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Abstract: Interactive segmentation is a technique for picking objects of interest in images according to
users’ input interactions. Some recent works take the users’ interactive input to guide the deep neural
network training, where the users’ click information is utilized as weak-supervised information.
However, limited by the learning capability of the model, this structure does not accurately represent
the user’s interaction intention. In this work, we propose a multi-click interactive segmentation
solution for employing human intention to refine the segmentation results. We propose a coarse
segmentation network to extract semantic information and generate rough results. Then, we designed
a feature-aware attention module according to the symmetry of user intention and image semantic
information. Finally, we establish a refinement module to combine the feature-aware results with
coarse masks to generate precise intentional segmentation. Furthermore, the feature-aware module
is trained as a plug-and-play tool, which can be embedded into most deep image segmentation
models for exploiting users’ click information in the training process. We conduct experiments on five
common datasets (SBD, GrabCut, DAVIS, Berkeley, MS COCO) and the results prove our attention
module can improve the performance of image segmentation networks.

Keywords: interactive segmentation; feature-aware; attention; human-computer interaction

1. Introduction

Interactive image segmentation is a critical component of advanced image editing
software. It provides interactive inputs like strokes, bounding boxes, and clicks to let users
choose objects of interest. The segmented results can be useful for various activities, such
as localized editing and image/video composition. Most existing works focus on com-
bining interaction information as weak labels for training segmentation models, without
considering the users’ impact. As a result, emphasizing the importance of human intention
in the interactive segmentation process is an important issue.

Interactive segmentation has been a topic of research for decades, with early algorithms
relying primarily on low-level hand-crafted features to create algorithms or models that
work admirably on simple images [1–5]. However, several characteristics, such as lighting
levels, angles, and postures, make these features less resilient, limiting the performance of
segmentation. An inadequate availability of interaction information is especially an issue.
Users must exert a substantial interactive effort to get satisfactory outcomes.

Thanks to the outstanding performance in computer vision tasks, deep learning tech-
niques are rapidly being utilized more widely in image segmentation. Some of the latest
works based on the click-point information have explored how to properly embed into deep
models. Deep interactive object selection (DOS) [6] is the first deep solution to the interac-
tive segmentation problem. To supervise the global segmentation, Majumder and Yao [7]
transformed user clicks into content-aware guidance maps to exploit more hierarchical
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information. Ding et al. [8] used the early-late fusion strategy to construct a click encoding
method based on deep semantic information. These deep learning methods mainly try to
use the interactive information as weak-supervise labels to train the semantic segmentation
modules. The weak-supervised information guides the learning of the position of semantic
features; however, a majority of potential information that humans can easily be aware of,
such as semantic attributes and semantic relevance, etc., are eliminated. Therefore, the ex-
isting algorithms cannot establish accordant relationships between interaction information
and semantic features.

Alternatively, in order to effectively combine local and global information for many
computer vision applications, attention processes have been extensively researched in
deep CNNs, such as object detection [9], classification [10], and segmentation [11]. By
avoiding the use of multiple similar feature maps and highlighting salient features that
are useful for a given task, attention enables the network to focus on the most relevant
features without the need for additional supervision, in contrast to standard multi-scale
features fusion approaches that compress an entire image into a static representation.
Lin et al. [12] employed the first click attention module to better use the first click. Attention
modules have also helped semantic segmentation networks, improving models for pixel-
wise identification tasks [13,14].

This paper explores a feature-aware attention mechanism to simulate the human
intention in the interactive image segmentation task. The potential semantic relevance
is learned from the users’ click action. First, a pre-trained image segmentation network
is used in the proposed method to generate coarse segmentation results. To refine the
semantic features, we propose a progressive fusion strategy to integrate the multi-click
information to learn the relevant semantic information. Finally, we design a refinement
network to achieve precise segmentation. We conduct thorough experiments on five well-
known datasets, and the experimental outcomes show the usefulness and adaptability of
the proposed architecture.

2. Related Work

Early interactive image segmentation methods typically consider boundary attributes
or use graphical methods. For instance, Grady [4] calculated the likelihood that a random
walker at each unlabeled pixel should first arrive at one of the labeled pixels by rewriting
the task as a combinatorial Dirichlet problem. Based on weighted geodesic distances,
Bai [15] divided each pixel into the foreground and background. Freedman [2] used shape
priors to further improve performance. However, all of these traditional methods typically
rely on hand-crafted features. As a result, these models frequently produce unacceptable
results when the background is complicated, or there are different lighting conditions.

In recent years, with the success of deep learning in several computer vision tasks, im-
age segmentation has also achieved impressive results [8,12,16–19]. It impacts the majority
of interactive image segmentation models [20]. Weakly supervised segmentation methods
revamp coarse segmentation masks from weaker supervision information. The following
sources of supervision have been investigated for semantic/instance segmentation: image
level label only [21], point clicks [6,22], boxes only [23–25], scribbles only [22,26], boxes
plus clicks [24]. Regardless of the form of interaction, interactive segmentation optimizes or
changes the segmentation result by capturing the user intent in the interaction information.
Therefore, the model structure of these methods is almost the same; the main difference is
the interaction point fusion module.

Most interactive segmentation networks focus on employing the user’s input informa-
tion into segmentation networks [27]. The first CNN-based model [16] introduced some
effective point sampling strategies. Liew et al. [28] captured the local regional information
surrounding user input for local refinement. Acuna et al. [29] used a recurrent architecture
to learn the precise segmentation, which could be represented as a polygon consisting of
multiple points. Ling et al. [30] predicted all vertices simultaneously using a graph convo-
lution and parameterized objects with either polygons or splines. Islam et al. [31] proposed
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a label refinement network that predicted segmentation labels in a coarse-to-fine fashion.
Yang et al. [32] integrated both pixel-level and instance-level embedding to implement the
match between the reference and the predicted sequence, which could make the model
robust to various object scales. Lin et al. [12] used both image and users’ input information
to produce the segmentation results. However, the input information represented via
distance transforms is not learnable. Majumder and Yao [7] transformed user clicks into
content-aware guidance maps to exploit more hierarchical information. Jang and Kim [31]
altered the backpropagation scheme to improve model performance. Nevertheless, these
fusion strategies treat intention clicks as weak-labeled information via the concatenation
of the semantic and click embeddings. Limited by the learning ability of the model, this
strategy can not precisely estimate the interaction intention.

Besides the click information, Ding et al. [33] used phrase expressions as an additional
interaction input to estimate the features of the target object. Kontogianni et al. [34]
used corrections to adapt the model parameters to a specific object and its background,
or shifted distributions. Sofiiuk et al. [31] proposed f-BRS that solves an optimization
problem concerning auxiliary variables instead of the network inputs to reduce computing
cost. In [35], the previous step mask is concatenated with the click maps to refine the
segmentation iteratively.

Even though attention mechanisms are becoming popular in many vision problems,
the literature on interactive image segmentation with attention remains scarce, with simple
attention modules. Wang et al. [20] employed attention modules at multiple resolutions to
combine local deep attention features (DAF) with global context for prostate segmentation
on Ultrasound images. To capture long-range dependencies, local and global features
are combined in a simple attention module, which contains three convolutional layers
followed by a softmax function to create the attention map. A similar attention mod-
ule, composed of two convolutional layers followed by a softmax, is integrated with a
hierarchical aggregation framework integrated into UNet for left atrial segmentation.

3. Proposed Method

We propose a novel network for interactive segmentation. The core idea is to extract the
guidance map by combining the click information with the input image for image segmenta-
tion. Specifically, given an image X, the segmentation is to generate a coarse result, denoted
as Ic. We integrate the multi-scale feature Fsa from the backbone E. DeepLabV3+ [36] is
adopted as our segmentation network following [8,12]. Then, a feature-aware attention
module combines the interactive points sets (Sp, Sn), where p represents positive clicks
while n represents negative clicks, the multi-scale feature map Fsa, and a guidance map Ig,
which denotes the difference between the human intention and automatic segmentation
results. Finally, a refinement network, denoted as R generates the final segmentation results
using the coarse segmentation result and the guidance map.

3.1. Coarse Segmentation Module

The task of interactive segmentation is very similar to instance or semantic segmen-
tation in terms of the network architecture. The key difference is in the user input: its
main aspects are the encoding and processing of the encoded input inside the network.
Therefore, it is reasonable to rely on time-tested state-of-the-art segmentation networks
and focus on interaction-specific parts. Following [31], we adopt the DeepLabV3+ [36]
semantic segmentation architectures as a backbone.

Three components comprise the coarse segmentation network: an encoder, an ASPP
module, and a decoder. Following [36], we establish ResNet with removing the fully
connected layer as the encoder network, denoted as E. Let F0, F1, F2, F3, F4 be the five layers
of features, which are used to calculate the guidance map with the click points. To capture
multi-scale context information due to excessive feature downsampling, the striding of the
last two layers (F3, F4) are replaced with atrous convolution (dilation = 2). The input of the
encoder is X, while the output of the decoder is the coarse segmentation results Ic.
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3.2. Feature-Aware Attention Module

To better utilize the user interaction intent to refine the image segmentation results,
based on the symmetry of user clicks and high-dimensional features of images, we use the
attention mechanism to extract the user segmentation intent from the click information.
In order to learn potential semantic relevance from users’ click actions to refine the seg-
mentation, we follow the multi-scale strategy recently used in [11,20]. Feature integrated
multiple scales are denoted as Fs, where s indicates the level in the backbone (Figure 1).
Bilinear interpolation is used for upsampling features to a similar resolution because they
arrive at different resolutions for each level. Then, SFs from all the scales are concatenated,
forming a tensor that is concatenated to create a common multi-scale feature map IFs and
fed into the guided attention modules with click set S to generate the attention features Gs.

Gs = CGA(IFs, S) (1)

where CGA represents each click-guided attention module. In the following sections, we
detail how the attentive features Gs are obtained.

⋮ ⋮ ⋮ ⋮ ⋮

Image �

Layer 1

Layer N

Click Set S

��…

��

CGA

CGA

CN ×

backbone

��

Feature integration Click-guided attention

��� ���

U

conv
conv

Multi-scale 
concatenate

Convolution

U

U

C

up sample

channel-wise
concatenate

conv��

IFs K1×1

V

S Q MDm
3×3 Gs

1×1 1x1

3x3 3x3 Convolution

1x1 ConvolutionCGA

Figure 1. Overview of the proposed feature-aware attention module. Dense local features are firstly
extracted from the backbone’s N Layers, denoted as Fs. The multi-scale features are integrated to
form a feature tensor IFs.Then each of the feature maps at different scales is integrated with this new
multi-scale feature map and fed into the guided attention modules to generate the attention features
GS. All the attention features are concatenated to generate the guidance map IG.

The key to interactive image segmentation is to classify each pixel point of the image
via making good use of prior knowledge (interaction information). Only position-guided
with lower-level characteristics, Euclidean distance maps, Gaussian maps, and disks with
modest radii provide semantic information about the target. As a result, it is not easy to
thoroughly learn the relationship between interactive and semantic information.

In order to estimate the segmentation intention, we focus on multi-scale features and
develop feature-aware attention. Specifically, the proposed pixel distance is a trainable
variance due to the distance between the foreground and background pixel features being
different in different images, so a fixed pixel distance could bring a certain error. The
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trainable pixel distance allows the network to learn the difference and get the most suitable
pixel distance. The pixel feature distance is defined as follows:

D0 = min
q∈S0

∥∥ep − eq
∥∥

2 (2)

D1 = min
q∈S1

∥∥ep − eq
∥∥

2 (3)

p is the pixel of the input image, and q is the point of the user click sets. D1 is the positive
click distance, D0 is the negative click distance.

The feature distance is calculated by matching the interaction points with the feature
maps acquired by the scale transformation module. The likelihood that the pixel belongs
to the foreground will be higher if the distance between the pixel feature and the positive
click is smaller; otherwise, the probability value representing this point as the background
will be higher. And the probability that the pixel belongs to the foreground, denoted as Pf d,
is defined as follows:

Pf d =
1

1 + e(D1−D0)
(4)

It should be noted that the difference is calculated not only on a pixel point in the
image representation but also on the region near the pixel point. Moreover, the region is
determined in multiple scale dimensions.

Then we use attention mechanisms to learn user interaction intention from sets of
interaction points and image features. Feature interaction IFs and click map Dm are normal-
ized and then transformed into three feature spaces V, K and Q to calculate the attention
between multi-scale feature information and click sets. Here, the learned weight metrics
of IFs are implemented as 1 × 1 convolutions and the metrics of Dm are implemented as
3 × 3 convolution as in [37].

We argue that the feature-aware attention is the target scale more accurately, achieving
significantly improved segmentation performance with limited interactions.

3.3. Refinement Network

Coarse segmentation results and a guidance feature map, which are calculated from
coarse image segmentation and multi-scale interactive feature matching, are further uti-
lized to generate the final segmentation mask. As show in Figure 2, the process can be
formulated as:

M̂ = R(concat(IC, IG, IF)) (5)

��

��

��

Result ��

C

1×1 Conv 3×3 Atrous Conv 1×1 Conv

Figure 2. Overview of the proposed refinement module, which takes in concatenation of the coarse
masks Ic, semantic feature IF, and feature-aware guided map IG and outputs precise mask result M̂.

Specifically, we first concatenate coarse segmentation results, denoted as IC and guid-
ance feature map IG in the channels. Additionally, the high-level feature map in the
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segmentation networks contains essential semantic information about the image, so we
further append the high-level feature map IF to the refinement module input.

Our refinement module R contains 6 convolution layers (see Table 1), each followed
by batch normalization and a ReLU. The motivation behind this model is that the striding
makes it easy to capture long range information from the concatenating channels. Conse-
quently, the refinement module R receives the H ×W × (c + 11) input and produces the
better refined segmentation mask M̂ ∈ RH×W×3. We impose the reconstruction loss to
enforce the M̂ to be close to the ground-truth mask M, which is denoted by:

Lrec =
∥∥M− M̂

∥∥
1 (6)

Table 1. Refinement module has 6 layers. Atrous convolution with rate > 1 is applied in the middle
4 layers.

Layer 1 2 3 4 5 6

Convolution 1 × 1 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1
Dilation 1 2 4 8 16 1

4. Experiments

We extensively evaluated the proposed approach by conducting ablation studies for
all sufficient parts of the method, exploring the convergence properties with increasing
clicks, and comparing our method with current state-of-the-art works.

4.1. Datasets

We employed the Semantic Boundaries Dataset(SBD) [38] for training. It provides a
wide-range domain and high-quality boundaries, including 8498 training and 2820 test
images. It is a supplement to Pascal VOC that uses the same graphics but has more thorough
annotations. SBD offers binary object segmentation masks for every object in the Pascal
VOC [39] challenge’s training and validation sets.

We evaluated the performance of our method on the following widely used datasets
for interactive segmentation with instance-level annotations. The summary of datasets
(including the publication years, class number, total instances number, total images number
and the resolution) can be found in Table 2.

• GrabCut [3]: The dataset contains 50 images and the segmentation masks of the
respective scene objects.

• DAVIS [40]: This dataset is introduced for the evaluation of video segmentation
datasets. We use the subset of 345 randomly sampled frames of video sequences that
are introduced in [41] for evaluation.

• Berkeley [42]: One hundred photos with a single foreground object make up this
dataset. The photos in this dataset contain numerous characteristics that make image
segmentation challenging, such as poor foreground-background contrast or a heavily
textured backdrop.

• MS COCO [43]: With 80 distinct object categories, this dataset is a sizable image
segmentation dataset. For evaluation, we sample 800 object instances from the valida-
tion set of COCO 2017 following the implemenation of [31]. Specifically, we sample
10 unique instances from each of the 80 categories in MS COCO.
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Table 2. Summary of common datasets for interactive image segmentation task.

Dataset Year Classes Instances Images Resolution

SBD [38] 2011 20 26,843 11,355 variable
GrabCut [3] 2004 - one object each 50 variable
DAVIS [40] 2016 4 one object each 345 640 × 480

Berkeley [42] 2010 - 100 96 variable
MS COCO [43] 2014 80 800 800 variable

4.2. Experimental Settings

As the backbone of the coarse segmentation network for the model test in this study,
we select two networks, VGG19 [44] and ResNet101 [45]. We utilized SBD as the training
dataset, resizing each image to 320 × 320 pixels and augmenting it with random rotation,
random flipping horizontally, and random Gaussian blur. We use the iterative sampling ap-
proach to create n consecutive clicks simultaneously for all of the images in each minibatch,
with the batch size being set to 8 and 1 ≤ n ≤ 10. The backbone network of the coarse
segmentation model uses the weight parameters pre-trained on Imagenet [46].

In addition, the supervised outcomes of the interactive nonlocal block and the net-
work’s final outputs underwent the calculation and minimization of the binary cross
entropy loss (BCEL).

We train the network for 50 epochs using the Adam optimizer with a weight decay
of 10−5, where the learning rates for the parameters of the pretraining model (i.e., the
backbone) and for other components of the network are 10−4 and 10−3, respectively.

On a configuration with a single NVIDIA Tesla V100-PCI-E-16G, an Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz CPU, and 16 GB RAM, we set up all of our tests using the
PyTorch [47] framework. The time needed to execute inference for each image is roughly
0.05 seconds per click, which is sufficient for real-time segmentation.

4.3. Evaluation Metric

We performed the evaluation using the standard Number of Clicks (NoC) measure,
reporting the number of clicks required to achieve the predefined Intersection over Union
(IoU) threshold between predicted and ground truth masks. We denoted NoC with the IoU
threshold set to 90% as NoC@90. To generate clicks during the evaluation procedure, we
followed the strategy used in [6].

4.4. Comparison Results

We contrasted our approach with alternative approaches from both qualitative and
quantitative perspectives. The compared techniques are mainly divided into two groups:
deep interactive image segmentation algorithms, such as DOS [6], Regional image seg-
mentation (RIS) [28], content-aware multi-level guidance (CAG) [7], latent diversity-based
segmentation (LD) [41], backpropagating refinement scheme (BRS) [48], and feature-based
backpropagation algorithms(F-BRS) [31]; Traditional interactive segmentation algorithms
based on handcrafted features, such as GraphCut (GC) [3], random walker (RW) [4], and
geodesic star convexity (GSC) [49].

The mNoC values needed by various algorithms on the five datasets are listed in
Table 3, where mNoC@x is the quantity of clicks needed for the algorithm to reach x%
mIoU. The number of clicks needed to get at the desired mIoU value is higher for any
deep interactive image segmentation method than it is for any traditional interactive image
segmentation methodology, suggesting that deep features are more generalizable than
constructed features. On five datasets, the mNoC values of our method are at least 0.05
(COCO) lower than those of the competing methods except f-BRS on Berkeley (0.44 higher).
Our strategy significantly improved DAVIS, as demonstrated. We discovered that the
proposed interactive strategy significantly improved the performance of our network with
different backbones.
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Table 3. Segmentation results of different models on five datasets.

Method GrabCut
mNoc@90

Berkeley
mNoc@90

SBD
mNoc@85

DAVIS
mNoc@85

COCO
mNoc@85

GC [3] 10 14.22 13.6 15.13 18.53
RW [4] 13.77 14.02 12.22 16.71 14.10

GSC [49] 9.12 12.57 12.69 15.35 14.08

DOS [6] 6.08 8.65 9.22 9.03 8.31
LD [41] 4.79 - 7.41 5.05 -
RIS [28] 5.00 - 6.03 - 5.98
CAG [7] 3.58 5.6 - - 5.4
BRS [48] 3.60 5.08 6.59 5.58 -

f-BRS [31] 2.98 4.34 5.06 5.04 -

Ours (VGG19) 2.89 5.16 5.32 4.58 5.79
Ours (ResNet101) 2.43 4.78 4.89 4.23 5.35

For each approach on the five datasets, curves of the mIoU values versus the number
of clicks are shown in Figure 3. The area under the curve (AuC), which is standardized to
[0, 1], is the value in the legend. From Figure 3, it is intuitively clear that our method is
faster and more accurate than other ways. As seen in the GrabCut, SBD, and COCO curves,
a higher AuC value indicated that our method is more accurate than the other methods for
the majority of clicks.
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Figure 3. The curves of IoU based on the number of clicks on five datasets. (a) GrabCut; (b) DAVIS;
(c) Berkeley; (d) SBD; (e) MS COCO.

The qualitative comparison results between our method and other methods are ex-
hibited in Figure 4. To obtain similar accuracy, we drew lines as the interactions for the
RW [4]. However, even if scribbled lines could provide more priors, the segmentation
results obtained by using handcrafted features are still not as detailed and accurate as the
results obtained by utilizing deep learning algorithms. We took LD [41] and fBRS [31] as
examples of deep interactive image segmentation methods. We also observed that our
method can produce superior regional segmentation results with fewer interactions. Other
methods, on the other hand, necessitated more interactions, but their mIoU values are still
inferior to ours.

Figure 4 illustrates the results of a qualitative comparison between our method and
other methods. We create lines as the RW’s interactions to get equivalent accuracy. Even
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while scrawled lines could offer more priors, deep learning algorithms nevertheless produce
segmentation results that are less precise and detailed than those produced by handwritten
features. As illustrations of deep interactive image segmentation techniques, we use
LD and BRS. We also notice that our approach requires fewer contacts while producing
more substantial regional segmentation outcomes. While some approaches required more
interactions, their mIoU values are still lower than ours. Furthermore, our method obtained
outstanding performance for a specific object selected among several targets with only a
few clicks, demonstrating the superiority of semantic guiding with interaction information.

GROUD
TRUTH

F-BRS

LD

RW

OURS

Figure 4. Comparison of segmentation results of different models.

4.5. Ablation Study

Network architecture ablations. We carried out a number of ablation experiments to
confirm the viability of our approach. Table 4 shows the mNoC values that are produced
by our algorithm on the various datasets when removing the refinement module. Our
network also used three backbones to further investigate the flexibility of the feature-aware
attention module.

As shown in Table 4, deleting the refining module gradually increases the amount
of clicks needed to attain the desired mIoU. The largest difference in clicks between the
results and the whole model is 0.74, indicating that the removal of the refining block has an
effect on network performance.

Table 4. Evaluation for ablation experiments.

Settings Backbone GrabCut Berkeley

VGG19 2.89 5.16
Full ResNet50 2.50 4.97

ResNet101 2.43 4.78

VGG19 3.32 5.90
w/o RF ResNet50 3.08 5.63

ResNet101 2.99 5.42

Non-interactive comparison. Different from other methods, our method is also ca-
pable of obtaining a segmentation result without providing interaction points, so as to
reduce the complexity of user interaction to the clearly identifiable foreground targets. The
comparison results are shown in Table 5, where the baseline column is the result of the
coarse segmentation method without interaction points. The coarse segmentation result in
the COCO dataset is poor at 0.54 due to many categories, and the best coarse segmentation
result in GrabCut dataset is 0.81. Our method revises and improves the initial segmentation
result. The Berkeley dataset and the COCO dataset showed a large increase on the first click,
with an increase in IoU of 0.7. All datasets exceeded 0.8 on the third click, with GrabCut
reaching 0.93.
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Table 5. Segmentation accuracy is improved with the increase of interaction points.

Datasets Baseline 1st Click 2nd Click 3rd Click

Grabcut 0.81 0.83 0.89 0.93
SBD 0.7 0.72 0.81 0.83

DAVIS 0.69 0.72 0.83 0.87
berkeley 0.73 0.8 0.84 0.87
COCO 0.54 0.61 0.72 0.81

The visualization effect of our method and the non-interactive segmentation method
(Baseline) are compared, as shown in Figure 5. A total of 3 groups of images are taken
out for experimentation, respectively, (a), (b) and (c). Each group includes four columns
of images. The third column represents the detection effect of DeepLabV3+ of the non-
interactive segmentation network, and the fourth column represents the segmentation
effect of the interactive image segmentation method proposed in this paper. Our method
is able to improve the accuracy of segmentation results by user clicks in comparison to
non-interactive segmentation models. Depending on the user’s intention, the segmentation
result may be a combination of multiple targets or a partial region of a target, which is
challenging to define in a supervised manner.

Image Baseline OursGT

Figure 5. The visualization effect of our method and the non-interactive segmentation method.

5. Conclusions

In this paper, we propose a deep interactive image segmentation network, where
a feature-aware attention module is utilized to integrate the human-click information
with semantic features. The designed module is plug-and-play for most deep image
segmentation networks, which prompts deep models to employ users’ input information
to refine the segmentation result. The experimental results prove our proposed module
can improve the performance of image segmentation networks and refine the segmented
objects. Our method obtains great performance for a specific object selected among several
targets with only a few clicks. The performance of our network with various backbones is
considerably enhanced since the proposed interactive method is flexible for most networks.
Since our interaction module is considered as an optimization guide for segmentation
results, the segmentation model can be executed normally without this guide information
and gives a fairly good result. Therefore, for simple segmentation targets, our approach
can effectively reduce unnecessary user interactions. In the future, we will further explore
the interaction intention understanding model based on the attention mechanism, in order
to be able to predict the user’s next interaction intention based on the accurate simulation
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of the user’s segmentation intention. Further, we hope to extend our research area to 3D
segmentation and explore faster and more effective interactive image segmentation models
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