:

1. The cryptographic system is absolutely secure; the security protocol itself is distin-
guished from the cryptographic mechanism used within the security protocol. We do
not research the security of the specific cryptographic algorithms of the protocol but
take the inherent security properties of the protocol as the research goal;

2. The attacker can act as one of the legitimate entities and can communicate with the
entities in the protocol;

3. Attackers have powerful computing power and can eavesdrop, block and intercept,
replay, and tamper with all information in the system network;

4. Attackers can store, encrypt, decrypt, synthesize, and decompose the intercepted
information and participate in the protocol interaction process as a legal entity;

5. If the attacker obtains the corresponding key, the attacker can decrypt the ciphertext.

4. Modeling of Vehicle Safety Protocol Framework
4.1. The Message Flow Model of the Protocol

We design a certificateless framework for identity-based encryption, which includes
the initialization phase and the protocol interaction phase.

4.1.1. Initialization Stage

MC generates the identity information IDECUi and IDSM of SM and n ECUs, and
identity information is managed by MC. The validity period Ti indicates the validity of the
identity information, which is convenient for the manufacturer to maintain and update
the equipment.

MC generates IDs of SM and n ECUs, IDECUi for ECUs, IDSM for SM:

1. The MC defines the serial number SNi for each ECU, defines the effective period Ti,
and generates the identity of the ECUi as IDECUi = (Ti||SNi);

2. The MC defines the serial number SNSM and generates the identity of the SM as
IDSM = (Ti||SNSM).

MC generates master key s and system parameters p, defines bilinear mapping and
hash function, and lays the foundation for subsequent protocol process phases:

1. MC selects a large prime number q, G1 and G2 are two groups of large prime numbers
q, and defines the bilinear map e: G1 × G1→ G2;

2. MC selects the random number s ∈ Z*q as the master key, defines a random number
generator P ∈ G1, and generates the public key PK = sP of the system;

3. MC defines the hash H1: {0,1} *→ Z*q, H2: {0,1} * × G1 × G2→ Z*q, H3: G2→ {0,1} n;
4. MC generates system parameters p = {q, G1, G2, e, n, g, PK, H1, H2}.

MC calculates the private key SECUi of each ECU and the private key SSM of SM, sends
identity information IDECUi, IDSM, parameter p, and private key SECUi to each ECU, and
sends identity information IDSM, IDECUi, parameter p, and private key SSM to SM.

1. MC generates the private key for each ECUi as SECUi = H1(IDECUi)s;
2. MC generates the private key for SM as SSM = H1(IDSM)s.

Table 2 shows some symbols in the protocol and their specific meanings.
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Table 2. Notation representation in the protocol.

Notation Description

ID Identity
QIDSM

The public key of SM
QIDECUi

The public key of ECUi
SIDSW The private key of SM

SIDECUi The private key of ECUi
Ksym Session key
Hx() Hash function
nx Random number
Tx Timestamp
mx Vehicle additional information
s Master key

PK System public key
M, Plaintext
C Ciphertext

4.1.2. Protocol Process Stage

The vehicle runs this stage to verify the identity of each ECU, mainly for regular
mutual verification or maintenance between the ECUs and the SM. Therefore, to effectively
resist replay attacks, random numbers and timestamps are added to the design of the
protocol. To effectively resist tampering attacks, the Hash function is introduced to ensure
the security of the protocol interaction process.

To effectively resist spoofing attacks, ECDSA digital signature technology is introduced
to ensure two-way identity authentication in the entity interaction process. ECU and SM
use the same system parameters and keep their public and private keys. The sender of the
signature calculates the hash value of the message to be sent, generates the signature with
the private key, system parameters, and hash value, and sends it to the receiver. The verifier
of the signature verifies the message with the public key and system parameters of the signer.
The signature algorithm is that the sender computes h = H(m), computes s = e(hSID , U).
The verification algorithm is that the receiver computes signature′ = e(h′QID, W).

The protocol flow is represented by the specific message flow. Figure 3 shows the
protocol message flow model.

1. SM selects a random number, n0, generates the message M1 = (n0||TSM||mSM),
selects a random number r, generates U and W. SM uses the public key QIDECUi to
calculate k1 = H3

[
e
(
QIDECUi , W

)]
, generates the ciphertext C1 = M1 ⊕ k1, calculates

the hash value h1 = H2(M1), and uses the private key SIDSM to calculate the signature
V1 = H3

[
e
(
h1SIDSM , U

)]
, SM encapsulates the ciphertext C1, signature V1, U to

message request, and sends it to ECUi.
2. ECUi uses the private key SIDECUi to calculate k1

′ = H3
[
e
(
SIDECUi , U

)]
, calculates

M1
′ = C1 ⊕ k1

′. ECUi calculates the hash value h1
′ = H2

(
M1
′), and uses the public

key QIDSM to verify the signature V1
′ = H3

[
e
(
h1QIDSM , W

)]
.

3. ECUi selects a random number, n1, and the key Ksym generates the message
M2 = (n1||TECUi||mECUi

∣∣∣∣Ksym) , uses the public key to calculate k2 = H3
[
e
(
QIDSM , W

)]
.

ECUi generates the ciphertext C2 = M2 ⊕ k2, calculates the hash value h2 = H2(M2), and
uses the private key SIDECUi to calculate the signature V2 = H3

[
e
(
h2SIDECUi , U

)]
. ECUi

encapsulates the ciphertext C2, signature V2 to message respond and sends it to the SM.
4. SM uses the private key SIDSM to calculate k2

′ = H3
[
e
(
SIDSM , U

)]
, generates

M2
′ = C2 ⊕ k2

′. SM calculates the hash value h2 = H2
(

M2
′), and uses the pub-

lic key QIDECUi to verify the signature V2
′ = H3

[
e
(
h2
′QIDECUi , W

)]
.

5. SM selects the message data to be sent, calculates the hash value H2(data), encrypts it
with the key Ksym, generates the message M3 = EKsym [n2||TS||data||H2(data)], and
sends it to ECUi.

6. ECUi decrypts with the key Ksym to get the message data′, calculates the hash value
H2(data′), and verifies the data.
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Figure 3. Protocol message flow model.

4.2. Modeling the Protocol Based on CPN

The color set is established for the messages exchanged between the receiver and the
sender of the proposed protocol. The specific color set definitions are shown in Table 3. The
MESS type indicates the message that combines random numbers, time stamps, and vehicle
additional messages. The K type and K’ type represent the parameters used to complete
the bilinear algorithm. The C type indicates that the plaintext is encrypted with the key to
obtain the ciphertext. The HDATA type indicates that the hash algorithm is used to obtain
the hash value of the data. The V type and V’ type indicate that the system parameters are
used to complete the digital signature. The tran type indicates the message that combines
system parameters, ciphertext, and digital signatures. The mess3 type indicates that the
session key is used to encrypt messages with random numbers, timestamps, messages, and
their hash values.

Table 3. Color set definitions for the protocol.

Key Elements Color Set Definition

MESS colset MESS = record n: R * ts: TS * am: AM
K colset K = record p: W * hid: HID * hash: HASH
K’ colset K’ = record p: U * hid: SID * hash: HASH
C colset C = record k: K * m: MESS

HDATA colset HDATA = record h: HASH * d: DATA
MESS3 colset MESS3 = product R * TS * AM * DATA * HDATA

V colset V = product HASH * H * U * SID
V’ colset V’ = product HASH * H * W * HID

Tran colset Tran = record c: C * v: V * u: U

When building a large-scale CPN network, the single-page CPN is not intuitive and
cannot clearly describe the functions of each module in the protocol interaction process. We
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adopt the idea of modular programming and take advantage of the substitution transition
of CPN to split the CPN network structure into multiple sub-blocks, each sub-block is
called a subpage, and the split CPN network is called the parent page of the subpage [33].
The top layer of the multi-layer model established in this section is the parent page with
substitution transitions that hide the details of the model in the top layer, simplify and
present the model in a high-level description, and define the full picture of the model in a
broad sense.

The hierarchical model established in this section includes top-level, middle-level, and
bottom-level models. The top layer is the abstract description of the overall protocol, the
middle layer is the further functional refinement of the top layer, and the bottom layer is
the detailed description of the implementation details of the protocol we proposed; it is the
specific implementation of the protocol.

The top-level CPN model is shown in Figure 4.

Figure 4. Top-level CPN model.

The top-level model is composed of communication between two parties, SM and
ECUi, communication network NET, communication process, and intuitively simulates
the conversation process of the whole protocol. The double-layered rectangle in Figure 3
represents the substitution transition, representing the communication between two parties,
SM, ECUi, and the communication network NET, respectively, and the ellipse represents
the message places; it is used to store the messages in the communication process. Arrows
represent the flow of transmission of messages. They are used to transfer messages in the
communication flow to the parties.

The middle-level CPN model is shown in Figure 5. The middle-level model includes
five substitution transitions and nine places. The substitution transition Connet represents
the process that the SM initiates a request to the ECU. Substitute transition Connet’ rep-
resents the process that the ECU responds to the request initiated by the SM. Substitute
transition Confirm means that the SM initiates the verification process to the ECU. Sub-
stitute transition Confirm’ represents the process that the ECU matches the verification
initiated by the SM.
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Figure 5. Mid-level CPN model.

The bottom layer CPN model of the protocol consists of four parts. The bottom layer
CPN model is established according to the protocol process and the interaction details
between the SM and the ECU. It is a detailed description of the protocol details for protocol
request responses and verification matches.

Figure 6 shows the internal CPN model of the substitution transition Connect. The
transition Mess1 combines the random number N1 generated by SW, the message string
AMsm, and the timestamp TSsm into a plaintext message and stores it in place M1. The
transition K1 runs the bilinear mapping on the parameter W and the public key of the ECU and
runs the Hash operation on the result to combine it into place K1. After the transition, K1M1
runs the XOR operation on the messages K1 and M1. They are combined into a ciphertext
message and stored in place C1. The transition HM1 runs the Hash operation on the plaintext
message M1 and stores the result in the place hM1. Transition V1 runs the bilinear mapping
on the hash value hM1, the private key of SW and parameter U, runs the Hash operation on
the result, combines it into the signed message, and stores the result in place V1. Transition
Connect combines the parameter U1, the ciphertext C1, and the signature V1 into the request
message and sends it to the ECU through the Send_Req of the place.

Figure 6. CPN model of substitution transition Connect.
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Figure 7 shows the internal CPN model of the substitution transition Connect’. Transi-
tion Connect’ first sends the received data to each place. The transition K1’ runs the bilinear
mapping on the parameter U and the private key of the ECU, and runs the Hash operation
on the result to combine it into the place K1’. The transition M1’ decrypts the received
ciphertext messages C1 and K1’, obtains the plaintext information sent by the SM, and
stores it in the place M1’. The transition HM1 runs the Hash operation on the plaintext
message M1’, and stores the result in the place hM1’. The transition V runs the bilinear
mapping of the hash value hM1’, the public key of SW, and the parameter W, runs the
Hash operation on the result, combines it into the local hash value, and stores the result in
the place V’. The transition compare1 verifies the hash value V and the local hash value
V’. If the verification fails, the process is reset through the place Authentication_1. If the
verification succeeds, the process will enter the next phase.

The transition Mess2 combines the random number N2 generated by the ECU, the
session key Ksym, and the timestamp TSe into a message and stores it in the place M2. The
transition K2 runs the bilinear mapping on the public key of the SW and the parameters W,
runs the Hash operation on the results, and combines them into place K2. The transition
K2 runs the bilinear mapping of the parameters W and the public key of SW and runs the
Hash operation on the result to form a place K2. After the transition, K2M2 runs the XOR
operation on the messages K2 and M2. They are combined into a ciphertext message and
stored in place C2. The transition HM2 runs the Hash operation on the plaintext message
M2 and stores the result in the place hM2. Transition V2 runs the bilinear mapping on
hash value hM2, the private key of ECU and parameter U, runs Hash operation on the
result, combines it into the signed message, and stores the result in place V2. Transition
Connect combines the parameter U2, the ciphertext C2, and the signature V2 into the
request message and sends it to the SM through the place Send_Resp.

Figure 7. CPN model of substitution transition Connect’.

Figure 8 shows the internal CPN model of the substitution transition Confirm. The
transition Confirm first sends the received data to each corresponding place for processing.
The transition K2’ runs the bilinear mapping of the parameters U and the private key of SM
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and runs the Hash operation on the result to form the place K2’. The transition M2’ decrypts
the received ciphertext messages C2 and K2’, obtains the plaintext information sent by the
ECU, and stores it in the place M2’. The transition HM2’ runs the Hash operation on the
plaintext message M2’ and stores the result in the repository hM2’. The transition V2 runs
the bilinear mapping on the hash value hM2’, the public key of the ECU, and the parameter
W, runs the Hash operation on the result, combines it into the local hash value, and stores
the result in the place V2’. The transition compare2 verifies the hash value V and the local
hash value V2’. If the verification fails, it will be reset through the place Authentication_2.
If the verification succeeds, the process will enter the next phase.

The transition KM2’ stores the session key sent by the ECU in the place K, and the
transition DATA combines the random number N3 generated by the SW, the timestamp
TSsm, the data frame data, and the corresponding hash value hdata into the data frame
transmission connection message, encrypts it with the session key Ksym and sends it to the
ECU through the place Send_Conf.

If the SM receives the verification success message fed back by the ECU, it means that
the data frame transmission is completed, and the place Rec_Veri enables the transition of
HDATA and starts the next data frame transmission.

Figure 8. CPN model of substitution transition Confirm.

Figure 9 shows the internal CPN model of the substitution transition Confirm’.
Transition Confirm’ decrypts the received message and stores the decrypted message

in the corresponding place. The transition HDATA runs a local hash operation on the
data frame data generated by decryption and stores the hash value in the place dHash2.
The transition compare3 verifies the hash value hdata and the local hash value hdata′ sent
by the SM. If the verification fails, the process is reset through the place Reset3. If the
verification succeeds, the process will be fed back to the SM through the place Send_Veri.
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Figure 9. CPN model of substitution transition Confirm’.

Figure 10 shows the internal CPN model of the substitution transition NET. The arrows
on the left and right of the transition represent the direction of information transmission
in the interaction process of the protocol. The transition trans1 simulates the transmission
path that the SM sends the connection request to the ECU, including ciphertext, parameters,
and digital signature. Trans2 simulates the process that the ECU receives the connection
request message, decrypts to obtain the plaintext, and verifies the signature. Subsequently,
trans2 simulates the transmission path for the ECU to reply to the connection request sent
to the SM, including ciphertext, parameters with session keys, and digital signatures. trans3
simulates the process that the SM receives the reply message, decrypts to obtain the session
key, and verifies the signature. Subsequently, trans3 simulates the transmission path of the
SM to send the ciphertext data to the ECU. The ciphertext data encrypts the parameters,
the data frame, and the hash value of the data frame with the session key. trans4 simulates
the transmission path that the ECU receives the ciphertext information sent by the SM,
decrypts and verifies it with the session key, and sends the successful verification feedback
message to the SM.

Figure 10. CPN model of substitution transition NET.
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4.3. The Attacker Model of the Protocol

According to the strong ability of the attacker in the Dolev–Yao attacker model, various
man-in-the-middle attacks such as replay, tampering, and deception are launched into the
network channel.

We build the Dolev–Yao attacker model based on CPN to simulate the introduction of
a man-in-the-middle attack to the network channel for communication between SW and
ECU. Figure 11 shows the Dolev–Yao attacker model of the proposed protocol.

Figure 11. Formal description based on the attacker model.

The replay attack is initiated by the places and transitions of blue type to the Net subpage
of the original model. On the trans2 path, the replay attack initiated by the attacker adopts
the attacker model based on message splitting and combination. It can reduce the useless
information caused by arbitrary splitting by the attacker and avoid the phenomenon of state
space explosion caused by a large number of repeated information. This method can guarantee
the ability of attackers and effectively reduce the state space. The information transmitted in
the network channel is intercepted by place P0 on the replay attack path and transmitted to
place P5 through the transition TA for further processing. We define three data types, DB, CB,
and DIS, on the path. The data type of place P5 is DB, which is used to store the split and
unsplit messages. The transition dis completes the next step of splitting place P5 and stores
the corresponding information in place P1 and place P2 storing the DIS data type. Transitions
TB and TB’ split all kinds of messages into atomic information that cannot be processed and
stored in places P31, P32, and P33. The type of place P6 is CB, which is used to store the
information that cannot be decrypted in the intercepted information and the information after
the synthesis of atomic messages. The transition TE utilizes the Dolev–Yao attacker transition
rule to store the messages that cannot be deciphered after interception into the repository
P6. Transition TD utilizes Dolev–Yao attacker synthesis rules to synthesize and store atomic



Symmetry 2022, 14, 2398 15 of 21

messages in place P6. Transition Attack1 uses place P6 to launch the replay attack to reach the
port place of the network channel.

The tampering attack is initiated by the red type of places and transitions to the Net
subpage of the original model, and the attacker initiates the tampering attack through the
transition Attack2 to reach the port place.

The spoofing attack is initiated by the purple type places and transitions to the Net
subpage of the original model. The attacker launches the attacks to all transitions trans1,
trans2, trans3, and trans4 on the network transmission path in the original interaction channel.

5. Model Consistency and Security Evaluation of the Protocol

The standard state space report can be generated based on the debugging of the
established CPN model. State space reports are used to verify protocol security. Formal
properties, such as accuracy, safety, liveness, etc., of the model can be understood through
the state space report. The standard state space report provides some basic information
about the size of the state space, as well as the standard behavioral properties of the CPN
model. In the state space report, the bounded property includes all possible states and how
many states a place can hold. A live transition means that for any reachable state, we can
always find a sequence of occurrences that includes this transition. The model has a dead
transition. Then, they correspond to the part of the model that can never be activated, that
is, the end of the state completion.

Table 4 shows the model state space report generated by CPN Tools. The state space
report contains the full state of the original model and the attacker-based protocol security
evaluation model.

Table 4. State space reports of the original model and the attack model of the protocol.

Type Original Model Original Attack Model

State Space Node 42 1063
State Space Arc 40 2867

SCC Graph Node 42 1063
SCC Graph Arc 40 2867

MainState Space Node 0 0
Live Transition Instances 0 0
Dead Transition Instances 0 0

Dead Marking 1 1

The original CPN model state space report reflects the consistency of the model
with the protocol standard and the correctness of subsequent protocol model security
assessments. The number of all nodes and the number of strongly connected nodes are the
same; both are 42. The number of directed arcs in the model is the same as the number
of strongly connected arcs; both are 40. This shows that all state nodes of the model are
reachable, and there is no cyclic structure. The model runs according to the protocol process
and completes request connection and response, data frame transmission, and verification.
All the running steps of the model will not trigger the three reset places established in the
model, and the phenomenon of model interruption will not occur, so the number of dead
transitions is 0. There are no transitions in the model that can always be triggered, so the
number of live transitions is 0. The protocol we designed has no uniform termination state,
so the number of master state nodes is 0. The original CPN model transmits information
according to the protocol specification, and there is a state in which the data transmission
is completed. This is consistent with the expected result, so the number of dead nodes is 1.

After running the attacker-based CPN model, its state space report reflects the effective-
ness of the introduced attacker model. The model has no infinite loop phenomenon, no master
state nodes, and no live transitions. The number of nodes and directed arcs in the state space
of the attacker model does not increase significantly compared to the original model because
the introduction of the attacker model does not cause the state space to be too large to explode.
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There are no dead transitions in the model because there is no situation where a transition
cannot be triggered due to the design flaw. The number of dead nodes is 1, which means
that there is only one state in which data transmission is completed in the model, and there is
no other attack state; that is, it has not been attacked by man-in-the-middle attacks of replay,
tampering, and spoofing initiated in the attacker model.

To verify that the attacker model based on CPN eliminates the attack state introduced
by Delov-Yao, we run a path search based on the attacker’s CPN model and write code to
run after the computation of the state space is complete [34]. ListDeadMarkings() is used to
list all dead markings identified in the model. In the analysis, we used ListDeadMarkings()
to obtain dead markings stated in the report and further simulate them individually.
According to the configuration of the model in our work, the expected results will be
achieved after the successful implementation of the protocol. The expected marking is
a state in which only one initial request is expected to be successfully executed on the
result. For a state that has more than one of its initial requests successfully executed, it is an
unexpected dead marking. Figure 12 shows the running result of the code for querying the
path, and No. 36 is the sequence number of a dead node path included in the attacker model
based on CPN. Querying the serial numbers of dead nodes is beneficial to the subsequent
state analysis of the attacker model.

Figure 12. The execution result of querying dead node code.

NodeDescriptor () is used to get the full place state for the corresponding dead marking.
We used the NodeDescriptor () within a function to search for all possible states that issued
requests from the attacker state. This is to search and return node values. According to the
queried dead node path with serial number 36, extract all the contents of the place in the
No. 36 path. Figure 13 is an excerpt of the state of the place in path 36 after the state space
is calculated. The content contained in the place can reflect the running status of the attack
behavior of the Delov-Yao attacker.

Figure 13. The execution result of querying places the status code in the path.
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UpperMultiSet(Mark.page’place n) algorithm can accurately express the correspond-
ing state of the key library on the page in the state space after the execution of the model. It
is often used to query the success of some key interaction process in the model.

The place Authentication_2 in the Confirm page indicates the result of the identity
authentication between the SM and the ECU. If the Auth_success value is contained in the
Authentication_2 place after the Delov-Yao attacker model is added, it indicates that the
identity authentication is successful. Otherwise, identity authentication fails. Figure 14
shows the result of the authentication queried by SML. In the authentication phase of the
protocol, the security mechanism of digital signature is adopted, which is represented by
transition V in the Connect subpage and transition V ‘in the Connect’ subpage of the CPN
model. It results in the attacker’s failure to launch spoofing attacks.

Figure 14. The execution result of querying identity authentication.

The Send_Veri value of the place on the Confirm1 page reflects whether the session
key can be used for safe data transmission between the SM and the ECU. Figure 15 shows
the result of querying data transmission by SML. The Trans_ok value is contained in the
Send_Veri place; it indicates that data are safely transmitted. In the data transmission phase
of the protocol, the hash function is used, so the attacker cannot obtain the session key and
tamper with the intercepted information.

Figure 15. The execution result of querying data transmission.

The Rec_Veri value of the place on the Confirm page indicates whether the next round
of data transmission between the SM and ECU will be successful after the last round of
data transmission is secured. Figure 16 shows the result of the trigger queried by SML.
The Rec_Veri place contains Trans_ok and next_start values, which indicates that the next
round of data transmission is successfully triggered. Random numbers are adopted in the
CPN model of the protocol. The authentication phase and the data transmission phase of
the protocol are not affected after the attacker launches the replay attack.
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Figure 16. The execution result of querying the next round of data transmission.

By writing an ML program to analyze the transition and the corresponding state of the
place, it can be found that the attack state does not exist in the place. Our proposed protocol
uses digital signatures in the authentication phase. It can effectively prevent spoofing
attacks initiated by attackers. We use the hash function that can effectively resist tampering
attacks launched in the model. The random number mechanism in the protocol can well
resist the replay attack initiated by the attacker. The mechanism of the random number in
the protocol can well resist the replay attack initiated by the attacker.

6. Security Analysis and Performance Analysis
6.1. Security Analysis

The comparison of security properties can reflect the powerful functions satisfied
by the protocol. We compare the proposed protocol with the in-vehicle communication
protocols proposed by Groza et al. [16], Woo et al. [18], Palaniswamy et al. [20], and Mun
et al. [19]. This further shows that our proposed protocol has high security. The comparison
of security properties is shown in Table 5.

Table 5. Comparison of protocol security attributes.

Security Attributes Woo et al. [18] Groza et al. [16] Palaniswamy et al. [20] Mun et al. [19] Our Scheme

Session key security No Yes Yes Yes Yes
Entity authentication No No No No Yes

Resistance to reply attack No No Yes Yes Yes
Resistance to tampering attack Yes Yes Yes Yes Yes
Resistance to spoofing attack No No No No Yes

Provable security No No Yes Yes Yes
Formal verification No No Yes No Yes

Woo et al. [18] proposed a protocol based on symmetric keys that solve the problem of
communication between ECUs of in-vehicle networks. It can only achieve verification of
the functional correctness of the protocol. However, it does not consider the key exchange
and relies on the assumption of pre-shared keys. The security mechanism contained in the
protocol can only prevent tampering attacks through hash functions but cannot defend
against replay attacks and spoofing attacks.

Libra-CAN, proposed by Groza et al. [16], uses key splitting for sender group commu-
nication and MAC mixing for message authentication suitable for CAN bus. The protocol
can guarantee the security of the session key. The security mechanism included in the
protocol can only prevent tampering attacks through hash functions but cannot defend
against replay attacks and spoofing attacks.

Palaniswamy et al. [20] proposed a protocol that includes the key management solution.
They use the Tamarin tool to formally verify the security of the protocol and verify that there
is no replay attack in the protocol. However, Tamarin cannot show the attacker’s status in
real time. Although this approach provides efficient computation and key management, the
protocol cannot resist spoofing attacks in the data frame transmission phase.

Mun et al. [19] proposed a protocol based on the segregation of critical functional-
ities, leading to flexible key management. However, due to the lack of formal analysis
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of the proposed protocol, the protocol cannot resist spoofing attacks well. In addition,
communication cost is not considered in this scheme.

Our proposed framework considers the update and maintenance of the ECUs and
reduces the difficulty of key distribution and the complexity of key management. The
security mechanism contained in the protocol can ensure a variety of security properties. It
can resist replay, tampering, and deceive man-in-the-middle attacks and can ensure the
security of entity authentication and session keys. The method of formalized security proof
can clearly describe the protocol specification, extract loopholes of the protocol, and ensure
that the security mechanism embedded in the protocol does not affect the functionality of
the protocol itself.

6.2. Performance Analysis

Computational complexity can reflect the computational and communication efficiency
of the protocol. We compare the performance of the proposed framework with the protocols
of Groza et al. [16], Woo et al. [18], Palaniswamy et al. [20], and Mun et al. [19].

The comparison results of computational complexity are shown in Table 6.

Table 6. Comparison of protocol computational complexity.

Phase Woo et al. [18] Groza et al. [16] Palaniswamy et al. [20] Mun et al. [19] Our Scheme

SM1 3THM + TH 2THM + TH TS + TCV + TSV + TH THM + 2TH TS + TH + TE/D
ECU1 3THM + TH 2THM + 2TH TS + TCV + TSV + TE/D THM + 2TH TS + TSV + TH + 2TE/D

connection 6THM + 2TH 4THM + 3TH
2TS + 2TCV + 2TSV + TE/D

+ TH
2THM + 4TH 2TS + TSV + 2TH +3TE/D

SM2 THM + 2TH + TE/D TH + 2TE/D TS + TSV THM + 2TH + 2TE/D TSV + 2TH + TE/D
ECU2 THM + 2TH + TE/D TH + 2TE/D TS + TSV THM + 2TH + 2TE/D TH + TE/D

certification 2THM + 4TH + 2TE/D 2TH + 4TE/D 2TS + 2TSV 2THM + 4TH + 4TE/D TSV + 3TH + 2TE/D
computational
complexity

(ms)

8THM + 6TH + 2TE/D
≈ 1062.62

4THM + 5TH + 4TE/D
≈ 1023

4TS + 2TCV + 4TSV + TE/D
+ TH ≈ 1086.91

4THM + 8TH + 4TE/D
≈ 1029.26

2TS + 2TSV + 5TH +
5TE/D ≈ 1041

We employ the computation time of [12] to estimate the computational complexity of
our protocol and those proposed by others above. The computation time used by the ECU
to evaluate cryptographic algorithms. The computation times for AES-128 and SHA-256
are 0.71 ms and 2.20 ms, respectively. The time required to verify the certificate is 122 ms.
The computation time of HMAC is about 131 ms. The computation time for EDCSA-256
signature and verification is 88 ms and 122 ms, respectively. The meaning of each symbol is
as follows.

TE/D: Calculates the time required for encryption/decryption operations. TCv: the
time required to verify the certificate. TS: the time required to calculate the digital signature.
TSv: the time required to verify the signature. TH: the time required to compute the hash
function. THM: the time required to calculate HMAC. SM1 and ECU1 are the computational
complexity resulting from the connection stage. SM2 and ECU2 are the computational
complexity resulting from the certification phase.

The comparison of computational complexity in Table 4 shows that our proposed
protocol framework has high communication and computational efficiency and strong
security properties. It can effectively prevent man-in-the-middle attacks, ensure security
and meet real-time requirements.

7. Conclusions

With the integration of the in-vehicle network and the Internet, the insufficiency of
the security features of the in-vehicle bus makes the in-vehicle network face many security
challenges. We propose a certificateless framework based on the identity system. It has an
efficient in-vehicle authentication and key transmission scheme without requiring a series
of complex certificate operations such as application, query, and distribution. In addition,
related aspects such as ECU update and maintenance are considered in the protocol design.
To verify the security of the proposed protocol framework, we first construct a protocol
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message flow model according to the protocol specification. Based on the colored Petri
network (CPN) and the Dolev–Yao attack model that has been recognized by a large number
of protocol researchers, we adopt the CPN Tools to model the proposed protocol and verify
the model consistency. Subsequently, we introduce a man-in-the-middle attack on the
model using the model detection scheme of the Dolev–Yao attack model. We write ML
language for path search and further verify that there are no three types of man-in-the-
middle attack states in the protocol path, including replay, tampering, and spoofing. The
safety mechanism adopted by our proposed protocol meets the requirements of safety and
real-time performance of key components and meets the needs of modern vehicles.

In this work, we mainly consider the use of man-in-the-middle attacks to formally
analyze the security of protocols, which can be used as a case study to show the real-time
work of the attacker model. The shortcoming of this work is that we did not carefully analyze
other attack methods. In future work, while enhancing the security of the protocol, we will
try to add other attack methods with the method of formal modeling to verify whether there
are other types of security problems in the protocol. We will accumulate more experience in
protocol design and explore how to combine formal modeling analysis methods with various
attack methods. We will try to implement it within a software environment such as CPN Tools
to achieve uncomplicated and automatic verification simultaneously.
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