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Abstract: Censored data play a pivotal role in life testing experiments since they significantly reduce
cost and testing time. Hence, this paper investigates the problem of statistical inference for a system of
progressive first-failure censoring data for a new Weibull–Pareto distribution. Maximum likelihood
estimates for the parameters as well as some lifetime indices such as reliability, hazard rate functions,
and coefficient of variation are derived. Lindley approximation and the Markov chain Monte Carlo
technique are applied to obtain the Bayes estimates relative to two different loss functions: balanced
linear exponential and general entropy loss functions. The results of the Bayes estimate are computed
under the consideration of informative prior function. A real-life example "the survival times in years
of a group of patients given chemotherapy treatment" is presented to illustrate the proposed methods.
Finally, a simulation study is carried out to determine the performance of the maximum likelihood
and Bayes estimates and compare the performance of different corresponding confidence intervals.

Keywords: new Weibull–Pareto distribution; reliability characteristics; coefficient of variation;
general entropy; Bayesian approaches

MSC: 62N05; 62F10

1. Introduction

In life testing experiments, one of the major reasons for the removal of experimental
units is saving the working experimental units for future use, saving the cost and time
associated with testing. This leads us to the use of censoring schemes. The most common
schemes are considered Type-I and Type-II censoring. These types have been studied by
several statisticians; see, for instance, Kundu and Howlader [1] and Fujii [2]. In terms of the
procedure, in Type-I censoring, all units n are put in the test for a pre-specified time and at
the end of the specified time, the test ends. In Type-II censoring, all units n are put in the
test, and the test is terminated at the failure of the pre-specified m-th unit (1 ≤ m ≤ n). The
disadvantages of these types are represented in that the units cannot be removed during the
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test. Thus, progressive Type-II censoring (PT2C) was proposed, which has more flexibility
in allowing units to be withdrawn within the duration of the test.

An excellent reference that accurately describes this type of censoring scheme is
Balakrishnan and Sandhu [3], who add to the steps of generation, which is useful to achieve
the desired goals of using censoring schemes. Several authors have discussed inference
under PT2C with applications, see, for example, Chen et al. [4], Xu et al. [5], Luo et al. [6],
and EL-Sagheer [7].

Although the experimental efficiency under PT2C can be significantly improved, the
duration of the test is still too long. So, Johnson [8] described a life test in which the
experimenter can be decided to divide the units under test into several groups and then
run all the units simultaneously until the occurrence of the first failure in each group. Such
a censoring scheme is called first-failure censoring (FFC). However, using this censoring
scheme does not enable the experimenter to remove experimental units from the test
until the first failure is observed. For this reason, Wu and Kuş [9] introduced life testing,
which combined FFC with PT2C, and is named the progressive first-failure censoring
(Pro-F-F-C) scheme. Many authors have discussed inference under a Pro-F-F-C scheme for
different lifetime distributions, see, for example, Soliman et al. [10], Soliman et al. [11,12],
Soliman et al. [13], Mahmoud et al. [14,15], Abushal [16], Ahemd [17], Xie and Gui [18], Shi
and Shi [19], and EL-Sagheer et al. [20].

A new Weibull–Pareto distribution (NWPD) is a generalization of the Weibull and
Pareto distributions, as discussed in Suleman and Albert [21]. The probability density
function (pdf) and cumulative distribution function (cdf) of a random variable X has an
NWPD given, respectively, by

f (x; δ, β, θ) =
βδ

θ

( x
θ

)β−1
e−δ( x

θ )
β

, x > 0; δ, β, θ > 0, (1)

and
F(x; δ, β, θ) = 1− e−δ( x

θ )
β

, (2)

where δ and θ are the scale parameters and β is the shape parameter. The reliability function
S(t), hazard rate function h(t), and coefficient of variation CV of the NWPD (δ, β, θ) are,
respectively, given by

S(t) = e−δ( t
θ )

β

, t > 0, (3)

h(t) =
βδ

θ

(
t
θ

)β−1
, t > 0, (4)

and

CV =

√
Γ
(

β+2
β

)
−
[
Γ
(

β+1
β

)]2

Γ
(

β+1
β

) , β > 0. (5)

The importance of studying this model is due to the fact that it is an interesting
three-parameter lifetime model, and it can be a useful characterization of the survival
time of a given system because of its analytical structure. In addition, it occupies an
important position in reliability analysis, biomedical, and life-test experiences. From h(t),
the following can be observed: If β = 1, the h(t) is constant and given by h(t) = δ

θ , this
makes the NWPD suitable for modeling systems or components with constant failure
rate. If β > 1, the hazard rate function is an increasing function of x, which makes the
NWPD suitable for modeling components that wear faster with time. If β < 1, the hazard
rate function is a decreasing function of x, which makes the NWPD suitable for modeling
components that wear slower with time. For more details about the NWPD, including its
properties and applications see Suleman and Albert [21]. Several authors have discussed
the statistical inference of censored data on the NWPD, for example, Almetwally et al. [22],
Al-Omari et al. [23], EL-Sagheer et al. [24], and Mahmoud et al. [25].
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This article aims to discuss the statistical inference of the NWPD parameters as well
as some lifetime indices such as reliability function, hazard rate function, and coefficient
of variation in the presence of Pro-F-F-C scheme. To this end, both point and interval
estimations are discussed by implementing classical and Bayesian approaches. Moreover,
delta, log transformation (LT) and arc sine transformation (AST) methods are used to
construct the ACIs for S(t), h(t), and CV. In the Bayesian framework, Lindley and MCMC
techniques under two different loss functions (balanced linear exponential (BLINEX) and
general entropy (GE)) are proposed. A simulation study is carried out to determine the
performance of the ML, Lindley, and MCMC estimation and compare the performance of
different corresponding confidence intervals. Finally, the application to real-life data on
gastric cancer survival times is analyzed for illustrative purposes.

The rest of this article is organized as follows: MLEs for the unknown quantities are
presented in Section 2. In Section 3, the ACIs are constructed. Bayes estimators relative to
different loss functions are also considered in Section 4. Section 5 provided the illustration
of the proposed procedure by using a real-life example. Simulation results are discussed in
Section 6. Finally, concluding remarks are investigated in Section 7.

2. ML Inference

Suppose that xR
i : m : n : k, i = 1, 2, . . . , m, is a Pro-F-F-C order statistic from NWPD with the

scheme R = (R1, R2, . . . , Rm). According to Wu and Kuş [9], the joint pdf can be written as

L(x; δ, β, θ) ∝ kmβmδmθ(−m)

[
m

∏
i=1

( xi
θ

)β−1
]

exp

{
−δ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
}

. (6)

The log-likelihood function `(x; δ, β, θ) can be written as

`(x; δ, β, θ) =m ln(k) + m ln(β) + m ln(δ)−m ln(θ) + (β− 1)
m

∑
i=1

ln
( xi

θ

)
− δ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
.

(7)

By setting the partial derivatives of Equation (7) with respect to δ, β, and θ to zero, the
MLEs can be obtained by soluting the following likelihood equations

m
δ
−

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
= 0, (8)

m
β
+

m

∑
i=1

ln
( xi

θ

)
− δ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
ln
( xi

θ

)
= 0, (9)

and
mβ

θ
− βδ

θ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
= 0. (10)

Since the non-linear Equations (8)–(10) cannot be solved analytically, a numerical
method such as the Newton–Raphson method is used. Thus, we can be computed the
MLEs of S(t), h(t), and CV by using the invariant property of the MLEs.

3. Constructing the ACIs

In this section, the ML estimate, delta, LT, and AST methods are discussed to explain
how to originate the CIs of unknown quantities.

3.1. The ML Estimate

Based on the invariant property of the MLEs, the ACIs of the parameters can be
constructed via asymptotic variances that can be acquired from the inverse of the Fisher in-
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formation matrix (IFIM). Therefore, the IFIM can be determined according to the likelihood
equations through the following expression

Î−1
ij (Φ) =

[
E

(
−∂2`(Φ)

∂φi∂φj

)]−1

, i, j = 1, 2, 3, Φ = (φ1, φ2, φ3) = (δ, β, θ), (11)

where

`δδ =
−m
δ2 , `δβ = −

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
ln
( xi

θ

)
= `βδ, (12)

`δθ =
β

θ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
= `θδ, (13)

`ββ =
−m
β2 − δ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β(
ln
( xi

θ

))2
, (14)

`βθ =
−m

θ
+

δβ

θ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
ln
( xi

θ

)
+

δ

θ

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
= `θβ, (15)

and

`θθ =
mβ

θ2 −
β(β + 1)δ

θ2

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
. (16)

Due to the difficulty of calculating the exact expression of Equation (11), the asymptotic
variance–covariance matrix will be used as the follows

Î−1(δ, β, θ) =

 Var
(
δ̂
)

Cov
(
δ̂, β̂
)

Cov
(
δ̂, θ̂
)

Cov
(

β̂, δ̂
)

Var
(

β̂
)

Cov
(

β̂, θ̂
)

Cov
(
θ̂, δ̂
)

Cov
(
θ̂, β̂
)

Var
(
θ̂
)
. (17)

Hence,
(
δ̂, β̂, θ̂

)
∼ N

[
(δ, β, θ), Î−1(δ, β, θ)

]
, and then the (1− γ)100% ACIs for

Φ = (δ, β, θ) are given by[
Φ̂− Zγ/2

√
Var

(
Φ̂
)
, Φ̂ + Zγ/2

√
Var

(
Φ̂
)]

, (18)

where Zγ/2 is the standard normal distribution percentile with probability right-tailed γ/2.

3.2. Delta Method

The (1− γ)100% ACIs for Ψ = (S(t), h(t), CV) can be given by[
Ψ̂− Zγ/2

√
Var

(
Ψ̂
)
, Ψ̂ + Zγ/2

√
Var

(
Ψ̂
)]

, (19)

where Var
(
Ψ̂
)

is the variance of Ψ̂, which can be obtained by using the delta method, see
Green [26], and can be written as

Var
(
Ψ̂
)
'
[

BT Î−1B
]
(δ̂,β̂,θ̂)

, (20)

where B is the first derivative of Ψ̂ with respect to δ̂, β̂, and θ̂, BT
i is the transpose matrix of

B and Î−1 is in (17).
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3.3. Log Transformation Method

The (1− γ)100% LTCIs for Ψ = (S(t), h(t), CV) can be obtained, respectively, by

ln
(

Ψ̂
1− Ψ̂

)
∓ Zγ/2

√
Var

(
Ψ̂
)

1− Ψ̂
. (21)

If (L, U) denote the lower and upper bounds of LTCIs of Ψ, then the (1− γ)100%
ACIs for Ψ relative to LT are given by[

eL
(

1 + eL
)−1

, eU
(

1 + eU
)−1

]
. (22)

3.4. Arcsin Transformation Method

The (1− γ)100% ASTCIs for Ψ = (S(t), h(t), CV) can be obtained by

arcsin
(√

Ψ̂
)
∓ Zγ/2

√
Var

(
Ψ̂
)

4Ψ̂
(
1− Ψ̂

) . (23)

If (L, U) denote the lower and upper bounds of ASTCIs of Ψ, then the (1− γ)100%
ACIs for Ψ relative to AST are given by[

sin2(L), sin2(U)
]
. (24)

For more details about LT and AST, see Mukherjee and Maiti [27], Krishnamoorthy
and Lin [28], and Ahmed [29].

4. Bayesian Estimation

In this section, we discuss how to obtain the Bayes estimates and construct the cor-
responding CRIs for δ, β, and θ, S(t), h(t), and CV under BLINEX and GE loss functions.
Therefore, we consider that the unknown parameters δ, β, and θ are stochastically inde-
pendently distributed with conjugate gamma prior. Hence, the joint prior density can be
formulated as follows

π(δ, β, θ) ∝ δγ1−1βγ2−1θγ3−1 exp{−η1δ− η2β− η3θ}, (25)

where the hyperparameters γi and ηi (where i = 1, 2, 3) are reflected prior knowledge about
δ, β, and θ. Consequently, from (6) and (25), the joint posterior density can be expressed
as follows

π∗(δ, β, θ | x) =
L(x; δ, β, θ)× π(δ, β, θ)∫ ∞

0

∫ ∞
0

∫ ∞
0 L(x; δ, β, θ)× π(δ, β, θ)dδdβdθ

∝βm+γ2−1δm+γ1−1θ(−m+γ3−1)

[
m

∏
i=1

( xi
θ

)β−1
]

× exp

{
−η2β− η3θ − δ

[
η1 +

m

∑
i=1

k(Ri + 1)
( xi

θ

)β
]}

.

(26)

The Bayes estimate of the unknown quantity q(δ, β, θ) under BLINEX and GE loss
functions is given by

q̂BL(δ, β, θ) = −1
c log

(
ωe−cq(δ,β,θ) + (1 + ω)E

[
e−cq(δ,β,θ)|x

])
q̂GE(δ, β, θ) =

(
E
[
(q(δ, β, θ))−b|x

])−1
b

, (27)
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where the posterior expectations of q(δ, β, θ) under BLINEX and GE loss functions can be
written as

E
[
e−cq(δ,β,θ)|x

]
=
∫ ∞

0
∫ ∞

0
∫ ∞

0 e−cq(δ,β,θ)×L(x;δ,β,θ)×π(δ,β,θ)dδdβdθ∫ ∞
0
∫ ∞

0
∫ ∞

0 L(x;δ,β,θ)×π(δ,β,θ)dδdβdθ

E
[
(q(δ, β, θ))−b|x

]
=
∫ ∞

0
∫ ∞

0
∫ ∞

0 (q(δ,β,θ))−b×L(x;δ,β,θ)×π(δ,β,θ)dδdβdθ∫ ∞
0
∫ ∞

0
∫ ∞

0 L(x;δ,β,θ)×π(δ,β,θ)dδdβdθ

. (28)

It is noticeable that the Bayes estimates in both kinds of loss functions include three
integrals and cannot be constructed in closed forms. Therefore, the Lindley and MCMC
techniques will be implemented to obtain the Bayes estimates of the unknown quantities.

4.1. Lindley’s Approximation

There are various methods suggested to approximate the ratio of integrals of the
above form, maybe the simplest one is the Lindley [30] approximation method, which
approximates the Bayes estimates into a form containing no integrals. Many authors have
used this approximation, see for example, Sarhan et al. [31], Sultan et al. [32], Singh et al. [33],
Singh et al. [34], and Rastogi and Tripathi [35]. In short, this method works as follows: for
any ratio of the integral of the form

I(x) = E[u(δ, β, θ) | x] =

∫
(δ,β,θ)

u(δ, β, θ)e`(δ,β,θ)+ρ(δ,β,θ)d(δ, β, θ)∫
(δ,β,θ)

e`(δ,β,θ)+ρ(δ,β,θ)d(δ, β, θ)
, (29)

where u(δ, β, θ) is the function of δ, β, and θ only, ρ(δ, β, θ) = log π(δ, β, θ), and π(δ, β, θ)
is the joint prior density. Hence, I(x) can be estimated as

I(x) = u
(
δ̂, β̂, θ̂

)
+
(
ûδa1 + ûβa2 + ûθa3 + a4 + a5

)
+

1
2
[
A
(
ûδσ̂δδ + ûβσ̂δβ + ûθ σ̂δθ

)
+B
(
ûδσ̂βδ + ûβσ̂ββ + ûθ σ̂βθ

)
+ C

(
ûδσ̂θδ + ûβσ̂θβ + ûθ σ̂θθ

)]
, (30)

where δ̂, β̂, and θ̂ are the MLEs of δ, β, and θ, respectively, and subscripts 1, 2, and 3 on the
right-hand sides refer to δ, β, and θ.

ai = ρ̂δσ̂iδ + ρ̂βσ̂iβ + ρ̂θ σ̂iθ
a4 = ûδβσ̂δβ + ûδθ σ̂δθ + ûβθ σ̂βθ

a5 = 1
2
(
ûδδσ̂δδ + ûββσ̂ββ + ûθθ σ̂θθ

)
, (31)

A = σ̂δδ
ˆ̀

δδδ + 2σ̂δβ
ˆ̀

δβδ + 2σ̂δθ
ˆ̀

δθδ + 2σ̂βθ
ˆ̀

βθδ + σ̂ββ
ˆ̀

ββδ + σ̂θθ
ˆ̀

θθδ

B = σ̂δδ
ˆ̀

δδβ + 2σ̂δβ
ˆ̀

δββ + 2σ̂δθ
ˆ̀

δθβ + 2σ̂βθ
ˆ̀

βθβ + σ̂ββ
ˆ̀

βββ + σ̂θθ
ˆ̀

θθβ

C = σ̂δδ
ˆ̀

δδθ + 2σ̂δβ
ˆ̀

δβθ + 2σ̂δθ
ˆ̀

δθθ + 2σ̂βθ
ˆ̀

βθθ + σ̂ββ
ˆ̀

ββθ + σ̂θθ
ˆ̀

θθθ

, (32)

ρi =
∂ρ

∂φi
, ui =

∂u(φ1, φ2, φ3)

∂φi
, uij =

∂u(φ1, φ2, φ3)

∂φi∂φj
, `ij =

∂`(φ1, φ2, φ3)

∂φi∂φj
, `ijl =

∂`(φ1, φ2, φ3)

∂φi∂φj∂φl
, (33)

where φ1 = δ, φ2 = β, φ3 = θ, i, j, l = 1, 2, 3, and σij are the (i, j)th elements of Î−1(δ̂, β̂, θ̂
)

in
(17). If δ, β, and θ are orthogonal, then σ̂ij = 0 for i 6= j. The `ijl can be obtained as follows:

ˆ̀
δδδ =

2m
δ̂3

, (34)

ˆ̀
δδβ = ˆ̀

δβδ = ˆ̀
βδδ = ˆ̀

δδθ = ˆ̀
δθδ = ˆ̀

θδδ = 0, (35)

ˆ̀
δββ = −

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂[
ln
(

xi

θ̂

)]2
= ˆ̀

βδβ = ˆ̀
ββδ. (36)
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ˆ̀
δβθ =

β̂

θ̂

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

ln
(

xi

θ̂

)
+

1
θ̂

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

= ˆ̀
δθβ = ˆ̀

βδθ = ˆ̀
βθδ = ˆ̀

θδβ = ˆ̀
θβδ,

(37)

ˆ̀
δθθ = − β̂(β̂ + 1)

θ̂2

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

= ˆ̀
θδθ = ˆ̀

θθδ, (38)

ˆ̀
βββ =

2m
β̂3
− δ̂

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂[
ln
(

xi

θ̂

)]3
, (39)

ˆ̀
ββθ =

β̂δ̂

θ̂

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β[
ln
(

xi

θ̂

)]2
+

2δ̂

θ̂

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β

ln
(

xi

θ̂

)
= ˆ̀

βθβ = ˆ̀
θβββ,

(40)

ˆ̀
βθθ =

m
θ̂2
− (β̂ + 1)δ̂

θ̂2

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

− β̂δ̂

θ̂2

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

− β̂(β̂ + 1)δ̂
θ̂2

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

ln
(

xi

θ̂

)
= ˆ̀

θβθ = ˆ̀
θθβ,

(41)

and

ˆ̀
θθθ =

−2mβ̂

θ̂3
+

β̂(β̂ + 1)(β̂ + 2)δ̂
θ̂3

m

∑
i=1

k(Ri + 1)
(

xi

θ̂

)β̂

ln
(

xi

θ̂

)
. (42)

From the joint prior density in (25), we get

ρ(δ, β, θ) = γ1 ln(η1) + γ2 ln(η2) + γ3 ln(η3)− ln(Γ(γ1))− ln(Γ(γ2))− ln(Γ(γ3))

+(γ1 − 1) ln(δ) + (γ2 − 1) ln(β) + (γ3 − 1) ln(θ)− (η1δ + η2β + η3θ). (43)

Hence,
ρ̂1 = ∂ ln π(δ,β,θ)

∂δ

∣∣∣
(δ,β,θ)=(δ̂,β̂,θ̂)

= (γ1−1)
δ̂
− η1

ρ̂2 = ∂ ln π(δ,β,θ)
∂β

∣∣∣
(δ,β,θ)=(δ̂,β̂,θ̂)

= (γ2−1)
β̂
− η2

ρ̂3 = ∂ ln π(δ,β,θ)
∂θ

∣∣∣
(δ,β,θ)=(δ̂,β̂,θ̂)

= (γ3−1)
θ̂
− η3


. (44)

4.1.1. Bayes Estimate under BLINEX Loss Function

In this subsection, we obtain the Bayes estimates of δ, β, θ, S(t), h(t), and CV under
the BLINEX loss function

(i) When u(δ, β, θ) = e−cδ, then uδ = −ce−cδ, uδδ = c2e−cδ, and uβ = uββ = uθ = uθθ =
uδβ = uδθ = uβθ = 0. The Bayes estimate of δ is given by

δ̂BL =
−1
c

ln
(

ωe−cδ̂ + (1−ω)E
[
e−cδ|x

])
, (45)

where

E
[
e−cδ|x

]
= e−cδ̂ + 0.5

[
(ûδδ + 2ρ̂δûδ)σ̂δδ + ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)]
. (46)
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(ii) When u(δ, β, θ) = e−cβ, then uβ = −ce−cβ, uββ = c2e−cβ, and uθ = uθθ = uδ = uδδ =
uδβ = uδθ = uβθ = 0. The Bayes estimate of β is given by

β̂BL =
−1
c

ln
(

ωe−cβ̂ + (1−ω)E
[
e−cβ|x

])
, (47)

where

E
[
e−cβ|x

]
= e−cβ̂ + 0.5

[(
ûββ + 2ρ̂βûβ

)
σ̂ββ + ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)]
. (48)

(iii) When u(δ, β, θ) = e−cθ , then uθ = −ce−cθ , uθθ = c2e−cθ , and uδ = uδδ = uβ = uββ =
uδβ = uδθ = uβθ = 0. The Bayes estimate of θ is given by

θ̂BL =
−1
c

ln
(

ωe−cθ̂ + (1−ω)E
[
e−cθ |x

])
, (49)

where

E
[
e−cθ |x

]
= e−cθ̂ + 0.5

[
(ûθθ + 2ρ̂θ ûθ)σ̂θθ + ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (50)

(iv) When u(δ, β, θ) = e−cS(t) = e−ce−δ( t
θ )

β

, then the Bayes estimate of S(t) is given by

ŜBL(t) =
−1
c

ln
(

ωe−cŜ(t) + (1−ω)E
[
e−cS(t)|x

])
, (51)

where

E
[
e−cS(t)|x

]
= e−ce

−δ̂
(

t
θ̂

)β̂

+ 0.5
[
(ûδδ + 2ûδρ̂δ)σ̂δδ +

(
ûββ + 2ûβρ̂β

)
σ̂ββ + (ûθθ + 2ûθ ρ̂θ)σ̂θθ

]
+0.5

[
ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)
+ ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)
+ ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (52)

(v) When u(δ, β, θ) = e−ch(t) = e−c βδ
θ (

t
θ )

β−1
, then the Bayes estimate of h(t) is given by

ĥBL(t) =
−1
c

ln
(

ωe−cĥ(t) + (1−ω)E
[
e−ch(t)|x

])
, (53)

where

E
[
e−ch(t)|x

]
= e−c β̂δ̂

θ̂

(
t
θ̂

)β̂−1

+ 0.5
[
(ûδδ + 2ûδρ̂δ)σ̂δδ +

(
ûββ + 2ûβρ̂β

)
σ̂ββ + (ûθθ + 2ûθ ρ̂θ)σ̂θθ

]
+0.5

[
ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)
+ ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)
+ ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (54)

(vi) When u(δ, β, θ) = e−cCV , then the Bayes estimate of CV is given by

ĈVBL =
−1
c

ln
(

ωe−cĈV + (1−ω)E
[
e−cCV |x

])
, (55)

where
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E
[
e−cCV |x

]
= exp

−c

√
Γ
(

2+β̂

β̂

)
−
[
Γ
(

1+β̂

β̂

)]2

Γ
(

1+β̂

β̂

)
+ 0.5

[(
ûββ + 2ûβρ̂β

)
σ̂ββ

+ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)]
. (56)

4.1.2. Bayes Estimate under GE Loss Function

We discuss the Bayes estimates of δ, β, θ, S(t), h(t) and CV under the GE loss function.

(i) When u(δ, β, θ) = δ−b, then uδ = −bδ−b−1, uδδ = b(b + 1)δ−b−2, and uβ = uββ =
uθ = uθθ = uδβ = uδθ = uβθ = 0. The Bayes estimate of δ is given by

δ̂GE =
(

E
[
δ−b|x

])−1
b , (57)

where

E
[
δ−b|x

]
= δ̂−b + 0.5

[
(ûδδ + 2ρ̂δûδ)σ̂δδ + ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)]
. (58)

(ii) When u(δ, β, θ) = β−b, then uβ = −bβ−b−1, uββ = b(b + 1)β−b−2, and uθ = uθθ =
uδ = uδδ = uδβ = uδθ = uβθ = 0. The Bayes estimate of β is given by

β̂GE =
(

E
[

β−b|x
])−1

b , (59)

where

E
[

β−b|x
]
= β̂−b + 0.5

[(
ûββ + 2ρ̂βûβ

)
σ̂ββ + ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)]
. (60)

(iii) When u(δ, β, θ) = θ−b, then uθ = −bθ−b−1, uθθ = b(b + 1)θ−b−2, and uδ = uδδ =
uβ = uββ = uδβ = uδθ = uβθ = 0. The Bayes estimate of θ is given by

θ̂GE =
(

E
[
θ−b|x

])−1
b , (61)

where

E
[
θ−b|x

]
= θ̂−b + 0.5

[
(ûθθ + 2ρ̂θ ûθ)σ̂θθ + ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (62)

(iv) When u(δ, β, θ) = (S(t))−b =

(
e−δ( t

θ )
β
)−b

, then the Bayes estimate of S(t) is

given by

ŜGE(t) =
(

E
[
(S(t))−b|x

])−1
b , (63)

where

E
[
(S(t))−b|x

]
=

(
e−δ̂

(
t
θ̂

)β̂
)−b

+ 0.5
[
(ûδδ + 2ûδρ̂δ)σ̂δδ +

(
ûββ + 2ûβρ̂β

)
σ̂ββ + (ûθθ + 2ûθ ρ̂θ)

σ̂θθ ] + 0.5
[
ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)
+ ûβσ̂ββ

(
ˆ̀

βββσ̂ββ +

ˆ̀
θθβσ̂θθ

)
+ ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (64)
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(v) When u(δ, β, θ) = (h(t))−b =
(

βδ
θ

( t
θ

)β−1
)−b

, then the Bayes estimate of h(t) is
given by

ĥGE(t) =
(

E
[
(h(t))−b|x

])−1
b , (65)

where

E
[
(h(t))−b|x

]
=

(
β̂δ̂

θ̂

(
t
θ̂

)β̂−1
)−b

+ 0.5
[
(ûδδ + 2ûδρ̂δ)σ̂δδ +

(
ûββ + 2ûβρ̂β

)
σ̂ββ+

(ûθθ + 2ûθ ρ̂θ)σ̂θθ ] + 0.5
[
ûδσ̂δδ

(
ˆ̀

δδδσ̂δδ + ˆ̀
ββδσ̂ββ + ˆ̀

θθδσ̂θθ

)
+ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)
+ ûθ σ̂θθ

(
ˆ̀

ββθ σ̂ββ + ˆ̀
θθθ σ̂θθ

)]
. (66)

When u(δ, β, θ) = (CV)−b, then the Bayes estimate of CV is given by

ĈVGE =
(

E
[
(CV)−b|x

])−1
b , (67)

where

E
[
(CV)−b|x

]
=


√

Γ
(

2+β̂

β̂

)
−
[
Γ
(

1+β̂

β̂

)]2

Γ
(

1+β̂

β̂

)

−b

+ 0.5
[(

ûββ + 2ûβρ̂β

)
σ̂ββ

+ûβσ̂ββ

(
ˆ̀

βββσ̂ββ + ˆ̀
θθβσ̂θθ

)]
. (68)

Unfortunately, Lindley’s approximation does not calculate the interval estimation, so
we resort to the MCMC technique.

4.2. MCMC Technique

Now, we explain how the MCMC technique is applied to compute the Bayes estimates
and construct the corresponding CRIs of δ, β, θ, S(t), h(t), and CV. A common technique
in the MCMC technique is the Gibbs sampler, which was introduced by Geman and
Geman [36], and the M-H algorithm, which was developed by Metropolis et al. [37] and
later extended by Hastings [38]. In this technique, the samples can be drawn by making use
of the conditional density and proposal distributions for each of the parameters. Thereafter,
by using the drawn samples, the Bayes estimates and the corresponding CRIs can be
computed. From (26), the conditional densities can be obtained as follows

π∗1 (δ | β, θ, x) ∝ δm+γ1−1 exp

{
−δ

[
m

∑
i=1

k(Ri + 1)
( xi

θ

)β
+ η1

]}
, (69)

π∗2 (β | δ, θ, x) ∝ βm+γ2−1

[
m

∏
i=1

( xi
θ

)β−1
]

exp

{
−η2β− δ

[
m

∑
i=1

k(Ri + 1)
( xi

θ

)β
]}

, (70)

and

π∗3 (θ | δ, β, x) ∝ θ(−m+γ3−1)

[
m

∏
i=1

( xi
θ

)β−1
]

exp

{
−η3θ − δ

[
m

∑
i=1

k(Ri + 1)
( xi

θ

)β
]}

. (71)

It is noticeable that Equation (69) represents a gamma density, thus the samples of δ can
be drawn simply from any gamma-generating routine. Furthermore, Equations (70) and (71)
do not represent a well-known distributions. However, when plotted, they appear similar
to the normal distribution, see Figures 1 and 2. Consequently, the hybrid procedure of the
Gibbs sampling and M-H algorithm will be run in the following steps:
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Figure 1. Posterior density π∗2 (β|δ, θ, x) of β.

Figure 2. Posterior density π∗3 (θ|δ, β, x) of θ.

(1) Start with initial guess
(

δ(0), β(0), θ(0)
)

.

(2) Set j = 1.

(3) Generate δ(j) from gamma
(

m + γ1, η1 +
m
∑

i=1
k(Ri + 1)

( xi
θ

)β
)

.

(4) Using M-H to generate β(j) and θ(j) from π∗2 (β(j−1)|δ(j), θ(j−1), x) and

π∗3 (θ
(j−1)|δ(j), β(j), x) with N

(
β(j−1), Var(β)

)
and N

(
θ(j−1), Var(θ)

)
.

(i) Generate β∗ from N
(

β(j−1), Var(β)
)

and θ∗ from N
(

θ(j−1), Var(θ)
)

.

(ii) Evaluate the acceptance probabilities

ψβ = min

[
1,

π∗2 (β∗|δ(j), θ(j−1), x)
π∗2 (β(j−1)|δ(j), θ(j−1), x)

]
, ψθ = min

[
1,

π∗3 (θ
∗|δ(j), β(j), x)

π∗3 (θ
(j−1)|δ(j), β(j), x)

]
.

(iii) Generate a u1 and u2 from a uniform (0, 1) distribution.
(iv) If u1 < ψβ accept the proposal and set β∗ = β(j), else set β(j) = β(j−1).
(v) If u2 < ψθ accept the proposal and set θ∗ = θ(j), else set θ(j) = θ(j−1).

(5) Compute S(t), h(t), and CV as
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S(j)(t) = e
−δ(j)

(
t

θ(j)

)β(j)

h(j)(t) = β(j)δ(j)

θ(j)

(
t

θ(j)

)β(j)−1

CV(j) =

√
Γ
(

2+β(j)

β(j)

)
−
[

Γ
(

1+β(j)

β(j)

)]2

Γ
(

1+β(j)

β(j)

)


.

(6) Set j = j + 1.
(7) Repeat Steps 3− 6 N times.
(8) Based on BLINEX and GE loss functions, the Bayes estimate of υ (where υ = δ, β, θ,

S(t), h(t), or CV) under MCMC can be obtained by

v̂BL =
−1
c

log

(
ωe−cv̂ +

(1 + ω)

N −M

N

∑
j=M+1

e−cv(j)

)
, v̂GE =

[
1

N −M

N

∑
j=M+1

(
v(j)
)−b

]−1
b

.

where M is burn-in.
(9) To compute the CRI of υ(j), order

{
υM+1, υM+2, . . . , υN} as

{
υ[1], υ[2], . . . , υ[N]

}
. Then,

the (1− γ)100% CRI of υ can be given by[
υ((N−M)(γ/2)), υ((N−M)(1−γ/2))

]
.

5. Practical Data Analysis: Gastric Cancer Patients

To clarify the inference methods discussed in the previous sections, we present a
real-life example. We use a real dataset recorded in Bekker [39] that represents the survival
times for a group of gastric cancer patients. Several authors have studied reliability function
and associated means based on different approaches, such as Xu et al. [5] and Luo et al. [6],
among others. The data consist of 46 survival times (in years) for 46 patients. The data are
randomly divided into 23 groups with (k = 2) units within each group. The groups can be
divided as follows: {0.047, 0.121}, {0.115, 1.589}, {0.466, 0.540}, {0.164, 2,444}, {0.570, 3.658},
{0.203, 0.696}, {0.841, 1.271}, {0.296, 0.334}, {0.132, 1.099}, {0.395, 0.501}, {0.260, 1.219}, {0.282,
1.326}, {0.863, 1.485}, {1.553, 2.416}, {0.458, 0.534}, {1.581, 2.830}, {0.529, 1.447}, {0.507, 2.178},
{2.343, 3.743}, {2.825, 3.578}, {0.644, 3.978}, {0.641, 4.003}, and {0.197, 4.033}. Suppose that
a Pro-F-F-C scheme is given by R = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0), then a Pro-F-F-C
sample of size 16 out of 23 groups of data is obtained as follows:

0.047 0.466 0.570 0.696 0.841 1.099 1.219 1.326
1.553 1.581 1.589 2.178 2.343 2.825 4.003 4.033

To prove that NWPD fits the data well, we computed the Kolmogorov–Smirnov and
the associated p-value, and the results, respectively, are 0.1077 and 0.6601. From the plot
of the empirical survival (ESF) and the estimated survival functions in Figure 3, it is clear
that the NWPD fits the data very well. The 95% CRIs of δ, β, θ, S(t), h(t), and CV are
given in Tables 1 and 2. Table 3 provides the MCMC results. Under the given previous
data, we compute the MLEs of δ, β, θ, S(t), h(t), and CV as tabulated in Table 4. Based on
Lindley and MCMC techniques, Bayes estimates of δ, β, θ, S(t), h(t), and CV with respect
to BLINEX and GE loss functions are computed under gamma prior for δ, β, and θ with
hyperparameters γi = 4.8 and ηi = 3.5, where i = 1, 2, 3. Additionally, for different values
of c and b, respectively, the results are reported in Tables 4 and 5. The trace plots of the
parameters generated by the MCMC approach and the associated histograms are displayed
in Figures 4 and 5, respectively.
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Figure 3. Fitness of real data for the NWPD.

Figure 4: Trace plots of δ, β, θ, S (t), h (t) and CV obtained from MCMC approach.

Figure 5: Histogram of δ, β, θ, S (t), h (t) and CV obtained from MCMC approach..

6 Monte Carlo Simulation Study

In our diligent quest to evaluate the performance of the inference methods proposed in
this article, some computations are made according to Monte Carlo simulation experiments
using MATHEMATICA version 12 with different combinations of n, m, k and diffi erent
censored scheme R (diffi erent Ri values). Using the algorithm introduced by Balakrishnan
and Sandhu [3], with distribution function 1− (1− F (x))k, we generate a Pro-F-F-C sample
from NWPD with the parameters δ, β, and θ = 0.5, 1.5, and 1, respectively. The true values
of S (t), h (t) and CV at time t = 0.3 are evaluated to be S (t) = 0.9211, h (t) = 0.4108 and

19

Figure 4. Trace plots of δ, β, θ, S(t), h(t), and CV obtained from the MCMC approach.

Figure 5. Histogram of δ, β, θ, S(t), h(t), and CV of the MCMC approach.
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Table 1. The 95% ACIs and CRIs of δ, β, and θ.

Parameters
ACI CRI

Interval Length Interval Length

δ [0.0701, 1.1007] 1.0305 [0.2310, 1.1572] 0.9261
β [0.9379, 2.0990] 1.1610 [0.9658, 1.9753] 1.0095
θ [1.2278, 3.5054] 2.2776 [1.1282, 3.3612] 2.2330

Table 2. The 95% ACIs, LTCIs, ASTCIs, and CRIs of S(t), h(t), and CV.

Parameters
ACI LTCI

Interval Length Interval Length

S(t = 0.8) [0.8152, 0.9715] 0.1563 [0.8010, 0.9457] 0.1447
h(t = 0.8) [0.0992, 0.3289] 0.2298 [0.1905, 0.2397] 0.0492
CV [0.4352, 0.9076] 0.4724 [0.4989, 0.8074] 0.3085

ASTCI CRI

Interval Length Interval Length

S(t = 0.8) [0.8035, 0.9581] 0.1546 [0.7704, 0.9353] 0.1649
h(t = 0.8) [0.1118, 0.3386] 0.2268 [0.1482, 0.3825] 0.2344
CV [0.4238, 0.8765] 0.4527 [0.5286, 1.0355] 0.5069

Table 3. MCMC results of δ, β, θ, S(t), h(t), and CV.

Parameters Mean Median Mode SD Ske

δ 0.5860 0.5486 0.4737 0.2402 0.9847
β 1.4318 1.4189 1.3932 0.2553 0.2845
θ 2.1188 2.0756 1.9892 0.5689 0.3694
S(t = 0.8) 0.8639 0.8675 0.8747 0.0426 −0.5053
h(t = 0.8) 0.2523 0.2480 0.2394 0.0603 0.4140
CV 0.7319 0.7148 0.6805 0.1295 1.0006

Table 4. MLEs and Bayes Lindley estimates of δ, β, θ, S(t), h(t), and CV under BLINEX and GE loss
functions with t = 0.8.

(.) (.)ML (.)Lindley

ω (.)BL (.)GE

c = −3 c = −1 c = 0.001 c = 1 c = 3 b = −2 b = 1

δ 0.5854 0.0 0.6665 0.6535 0.6451 0.6357 0.6142 0.6588 0.6095
0.3 0.6442 0.6335 0.6272 0.6203 0.6053
0.6 0.6202 0.6132 0.6093 0.6052 0.5966
0.9 0.5945 0.5924 0.5914 0.5903 0.5882

β 1.5184 0.0 1.5202 1.4289 1.389 1.3588 1.3259 1.4142 1.352
0.3 1.5197 1.4566 1.4279 1.4041 1.3730
0.6 1.5191 1.4836 1.4667 1.4515 1.4278
0.9 1.5186 1.5098 1.5055 1.5013 1.4934

θ 2.3666 0.0 2.4015 2.2444 2.1756 2.1300 2.0954 2.202 2.1363
0.3 2.3914 2.2826 2.2329 2.1953 2.1563
0.6 2.3810 2.3195 2.2902 2.2652 2.2309
0.9 2.3702 2.3550 2.3475 2.3403 2.3271



Symmetry 2022, 14, 2395 15 of 26

Table 4. Cont.

(.) (.)ML (.)Lindley

ω (.)BL (.)GE

c = −3 c = −1 c = 0.001 c = 1 c = 3 b = −2 b = 1

S(t) 0.8934 0 0.848 0.8476 0.8475 0.8474 0.8473 0.8476 0.8474
0.3 0.8623 0.8616 0.8612 0.861 0.8605
0.6 0.8759 0.8753 0.875 0.8747 0.8742
0.9 0.8891 0.8889 0.8888 0.8887 0.8885

h(t) 0.2141 0 0.2844 0.2834 0.2827 0.2817 0.2789 0.2857 0.2609
0.3 0.2648 0.2631 0.2621 0.2609 0.2581
0.6 0.244 0.2424 0.2415 0.2405 0.2385
0.9 0.2218 0.2212 0.2209 0.2206 0.22

CV 0.6714 0.0 0.7575 0.7518 0.7479 0.7432 0.7313 0.7537 0.7313
0.3 0.7339 0.7284 0.7250 0.7211 0.7122
0.6 0.7085 0.7043 0.7020 0.6995 0.6941
0.9 0.6811 0.6797 0.6790 0.6783 0.6769

Table 5. Bayes MCMC estimates of δ, β, θ, S(t), h(t), and CV under BLINEX and GE loss functions
with t = 0.8.

(.) (.)MCMC

ω (.)BL (.)GE

c = −3 c = −1 c = 0.001 c = 1 c = 3 b = −1 b = 1

δ 0.0 0.6997 0.6174 0.5860 0.5593 0.5156 0.6333 0.4941
0.3 0.6693 0.6079 0.5858 0.5670 0.5351
0.6 0.6359 0.5983 0.5856 0.5749 0.5557
0.9 0.5988 0.5886 0.5855 0.5827 0.5777

β 0.0 1.5367 1.4652 1.4317 1.4000 1.3407 1.4544 1.3857
0.3 1.5313 1.4814 1.4578 1.4341 1.3848
0.6 1.5259 1.4975 1.4838 1.4694 1.4357
0.9 1.5203 1.5132 1.5098 1.5059 1.4958

θ 0.0 2.6651 2.2913 2.1187 1.9684 1.7286 2.1939 1.9606
0.3 2.6000 2.3145 2.1930 2.0722 1.8270
0.6 2.5190 2.3371 2.2674 2.1879 1.9674
0.9 2.4117 2.3593 2.3418 2.3188 2.2145

S(t) 0 0.8665 0.8648 0.8638 0.8629 0.8611 0.8649 0.8617
0.3 0.8748 0.8734 0.8727 0.872 0.8704
0.6 0.8829 0.8820 0.8816 0.8811 0.8801
0.9 0.8908 0.8905 0.8904 0.8903 0.8900

h(t) 0.0 0.2579 0.2542 0.2523 0.2505 0.2470 0.2594 0.2377
0.3 0.2453 0.2423 0.2408 0.2394 0.2368
0.6 0.2323 0.2303 0.2294 0.2285 0.2268
0.9 0.2187 0.2181 0.2179 0.2176 0.2172

CV 0.0 0.7614 0.7407 0.7319 0.7239 0.7095 0.7433 0.7111
0.3 0.7369 0.7204 0.7138 0.7078 0.6976
0.6 0.7104 0.6997 0.6956 0.692 0.6861
0.9 0.6816 0.6785 0.6774 0.6765 0.6750

6. Monte Carlo Simulation Study

In our diligent quest to evaluate the performance of the inference methods proposed in
this article, some computations are made according to Monte Carlo simulation experiments
using MATHEMATICA version 12 with different combinations of n, m, and k and different
censored scheme R (different Ri values). Using the algorithm introduced by Balakrishnan
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and Sandhu [3], with distribution function 1− (1− F(x))k, we generate a Pro-F-F-C sample
from the NWPD with the parameters δ, β, and θ = 0.5, 1.5, and 1, respectively. The true
values of S(t), h(t), and CV at time t = 0.3 are evaluated to be S(t) = 0.9211, h(t) = 0.4108,
and CV = 0.679. The performance of the resulting estimators of δ, β, θ, S(t), h(t), and CV
have been considered in terms of their average mean (AVM) and the corresponding mean
squared error (MSE), which are computed, for k = 1, 2, . . . , 6 and φ1 = δ, φ2 = β, φ3 = θ,

φ4 = S(t), φ5 = h(t) and φ6 = CV as AVM = 1
M

M
∑

j=1
φ̂
(j)
k , and MSE = 1

M

M
∑

j=1

(
φ̂
(j)
k − φk

)2
.

Additionally, we compare different CIs obtained by using asymptotic distributions of the
MLEs, the delta method, and symmetric CRIs, which were made in terms of the average
CI, CRI lengths, and coverage percentages (CPs). Under the consideration of informative
gamma priors for δ, β, and θ with hyperparameters γ1 = 5, η1 = 5, γ2 = 6, η2 = 4 , γ3 = 6,
and η3 = 5 , the Bayes estimators using Lindley and MCMC have been obtained. Moreover,
Bayes estimates are obtained under BLINEX and GE loss functions for the choice c = −1, 1
with ω = 0.3, 0.9 and b = −2,−1, 1, respectively. In our study, we adopted two different
groups k = 2, 6, and the following CS:

CS I : R1 = n−m, Ri = 0 for i 6= 1.
CS II : R m

2
= m

2 , Ri = 0 for i 6= m
2 .

CS III : Rm = n−m, Ri = 0 for i 6= m.
The results of the AVM and MSE of estimates are listed in Tables 6–11, while the results

of the ACI, CRI lengths, and CPS of the estimates are shown in Table 12.

Table 6. Average mean and MSE of estimates for the parameter δ.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.5622 0.5802 0.5682 0.5648 0.563 0.5912 0.5792 0.5538
(0.0602) (0.0535) (0.0475) (0.0592) (0.0582) (0.0511) (0.0466) (0.0403)

II 0.5754 0.5922 0.5797 0.5778 0.5759 0.6027 0.5904 0.5645
(0.0643) (0.0569) (0.0503) (0.0631) (0.062) (0.0543) (0.0494) (0.0425)

III 0.5833 0.5987 0.5857 0.5856 0.5836 0.6079 0.5957 0.5705
(0.0815) (0.0701) (0.0622) (0.0797) (0.0784) (0.0655) (0.06) (0.0525)

(40,30) I 0.5479 0.5617 0.5541 0.5499 0.5487 0.5704 0.5622 0.5448
(0.0468) (0.0436) (0.0403) (0.0463) (0.0458) (0.0425) (0.04) (0.0362)

II 0.5765 0.5879 0.5793 0.5781 0.5768 0.5952 0.5866 0.5688
(0.0642) (0.0586) (0.054) (0.0634) (0.0626) (0.0563) (0.0531) (0.048)

III 0.5719 0.5839 0.5754 0.5736 0.5724 0.5914 0.5829 0.5654
(0.0685) (0.0622) (0.0573) (0.0675) (0.0667) (0.0595) (0.0562) (0.0511)

6 (30,20) I 0.609 0.6201 0.6063 0.6107 0.6085 0.6276 0.6147 0.5886
(0.0856) (0.0723) (0.0639) (0.0837) (0.0821) (0.0669) (0.0611) (0.0532)

II 0.629 0.6379 0.6231 0.6304 0.6281 0.6444 0.6308 0.604
(0.0915) (0.0782) (0.0687) (0.0895) (0.0878) (0.0727) (0.0661) (0.057)

III 0.6417 0.648 0.6327 0.6427 0.6403 0.6531 0.6394 0.6128
(0.1044) (0.0873) (0.0769) (0.1019) (0.0999) (0.08) (0.073) (0.0637)

(40,30) I 0.6012 0.6096 0.6003 0.6025 0.601 0.6154 0.6064 0.5883
(0.08) (0.0715) (0.0657) (0.0788) (0.0778) (0.0678) (0.0639) (0.058)

II 0.6133 0.6207 0.611 0.6144 0.6129 0.6261 0.6168 0.5983
(0.0829) (0.0746) (0.0685) (0.0817) (0.0807) (0.0711) (0.0668) (0.0604)

III 0.6334 0.6393 0.629 0.6343 0.6327 0.6439 0.6343 0.6154
(0.0938) (0.0842) (0.0772) (0.0924) (0.0912) (0.08) (0.0753) (0.0679)
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Table 6. Cont.

k (n,m) CS MCMC
(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.6422 0.5977 0.5764 0.5647 0.6721 0.6435 0.5806
(0.0244) (0.0127) (0.0501) (0.0472) (0.0346) (0.025) (0.0101)

II 0.6419 0.5978 0.5875 0.576 0.6666 0.6376 0.5749
(0.0245) (0.0128) (0.0539) (0.0504) (0.0321) (0.0229) (0.0087)

III 0.6497 0.6003 0.5959 0.5826 0.6722 0.6412 0.5755
(0.0287) (0.0146) (0.0686) (0.0638) (0.0342) (0.024) (0.0089)

(40,30) I 0.5704 0.5419 0.5528 0.545 0.5787 0.5591 0.5151
(0.0091) (0.0044) (0.0385) (0.0356) (0.0102) (0.0072) (0.0034)

II 0.5786 0.5471 0.5788 0.5695 0.5757 0.5563 0.5128
(0.0115) (0.0052) (0.0536) (0.0484) (0.0094) (0.0066) (0.0031)

III 0.5752 0.5429 0.5744 0.5649 0.5725 0.5527 0.5086
(0.0119) (0.0054) (0.0573) (0.0517) (0.0086) (0.0059) (0.0026)

6 (30,20) I 0.6704 0.6161 0.6209 0.6068 0.6908 0.6558 0.5833
(0.0342) (0.0169) (0.0731) (0.0673) (0.0406) (0.0279) (0.0097)

II 0.6809 0.6235 0.6396 0.6249 0.6972 0.6598 0.583
(0.0372) (0.0184) (0.0785) (0.0723) (0.043) (0.0291) (0.0095)

III 0.7102 0.6411 0.655 0.6381 0.7323 0.6865 0.5964
(0.05) (0.0242) (0.0908) (0.0834) (0.0578) (0.0381) (0.0119)

(40,30) I 0.5965 0.5583 0.6029 0.5917 0.5892 0.566 0.5163
(0.0151) (0.0061) (0.0673) (0.0601) (0.0112) (0.0073) (0.0026)

II 0.6037 0.5637 0.6143 0.6027 0.5945 0.5698 0.5173
(0.0161) (0.0067) (0.0698) (0.0626) (0.0123) (0.0079) (0.0026)

III 0.6257 0.5795 0.635 0.622 0.6174 0.5878 0.5274
(0.0217) (0.0095) (0.0796) (0.0716) (0.0172) (0.0107) (0.0031)

Table 7. Average mean and MSE of estimates for the parameter β.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 1.567 1.5331 1.4952 1.5623 1.5563 1.5072 1.4899 1.4602
(0.06) (0.041) (0.0387) (0.0571) (0.0559) (0.0324) (0.0329) (0.036)

II 1.561 1.5318 1.4937 1.557 1.551 1.5079 1.4904 1.4603
(0.0615) (0.0413) (0.0385) (0.0584) (0.0571) (0.0319) (0.0322) (0.0351)

III 1.5746 1.5466 1.4924 1.5709 1.5622 1.5173 1.4929 1.4522
(0.071) (0.0418) (0.0357) (0.0666) (0.0639) (0.0275) (0.0271) (0.0309)

(40,30) I 1.5509 1.5281 1.5014 1.5477 1.5437 1.5108 1.4984 1.4763
(0.0426) (0.0332) (0.0313) (0.0412) (0.0405) (0.0285) (0.0285) (0.0295)

II 1.5287 1.5104 1.4837 1.5261 1.5221 1.4953 1.4828 1.4602
(0.0388) (0.0303) (0.0291) (0.0375) (0.037) (0.0262) (0.0264) (0.0279)

III 1.5505 1.5336 1.4968 1.5482 1.5426 1.5158 1.4989 1.4687
(0.0491) (0.0357) (0.032) (0.0471) (0.046) (0.0285) (0.0279) (0.0291)
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Table 7. Cont.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

6 (30,20) I 1.5214 1.5254 1.4923 1.522 1.5171 1.5181 1.5029 1.4743
(0.0319) (0.025) (0.0209) (0.0309) (0.03) (0.0204) (0.0191) (0.0185)

II 1.5083 1.5155 1.4895 1.5094 1.5055 1.5117 1.4997 1.4766
(0.0267) (0.0221) (0.0191) (0.026) (0.0255) (0.0189) (0.0178) (0.0171)

III 1.5137 1.5219 1.4948 1.5149 1.5109 1.518 1.5057 1.4821
(0.0286) (0.0239) (0.0197) (0.0279) (0.0272) (0.0202) (0.0187) (0.0171)

(40,30) I 1.5077 1.5107 1.4878 1.5081 1.5048 1.506 1.4954 1.475
(0.0247) (0.021) (0.0188) (0.0241) (0.0237) (0.0185) (0.0178) (0.0173)

II 1.4995 1.5041 1.485 1.5002 1.4974 1.5012 1.4923 1.4751
(0.0221) (0.0193) (0.0175) (0.0217) (0.0213) (0.0173) (0.0167) (0.0163)

III 1.4968 1.5027 1.483 1.4977 1.4948 1.5001 1.491 1.4733
(0.0226) (0.0197) (0.0176) (0.0222) (0.0218) (0.0177) (0.0169) (0.0161)

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 1.5568 1.5169 1.5656 1.5595 1.5416 1.5238 1.4877
(0.0458) (0.0383) (0.0579) (0.0561) (0.0373) (0.0353) (0.0333)

II 1.5595 1.5209 1.5609 1.5551 1.5484 1.5312 1.496
(0.0483) (0.0404) (0.0596) (0.0578) (0.0399) (0.0377) (0.0351)

III 1.5942 1.5396 1.5776 1.5694 1.5867 1.5629 1.5143
(0.0554) (0.0424) (0.0686) (0.066) (0.0445) (0.04) (0.0345)

(40,30) I 1.5381 1.5098 1.5492 1.5449 1.5252 1.5124 1.4864
(0.0344) (0.0305) (0.0414) (0.0405) (0.0297) (0.0287) (0.0277)

II 1.5241 1.497 1.528 1.5241 1.5152 1.5027 1.4775
(0.0327) (0.0298) (0.0379) (0.0372) (0.029) (0.0283) (0.0279)

III 1.5574 1.5203 1.5515 1.5461 1.5502 1.5335 1.4998
(0.0405) (0.0341) (0.0478) (0.0466) (0.0345) (0.0325) (0.0301)

6 (30,20) I 1.5655 1.5274 1.5278 1.5222 1.5734 1.5564 1.5221
(0.0308) (0.025) (0.0314) (0.0308) (0.0289) (0.0262) (0.0225)

II 1.5574 1.5224 1.5155 1.5103 1.5684 1.5528 1.5211
(0.0264) (0.0217) (0.0263) (0.0259) (0.0255) (0.0232) (0.0199)

III 1.5983 1.5491 1.5263 1.5187 1.6187 1.5979 1.5556
(0.0328) (0.0234) (0.0283) (0.0277) (0.0342) (0.0292) (0.0218)

(40,30) I 1.5427 1.515 1.5128 1.5087 1.5501 1.5375 1.5122
(0.0243) (0.0212) (0.0244) (0.0241) (0.0234) (0.0219) (0.02)

II 1.5387 1.5126 1.5052 1.5014 1.5482 1.5364 1.5125
(0.0217) (0.019) (0.0218) (0.0216) (0.0212) (0.0198) (0.0181)

III 1.5636 1.528 1.5066 1.5012 1.5814 1.5659 1.5346
(0.0243) (0.0195) (0.0223) (0.022) (0.0252) (0.0226) (0.0188)
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Table 8. Average mean and MSE of estimates for the parameter θ.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 1.1563 1.1849 1.1643 1.1606 1.1572 1.1922 1.1821 1.1609
(0.1838) (0.163) (0.1445) (0.1806) (0.1772) (0.1486) (0.1415) (0.1301)

II 1.1784 1.2027 1.1809 1.1821 1.1785 1.2078 1.197 1.1749
(0.1913) (0.169) (0.1492) (0.188) (0.1843) (0.1533) (0.1458) (0.1337)

III 1.1983 1.2101 1.1874 1.2002 1.1964 1.209 1.1981 1.1765
(0.232) (0.1943) (0.1721) (0.2265) (0.222) (0.1705) (0.1627) (0.1512)

(40,30) I 1.1192 1.1423 1.1288 1.1226 1.1205 1.1497 1.1425 1.1275
(0.1392) (0.1303) (0.1197) (0.1378) (0.1361) (0.1234) (0.1192) (0.1119)

II 1.161 1.1785 1.1633 1.1636 1.1612 1.1826 1.1749 1.1592
(0.1867) (0.1697) (0.1556) (0.1842) (0.1818) (0.1577) (0.1524) (0.1438)

III 1.1651 1.1778 1.1625 1.167 1.1645 1.1797 1.172 1.1566
(0.1928) (0.172) (0.1575) (0.1898) (0.1872) (0.1579) (0.1527) (0.1443)

6 (30,20) I 1.2196 1.2319 1.2075 1.2215 1.2175 1.2305 1.2188 1.1959
(0.252) (0.2154) (0.1904) (0.2467) (0.2417) (0.1908) (0.182) (0.1688)

II 1.2524 1.2628 1.2367 1.2541 1.2498 1.2599 1.2477 1.2238
(0.2819) (0.2437) (0.2151) (0.2764) (0.2708) (0.2169) (0.2068) (0.1914)

III 1.2703 1.2751 1.2485 1.2712 1.2668 1.2691 1.2568 1.2333
(0.3111) (0.2642) (0.2338) (0.3044) (0.2983) (0.2326) (0.2223) (0.207)

(40,30) I 1.1974 1.2073 1.1905 1.1989 1.1962 1.2074 1.1991 1.1827
(0.2341) (0.2102) (0.1925) (0.2306) (0.2274) (0.1934) (0.1872) (0.1772)

II 1.2154 1.225 1.2075 1.2169 1.2141 1.2248 1.2162 1.1993
(0.2452) (0.2228) (0.2038) (0.2419) (0.2386) (0.2063) (0.1994) (0.1882)

III 1.246 1.252 1.2335 1.247 1.2441 1.2497 1.2408 1.2235
(0.2726) (0.2468) (0.2256) (0.2689) (0.2652) (0.2279) (0.2204) (0.208)

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 1.1926 1.1323 1.1654 1.1469 1.1818 1.1644 1.1233
(0.0593) (0.0299) (0.161) (0.1422) (0.0339) (0.028) (0.0166)

II 1.2009 1.1406 1.1855 1.1668 1.1839 1.1667 1.1265
(0.0626) (0.0314) (0.1683) (0.1477) (0.0346) (0.0288) (0.0174)

III 1.2118 1.1447 1.2048 1.1828 1.1853 1.1685 1.129
(0.0723) (0.034) (0.2042) (0.1767) (0.0352) (0.0294) (0.018)

(40,30) I 1.097 1.0525 1.1189 1.1043 1.0672 1.0549 1.0258
(0.0273) (0.0111) (0.1199) (0.104) (0.005) (0.0035) (0.0014)

II 1.1146 1.0612 1.1579 1.1391 1.0673 1.055 1.0259
(0.0381) (0.0131) (0.1623) (0.1362) (0.0049) (0.0035) (0.0014)

III 1.1184 1.064 1.162 1.1427 1.0698 1.0578 1.0291
(0.0397) (0.0133) (0.1678) (0.1401) (0.0053) (0.0038) (0.0015)
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Table 8. Cont.

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

6 (30,20) I 1.2154 1.1462 1.2236 1.2007 1.1798 1.1628 1.1233
(0.0761) (0.0356) (0.2221) (0.192) (0.033) (0.0272) (0.0162)

II 1.2253 1.1523 1.2534 1.2288 1.1772 1.16 1.12
(0.0834) (0.0384) (0.249) (0.2146) (0.032) (0.0263) (0.0153)

III 1.2279 1.1493 1.2695 1.2422 1.1689 1.1514 1.1112
(0.0886) (0.0376) (0.2751) (0.2334) (0.0292) (0.0237) (0.0134)

(40,30) I 1.1307 1.0691 1.1921 1.1693 1.0678 1.0557 1.0273
(0.0488) (0.0156) (0.2045) (0.1689) (0.0049) (0.0034) (0.0012)

II 1.1361 1.0724 1.2085 1.1849 1.0664 1.0542 1.0255
(0.0503) (0.0165) (0.2139) (0.178) (0.0047) (0.0032) (0.0011)

III 1.1467 1.0779 1.2367 1.2107 1.0644 1.0522 1.0235
(0.056) (0.0178) (0.2382) (0.1971) (0.0044) (0.0031) (0.001)

Table 9. Average mean and MSE of estimates for S(t) with t = 0.3.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.9279 0.9215 0.9209 0.927 0.9269 0.9188 0.9183 0.9173
(0.0711) (0.0591) (0.061) (0.0688) (0.069) (0.0565) (0.0583) (0.0621)

II 0.9281 0.9218 0.9212 0.9272 0.9271 0.9191 0.9186 0.9177
(0.0638) (0.0522) (0.0538) (0.0616) (0.0618) (0.0497) (0.0512) (0.0545)

III 0.9294 0.9216 0.9209 0.9283 0.9282 0.9183 0.9178 0.9167
(0.069) (0.0523) (0.0542) (0.0658) (0.0659) (0.049) (0.0509) (0.0549)

(40,30) I 0.9262 0.9218 0.9213 0.9256 0.9255 0.9199 0.9195 0.9188
(0.0565) (0.0495) (0.0505) (0.0553) (0.0554) (0.0477) (0.0486) (0.0506)

II 0.9246 0.9202 0.9197 0.924 0.9239 0.9183 0.918 0.9172
(0.0486) (0.0435) (0.0445) (0.0476) (0.0477) (0.0424) (0.0434) (0.0455)

III 0.9272 0.9219 0.9213 0.9264 0.9263 0.9196 0.9192 0.9184
(0.051) (0.0426) (0.0436) (0.0494) (0.0495) (0.0407) (0.0417) (0.0438)

6 (30,20) I 0.9256 0.9218 0.9212 0.9251 0.925 0.9202 0.9197 0.9187
(0.0393) (0.0312) (0.0321) (0.0379) (0.038) (0.0287) (0.0296) (0.0315)

II 0.9251 0.9221 0.9215 0.9247 0.9246 0.9208 0.9203 0.9194
(0.0317) (0.0258) (0.0264) (0.0307) (0.0307) (0.0239) (0.0245) (0.0258)

III 0.9254 0.9223 0.9217 0.925 0.9249 0.9209 0.9205 0.9196
(0.0325) (0.0258) (0.0264) (0.0313) (0.0314) (0.0236) (0.0242) (0.0256)

(40,30) I 0.9239 0.9212 0.9208 0.9236 0.9235 0.9201 0.9198 0.9191
(0.029) (0.0249) (0.0254) (0.0283) (0.0284) (0.0237) (0.0241) (0.0252)

II 0.9235 0.9212 0.9208 0.9232 0.9231 0.9203 0.92 0.9193
(0.0254) (0.0221) (0.0226) (0.0249) (0.0249) (0.0211) (0.0215) (0.0223)

III 0.9234 0.921 0.9206 0.923 0.923 0.9201 0.9197 0.9191
(0.0244) (0.0211) (0.0215) (0.0238) (0.0239) (0.02) (0.0204) (0.0213)
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Table 9. Cont.

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.9197 0.9189 0.9267 0.9266 0.9162 0.9156 0.9145
(0.0591) (0.0604) (0.0685) (0.0685) (0.0581) (0.0595) (0.0628)

II 0.9215 0.9209 0.9272 0.9271 0.9186 0.9182 0.9173
(0.0536) (0.0544) (0.0618) (0.0618) (0.0519) (0.0528) (0.0548)

III 0.9238 0.9232 0.9286 0.9285 0.9214 0.921 0.9201
(0.054) (0.0545) (0.0664) (0.0664) (0.0496) (0.0502) (0.0516)

(40,30) I 0.9189 0.9184 0.9252 0.9251 0.9158 0.9154 0.9146
(0.05) (0.0509) (0.0549) (0.055) (0.0505) (0.0515) (0.0536)

II 0.9186 0.9181 0.9237 0.9237 0.916 0.9156 0.915
(0.0449) (0.0456) (0.0476) (0.0477) (0.0455) (0.0463) (0.0479)

III 0.9218 0.9213 0.9264 0.9263 0.9195 0.9191 0.9184
(0.0426) (0.043) (0.0494) (0.0494) (0.0408) (0.0413) (0.0424)

6 (30,20) I 0.9228 0.9225 0.9252 0.9252 0.9216 0.9213 0.9209
(0.0358) (0.0361) (0.0387) (0.0387) (0.0348) (0.0351) (0.0357)

II 0.9225 0.9222 0.9247 0.9247 0.9213 0.9211 0.9207
(0.03) (0.0302) (0.0314) (0.0314) (0.0297) (0.0299) (0.0303)

III 0.9232 0.923 0.9251 0.9251 0.9223 0.9221 0.9218
(0.0316) (0.0317) (0.0323) (0.0323) (0.0315) (0.0317) (0.032)

(40,30) I 0.9215 0.9212 0.9236 0.9236 0.9204 0.9202 0.9199
(0.0275) (0.0277) (0.0287) (0.0287) (0.0272) (0.0274) (0.0278)

II 0.9212 0.921 0.9231 0.9231 0.9202 0.92 0.9198
(0.0247) (0.0249) (0.0252) (0.0253) (0.0248) (0.0249) (0.0252)

III 0.9216 0.9214 0.9231 0.9231 0.9208 0.9207 0.9204
(0.0242) (0.0243) (0.0243) (0.0243) (0.0243) (0.0245) (0.0247)

Note that the MSE of S(t) is multiplied by 10−2.

Table 10. Average mean and MSE of estimates for h(t) with t = 0.3.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.3733 0.3961 0.3838 0.3766 0.3748 0.4175 0.3972 0.3518
(0.0107) (0.0082) (0.0078) (0.0103) (0.0103) (0.0078) (0.007) (0.0095)

II 0.3714 0.3951 0.3829 0.3748 0.373 0.4168 0.3966 0.3514
(0.0097) (0.0073) (0.0071) (0.0093) (0.0093) (0.0069) (0.0063) (0.0088)

III 0.3659 0.3947 0.3823 0.37 0.3682 0.4187 0.3984 0.3505
(0.0102) (0.0071) (0.0069) (0.0096) (0.0096) (0.0068) (0.006) (0.0087)

(40,30) I 0.3828 0.3981 0.3895 0.385 0.3838 0.4131 0.3986 0.3675
(0.0084) (0.0069) (0.0067) (0.0081) (0.0081) (0.0065) (0.0062) (0.0075)

II 0.3871 0.4029 0.3941 0.3894 0.3881 0.4182 0.4035 0.3719
(0.0068) (0.0057) (0.0055) (0.0066) (0.0066) (0.0055) (0.0051) (0.0062)

III 0.377 0.3958 0.387 0.3797 0.3785 0.4125 0.3976 0.3647
(0.0072) (0.0056) (0.0056) (0.0069) (0.0069) (0.0052) (0.005) (0.0066)
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Table 10. Cont.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

6 (30,20) I 0.3824 0.693 0.6878 0.6806 0.6798 0.7007 0.6955 0.6844
(0.0055) (0.0041) (0.0039) (0.0049) (0.0049) (0.004) (0.0037) (0.0034)

II 0.3838 0.4014 0.3895 0.3864 0.3846 0.4207 0.4005 0.3583
(0.0047) (0.0037) (0.0037) (0.0045) (0.0046) (0.0036) (0.0033) (0.0056)

III 0.3831 0.4017 0.3899 0.3858 0.3841 0.4213 0.4013 0.359
(0.0048) (0.0038) (0.0037) (0.0046) (0.0047) (0.0037) (0.0034) (0.0055)

(40,30) I 0.3903 0.4034 0.395 0.3921 0.3909 0.4174 0.403 0.3731
(0.0039) (0.0033) (0.0032) (0.0038) (0.0038) (0.0032) (0.003) (0.0041)

II 0.3917 0.4038 0.3955 0.3934 0.3922 0.4173 0.4031 0.3739
(0.0035) (0.003) (0.003) (0.0034) (0.0034) (0.0029) (0.0027) (0.0038)

III 0.3917 0.4045 0.3962 0.3936 0.3924 0.4183 0.4041 0.3747
(0.0034) (0.0029) (0.0028) (0.0033) (0.0033) (0.0027) (0.0026) (0.0037)

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.4085 0.399 0.3784 0.3769 0.4318 0.4166 0.3851
(0.0081) (0.0079) (0.0102) (0.0103) (0.0078) (0.0074) (0.008)

II 0.4003 0.3927 0.3756 0.3744 0.4197 0.4071 0.3812
(0.0075) (0.0074) (0.0093) (0.0093) (0.007) (0.0068) (0.0076)

III 0.3911 0.3841 0.3695 0.3685 0.4088 0.3968 0.3722
(0.0077) (0.0078) (0.0097) (0.0098) (0.0068) (0.007) (0.0083)

(40,30) I 0.4133 0.4064 0.3873 0.3862 0.4323 0.4213 0.3988
(0.0068) (0.0067) (0.008) (0.0081) (0.0068) (0.0065) (0.0065)

II 0.4127 0.4069 0.3908 0.3899 0.4288 0.4194 0.4003
(0.0058) (0.0056) (0.0066) (0.0066) (0.0058) (0.0055) (0.0056)

III 0.4001 0.3947 0.3804 0.3796 0.4152 0.4061 0.3875
(0.0056) (0.0056) (0.0069) (0.0069) (0.0052) (0.0052) (0.0058)

6 (30,20) I 0.4024 0.397 0.3853 0.3845 0.4161 0.407 0.3887
(0.005) (0.0049) (0.0054) (0.0054) (0.0051) (0.005) (0.0051)

II 0.4057 0.4003 0.387 0.3862 0.4199 0.4111 0.3935
(0.0045) (0.0043) (0.0046) (0.0046) (0.0047) (0.0045) (0.0044)

III 0.4101 0.4041 0.387 0.3861 0.4265 0.4173 0.3987
(0.0051) (0.0048) (0.0048) (0.0047) (0.0058) (0.0053) (0.0048)

(40,30) I 0.4075 0.4037 0.3927 0.3922 0.4185 0.4122 0.3994
(0.0037) (0.0037) (0.0039) (0.0039) (0.0039) (0.0037) (0.0037)

II 0.4102 0.4063 0.3943 0.3937 0.4215 0.4153 0.4029
(0.0035) (0.0033) (0.0035) (0.0035) (0.0037) (0.0035) (0.0034)

III 0.4132 0.4091 0.3948 0.3942 0.4258 0.4194 0.4066
(0.0036) (0.0034) (0.0033) (0.0033) (0.0041) (0.0038) (0.0034)
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Table 11. Average mean and MSE of estimates for CV.

k (n,m) CS MLE Lindley

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.6651 0.6969 0.6909 0.6697 0.6687 0.7117 0.7064 0.6937
(0.0076) (0.007) (0.0064) (0.0074) (0.0074) (0.0075) (0.0069) (0.0057)

II 0.6674 0.6971 0.6912 0.6717 0.6708 0.7111 0.7057 0.693
(0.0074) (0.0066) (0.006) (0.0072) (0.0071) (0.0069) (0.0063) (0.0053)

III 0.664 0.6989 0.691 0.669 0.6678 0.7155 0.7084 0.6914
(0.0086) (0.0067) (0.006) (0.0081) (0.0081) (0.0069) (0.006) (0.0047)

(40,30) I 0.6682 0.6908 0.6865 0.6714 0.6708 0.7015 0.6975 0.6884
(0.0059) (0.0055) (0.0052) (0.0057) (0.0057) (0.0057) (0.0054) (0.0048)

II 0.6769 0.6981 0.6936 0.68 0.6793 0.7082 0.704 0.6947
(0.0058) (0.0055) (0.0052) (0.0057) (0.0056) (0.0058) (0.0054) (0.0048)

III 0.6697 0.6941 0.6884 0.6732 0.6724 0.706 0.7006 0.6884
(0.0066) (0.0057) (0.0053) (0.0064) (0.0064) (0.0058) (0.0054) (0.0046)

6 (30,20) I 0.6785 0.693 0.6878 0.6806 0.6798 0.7007 0.6955 0.6844
(0.005) (0.0041) (0.0039) (0.0049) (0.0049) (0.004) (0.0037) (0.0034)

II 0.6827 0.6927 0.6885 0.6841 0.6835 0.6982 0.694 0.6851
(0.0043) (0.0036) (0.0035) (0.0042) (0.0042) (0.0034) (0.0033) (0.0031)

III 0.6808 0.6904 0.6863 0.6822 0.6816 0.6958 0.6916 0.6827
(0.0044) (0.0035) (0.0035) (0.0043) (0.0043) (0.0033) (0.0032) (0.0031)

(40,30) I 0.6826 0.693 0.6893 0.6841 0.6835 0.6986 0.6948 0.6869
(0.0042) (0.0037) (0.0035) (0.0041) (0.0041) (0.0036) (0.0034) (0.0032)

II 0.6853 0.6932 0.6901 0.6865 0.686 0.6976 0.6944 0.6877
(0.0038) (0.0034) (0.0033) (0.0037) (0.0037) (0.0033) (0.0032) (0.003)

III 0.6866 0.6941 0.6909 0.6876 0.6872 0.6983 0.6951 0.6883
(0.0038) (0.0033) (0.0033) (0.0038) (0.0038) (0.0032) (0.0031) (0.003)

k (n,m) CS MCMC

(ω = 0.3) (ω = 0.9)

BLINEX BLINEX GE

c = −1 c = 1 c = −1 c = 1 b = −2 b = −1 b = 1

2 (30,20) I 0.6894 0.6816 0.6686 0.6674 0.7016 0.6941 0.6798
(0.0065) (0.0061) (0.0074) (0.0074) (0.0065) (0.006) (0.0055)

II 0.6875 0.6801 0.6703 0.6692 0.6979 0.6906 0.6768
(0.0063) (0.006) (0.0072) (0.0072) (0.0062) (0.0058) (0.0054)

III 0.6824 0.6725 0.6666 0.6652 0.6929 0.6829 0.6644
(0.0066) (0.0062) (0.0082) (0.0082) (0.006) (0.0056) (0.0054)

(40,30) I 0.6883 0.6828 0.6711 0.6703 0.6982 0.6929 0.6826
(0.0053) (0.005) (0.0057) (0.0057) (0.0053) (0.005) (0.0047)

II 0.6936 0.6882 0.6793 0.6785 0.7021 0.6968 0.6867
(0.0055) (0.0052) (0.0057) (0.0057) (0.0055) (0.0052) (0.0048)

III 0.6859 0.679 0.672 0.671 0.6947 0.6878 0.6747
(0.0056) (0.0054) (0.0064) (0.0064) (0.0055) (0.0052) (0.0048)

6 (30,20) I 0.6802 0.6737 0.6787 0.6778 0.683 0.6762 0.6634
(0.0041) (0.004) (0.0049) (0.0049) (0.0038) (0.0037) (0.0037)

II 0.681 0.6749 0.6824 0.6816 0.6821 0.6758 0.664
(0.0035) (0.0034) (0.0042) (0.0042) (0.0032) (0.0031) (0.0032)

III 0.6713 0.6636 0.6794 0.6783 0.6697 0.6617 0.6466
(0.0033) (0.0033) (0.0043) (0.0042) (0.0029) (0.003) (0.0036)

(40,30) I 0.683 0.6782 0.6826 0.6819 0.6847 0.6797 0.6701
(0.0037) (0.0035) (0.0041) (0.0041) (0.0034) (0.0033) (0.0033)

II 0.6832 0.6786 0.685 0.6844 0.6837 0.679 0.6699
(0.0033) (0.0032) (0.0037) (0.0037) (0.0031) (0.003) (0.003)

III 0.6777 0.6719 0.6853 0.6844 0.6757 0.6697 0.6583
(0.0031) (0.003) (0.0037) (0.0037) (0.0028) (0.0028) (0.003)
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Table 12. Average confidence, credible interval lengths, and the coverage percentages for δ, β, θ, S(t),
h(t), and CV.

k (n,m) CS MLE Bayes (MCMC)

δ β θ S(t) h(t) CV δ β θ S(t) h(t) CV

2 (30,20) I 0.9262 1.0301 1.0455 0.1171 0.4512 0.4032 0.7538 0.913 0.7467 0.1191 0.4391 0.4
(0.951) (0.937) (0.966) (0.972) (0.919) (0.946) (0.966) (0.945) (0.961) (0.962) (0.978) (0.935)

II 0.9458 1.0008 1.0702 0.1045 0.4025 0.395 0.7544 0.899 0.7403 0.1065 0.3958 0.3928
(0.954) (0.974) (0.937) (0.963) (0.931) (0.948) (0.953) (0.971) (0.97) (0.975) (0.977) (0.951)

III 0.9922 1.234 1.1022 0.107 0.3886 0.4805 0.7844 1.0719 0.7352 0.1067 0.3801 0.4559
(0.937) (0.961) (0.973) (0.932) (0.907) (0.962) (0.941) (0.953) (0.953) (0.975) (0.967) (0.943)

(40,30) I 0.7334 0.8458 0.8212 0.0995 0.3806 0.3359 0.5815 0.7724 0.5939 0.1019 0.375 0.3369
(0.947) (0.941) (0.939) (0.94) (0.925) (0.953) (0.932) (0.974) (0.964) (0.961) (0.934) (0.933)

II 0.7755 0.8186 0.8788 0.0925 0.3496 0.3351 0.5781 0.7579 0.5934 0.0945 0.3464 0.3364
(0.944) (0.968) (0.929) (0.925) (0.93) (0.966) (0.968) (0.975) (0.932) (0.978) (0.979) (0.975)

III 0.7792 0.9709 0.8778 0.0938 0.3392 0.3873 0.582 0.8866 0.5891 0.0949 0.3355 0.3805
(0.931) (0.977) (0.941) (0.918) (0.926) (0.966) (0.946) (0.985) (0.973) (0.968) (0.967) (0.985)

6 (30,20) I 1.0814 0.9997 1.1363 0.0817 0.3433 0.4121 0.8433 0.9013 0.7373 0.0808 0.3367 0.3738
(0.98) (0.975) (0.959) (0.938) (0.945) (0.967) (0.948) (0.938) (0.971) (0.969) (0.981) (0.968)

II 1.1639 0.9664 1.1692 0.0738 0.3445 0.4043 0.875 0.8623 0.7403 0.0735 0.3333 0.3597
(0.935) (0.954) (0.97) (0.925) (0.942) (0.972) (0.956) (0.955) (0.965) (0.963) (0.979) (0.959)

III 1.3348 1.186 1.1861 0.0709 0.3669 0.4929 0.9865 1.0119 0.7438 0.07 0.3448 0.403
(0.96) (0.967) (0.96) (0.919) (0.939) (0.944) (0.962) (0.962) (0.938) (0.95) (0.97) (0.97)

(40,30) I 0.8677 0.8228 0.9144 0.0688 0.2848 0.3443 0.6385 0.7691 0.5882 0.0686 0.2828 0.322
(0.965) (0.966) (0.943) (0.937) (0.949) (0.957) (0.939) (0.955) (0.941) (0.964) (0.977) (0.955)

II 0.9137 0.8021 0.9308 0.0634 0.2849 0.339 0.6612 0.7472 0.5909 0.0633 0.2809 0.3139
(0.97) (0.956) (0.973) (0.933) (0.948) (0.963) (0.973) (0.946) (0.957) (0.957) (0.963) (0.946)

III 1.0275 0.9373 0.9605 0.0618 0.2944 0.3976 0.7354 0.8635 0.5909 0.0615 0.2867 0.3514
(0.973) (0.969) (0.931) (0.95) (0.957) (0.935) (0.948) (0.971) (0.962) (0.948) (0.942) (0.96)

7. Concluding Remarks

The main aim of this article is to develop different methods to estimate the unknown
quantities of the NWPD based on a Pro-F-F-C scheme, which was introduced by Wu and
Kuş [9]. The ACIs of δ, β, and θ have been constructed by using the asymptotic normality of
MLEs. Furthermore, the delta, LT, and AST methods have been used to obtain the CIs of S(t),
h(t), and CV. The Bayes estimates have been computed based on Lindley approximation and
MCMC methods under BLINEX and GE loss functions. An application to real-life data on
gastric cancer survival times is analyzed for illustrative purposes. A simulation study is used
to compare the performance of the proposed methods for different sample sizes (n, m, k) and
different CSs. From the results, we observe the following:

(1) It is clear from all tables that as sample size n increases, the MSEs and average interval
lengths decrease, also the Bayes estimates perform better than the MLEs of δ, β, θ,
S(t), h(t), and CV in terms of MSEs and average interval lengths.

(2) From all tables, we observe that as the group size k increases, the MSEs and average
interval lengths associated with δ and θ increase while those associated with β, S(t),
h(t) and CV decrease.

(3) It can be seen from the tables that the three CS methods vary in terms of preference,
sometimes CS I is the best while at other times CS II or III is the best in the sense of
having smaller MSEs and average interval lengths.

(4) From Tables 6–12 it can been seen that in most cases, Bayes MCMC estimates perform
better than Bayes Lindley approximation estimates in the sense of having smaller MSEs.

(5) When ω = 0.3, the MSEs of the Bayes estimates are smaller than when ω = 0.9 for
all estimators.

(6) For the values of ω, Bayes estimates for δ, β, θ, h(t), and CV under BLINEX for the
choice c = 1 perform better than their estimates for the choice c = −1 in the sense of
having smaller MSEs and vice versa for S(t).
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(7) It can be observed that the Bayes estimates of δ, θ, and CV, which are obtained under
the GE loss function for the choice of b = 1, have the smallest MSEs when compared
with the other choices of b and the BLINEX loss function.

(8) As a future work based on this study, we refer to fuzzy and packet inference in R.
For more details, see Srikanth et al. [40], Tang et al. [41], and Chen et al. [42].
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