

Article



# General Entropy with Bayes Techniques under Lindley and MCMC for Estimating the New Weibull–Pareto Parameters: Theory and Application

Mohamed S. Eliwa <sup>1,2,3,\*</sup>, Rashad M. EL-Sagheer <sup>4,5</sup>, Samah H. El-Essawy <sup>6</sup>, Bader Almohaimeed <sup>7</sup>, Fahad S. Alshammari <sup>8</sup> and Mahmoud El-Morshedy <sup>8,9</sup>

- <sup>1</sup> Department of Statistics and Operation Research, College of Science, Qassim University, Buraydah 51482, Saudi Arabia
- <sup>2</sup> Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
- <sup>3</sup> Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- <sup>4</sup> Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Egypt
- <sup>5</sup> High Institute of Computer and Management Information System, First Statement, New Cairo 11865, Egypt
- <sup>6</sup> Astronomy Department, National Research Institute of Astronomy and Geophysics, Helwan 11421, Egypt
- <sup>7</sup> Department of Mathematics, College of Science, Qassim University, Buraydah 51482, Saudi Arabia
- <sup>8</sup> Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- <sup>9</sup> Department of Statistics and Computer Sciences, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Correspondence: m.eliwa@qu.edu.sa

Abstract: Censored data play a pivotal role in life testing experiments since they significantly reduce cost and testing time. Hence, this paper investigates the problem of statistical inference for a system of progressive first-failure censoring data for a new Weibull–Pareto distribution. Maximum likelihood estimates for the parameters as well as some lifetime indices such as reliability, hazard rate functions, and coefficient of variation are derived. Lindley approximation and the Markov chain Monte Carlo technique are applied to obtain the Bayes estimates relative to two different loss functions: balanced linear exponential and general entropy loss functions. The results of the Bayes estimate are computed under the consideration of informative prior function. A real-life example "the survival times in years of a group of patients given chemotherapy treatment" is presented to illustrate the proposed methods. Finally, a simulation study is carried out to determine the performance of the maximum likelihood and Bayes estimates and compare the performance of different corresponding confidence intervals.

**Keywords:** new Weibull–Pareto distribution; reliability characteristics; coefficient of variation; general entropy; Bayesian approaches

MSC: 62N05; 62F10

## 1. Introduction

In life testing experiments, one of the major reasons for the removal of experimental units is saving the working experimental units for future use, saving the cost and time associated with testing. This leads us to the use of censoring schemes. The most common schemes are considered Type-I and Type-II censoring. These types have been studied by several statisticians; see, for instance, Kundu and Howlader [1] and Fujii [2]. In terms of the procedure, in Type-I censoring, all units *n* are put in the test for a pre-specified time and at the end of the specified time, the test ends. In Type-II censoring, all units *n* are put in the test, and the test is terminated at the failure of the pre-specified *m*-th unit  $(1 \le m \le n)$ . The disadvantages of these types are represented in that the units cannot be removed during the



Citation: Eliwa, M.S.; EL-Sagheer, R.M.; El-Essawy, S.H.; Almohaimeed, B.; Alshammari, F.S.; El-Morshedy, M. General Entropy with Bayes Techniques under Lindley and MCMC for Estimating the New Weibull–Pareto Parameters: Theory and Application. *Symmetry* **2022**, *14*, 2395. https://doi.org/10.3390/ sym14112395

Academic Editors: Piao Chen and Ancha Xu

Received: 30 September 2022 Accepted: 26 October 2022 Published: 12 November 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). test. Thus, progressive Type-II censoring (PT2C) was proposed, which has more flexibility in allowing units to be withdrawn within the duration of the test.

An excellent reference that accurately describes this type of censoring scheme is Balakrishnan and Sandhu [3], who add to the steps of generation, which is useful to achieve the desired goals of using censoring schemes. Several authors have discussed inference under PT2C with applications, see, for example, Chen et al. [4], Xu et al. [5], Luo et al. [6], and EL-Sagheer [7].

Although the experimental efficiency under PT2C can be significantly improved, the duration of the test is still too long. So, Johnson [8] described a life test in which the experimenter can be decided to divide the units under test into several groups and then run all the units simultaneously until the occurrence of the first failure in each group. Such a censoring scheme is called first-failure censoring (FFC). However, using this censoring scheme does not enable the experimenter to remove experimental units from the test until the first failure is observed. For this reason, Wu and Kuş [9] introduced life testing, which combined FFC with PT2C, and is named the progressive first-failure censoring (Pro-F-F-C) scheme. Many authors have discussed inference under a Pro-F-F-C scheme for different lifetime distributions, see, for example, Soliman et al. [10], Soliman et al. [11,12], Soliman et al. [13], Mahmoud et al. [14,15], Abushal [16], Ahemd [17], Xie and Gui [18], Shi and Shi [19], and EL-Sagheer et al. [20].

A new Weibull–Pareto distribution (NWPD) is a generalization of the Weibull and Pareto distributions, as discussed in Suleman and Albert [21]. The probability density function (pdf) and cumulative distribution function (cdf) of a random variable *X* has an NWPD given, respectively, by

$$f(x;\delta,\beta,\theta) = \frac{\beta\delta}{\theta} \left(\frac{x}{\theta}\right)^{\beta-1} e^{-\delta\left(\frac{x}{\theta}\right)^{\beta}}, \quad x > 0; \ \delta,\beta,\theta > 0, \tag{1}$$

and

$$F(x;\delta,\beta,\theta) = 1 - e^{-\delta\left(\frac{x}{\theta}\right)^{\beta}},\tag{2}$$

where  $\delta$  and  $\theta$  are the scale parameters and  $\beta$  is the shape parameter. The reliability function S(t), hazard rate function h(t), and coefficient of variation CV of the NWPD ( $\delta$ ,  $\beta$ ,  $\theta$ ) are, respectively, given by

$$S(t) = e^{-\delta\left(\frac{t}{\theta}\right)^{p}}, \qquad t > 0, \qquad (3)$$

$$h(t) = \frac{\beta\delta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1}, \qquad t > 0, \tag{4}$$

and

$$CV = \frac{\sqrt{\Gamma\left(\frac{\beta+2}{\beta}\right) - \left[\Gamma\left(\frac{\beta+1}{\beta}\right)\right]^2}}{\Gamma\left(\frac{\beta+1}{\beta}\right)}, \quad \beta > 0.$$
(5)

The importance of studying this model is due to the fact that it is an interesting three-parameter lifetime model, and it can be a useful characterization of the survival time of a given system because of its analytical structure. In addition, it occupies an important position in reliability analysis, biomedical, and life-test experiences. From h(t), the following can be observed: If  $\beta = 1$ , the h(t) is constant and given by  $h(t) = \frac{\delta}{\theta}$ , this makes the NWPD suitable for modeling systems or components with constant failure rate. If  $\beta > 1$ , the hazard rate function is an increasing function of x, which makes the NWPD suitable for modeling components that wear faster with time. If  $\beta < 1$ , the hazard rate function of x, which makes the NWPD suitable for modeling components that wear faster with time. If  $\beta < 1$ , the hazard rate function of x, which makes the NWPD suitable for modeling that wear faster with time. If  $\beta < 1$ , the hazard rate function of x, which makes the NWPD suitable for modeling components that wear faster with time. If  $\beta < 1$ , the hazard rate function of x, which makes the NWPD, including its properties and applications see Suleman and Albert [21]. Several authors have discussed the statistical inference of censored data on the NWPD, for example, Almetwally et al. [22], Al-Omari et al. [23], EL-Sagheer et al. [24], and Mahmoud et al. [25].

This article aims to discuss the statistical inference of the NWPD parameters as well as some lifetime indices such as reliability function, hazard rate function, and coefficient of variation in the presence of Pro-F-F-C scheme. To this end, both point and interval estimations are discussed by implementing classical and Bayesian approaches. Moreover, delta, log transformation ( $\mathcal{L}T$ ) and arc sine transformation (AST) methods are used to construct the ACIs for S(t), h(t), and CV. In the Bayesian framework, Lindley and MCMC techniques under two different loss functions (balanced linear exponential (BLINEX) and general entropy (GE)) are proposed. A simulation study is carried out to determine the performance of the ML, Lindley, and MCMC estimation and compare the performance of different corresponding confidence intervals. Finally, the application to real-life data on gastric cancer survival times is analyzed for illustrative purposes.

The rest of this article is organized as follows: MLEs for the unknown quantities are presented in Section 2. In Section 3, the ACIs are constructed. Bayes estimators relative to different loss functions are also considered in Section 4. Section 5 provided the illustration of the proposed procedure by using a real-life example. Simulation results are discussed in Section 6. Finally, concluding remarks are investigated in Section 7.

## 2. ML Inference

Suppose that  $x_{i:m:n:k'}^R$ , i = 1, 2, ..., m, is a Pro-F-F-C order statistic from NWPD with the scheme  $R = (R_1, R_2, ..., R_m)$ . According to Wu and Kuş [9], the joint pdf can be written as

$$L(\underline{x};\delta,\beta,\theta) \propto k^m \beta^m \delta^m \theta^{(-m)} \left[ \prod_{i=1}^m \left(\frac{x_i}{\theta}\right)^{\beta-1} \right] \exp\left\{ -\delta \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\theta}\right)^{\beta} \right\}.$$
(6)

The log-likelihood function  $\ell(\underline{x}; \delta, \beta, \theta)$  can be written as

$$\ell(\underline{x};\delta,\beta,\theta) = m\ln(k) + m\ln(\beta) + m\ln(\delta) - m\ln(\theta) + (\beta - 1)\sum_{i=1}^{m}\ln\left(\frac{x_i}{\theta}\right) - \delta\sum_{i=1}^{m}k(R_i + 1)\left(\frac{x_i}{\theta}\right)^{\beta}.$$
(7)

By setting the partial derivatives of Equation (7) with respect to  $\delta$ ,  $\beta$ , and  $\theta$  to zero, the MLEs can be obtained by soluting the following likelihood equations

$$\frac{m}{\delta} - \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} = 0,$$
(8)

$$\frac{m}{\beta} + \sum_{i=1}^{m} \ln\left(\frac{x_i}{\theta}\right) - \delta \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} \ln\left(\frac{x_i}{\theta}\right) = 0,$$
(9)

and

$$\frac{m\beta}{\theta} - \frac{\beta\delta}{\theta} \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} = 0.$$
(10)

Since the non-linear Equations (8)–(10) cannot be solved analytically, a numerical method such as the Newton–Raphson method is used. Thus, we can be computed the MLEs of S(t), h(t), and CV by using the invariant property of the MLEs.

## 3. Constructing the ACIs

In this section, the ML estimate, delta,  $\mathcal{L}T$ , and AST methods are discussed to explain how to originate the CIs of unknown quantities.

## 3.1. The ML Estimate

Based on the invariant property of the MLEs, the ACIs of the parameters can be constructed via asymptotic variances that can be acquired from the inverse of the Fisher information matrix (IFIM). Therefore, the IFIM can be determined according to the likelihood equations through the following expression

$$\hat{I}_{ij}^{-1}(\Phi) = \left[ E\left(\frac{-\partial^2 \ell(\Phi)}{\partial \phi_i \partial \phi_j}\right) \right]^{-1}, i, j = 1, 2, 3, \ \Phi = (\phi_1, \phi_2, \phi_3) = (\delta, \beta, \theta), \tag{11}$$

where

$$\ell_{\delta\delta} = \frac{-m}{\delta^2}, \quad \ell_{\delta\beta} = -\sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\theta}\right)^\beta \ln\left(\frac{x_i}{\theta}\right) = \ell_{\beta\delta}, \tag{12}$$

$$\ell_{\delta\theta} = \frac{\beta}{\theta} \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} = \ell_{\theta\delta},\tag{13}$$

$$\ell_{\beta\beta} = \frac{-m}{\beta^2} - \delta \sum_{i=1}^m k(R_i + 1) \left(\frac{x_i}{\theta}\right)^\beta \left(\ln\left(\frac{x_i}{\theta}\right)\right)^2,\tag{14}$$

$$\ell_{\beta\theta} = \frac{-m}{\theta} + \frac{\delta\beta}{\theta} \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} \ln\left(\frac{x_i}{\theta}\right) + \frac{\delta}{\theta} \sum_{i=1}^{m} k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta} = \ell_{\theta\beta}, \quad (15)$$

and

$$\ell_{\theta\theta} = \frac{m\beta}{\theta^2} - \frac{\beta(\beta+1)\delta}{\theta^2} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\theta}\right)^\beta.$$
(16)

Due to the difficulty of calculating the exact expression of Equation (11), the asymptotic variance–covariance matrix will be used as the follows

$$\hat{I}^{-1}(\delta,\beta,\theta) = \begin{pmatrix} Var(\hat{\delta}) & Cov(\hat{\delta},\hat{\beta}) & Cov(\hat{\delta},\hat{\theta}) \\ Cov(\hat{\beta},\hat{\delta}) & Var(\hat{\beta}) & Cov(\hat{\beta},\hat{\theta}) \\ Cov(\hat{\theta},\hat{\delta}) & Cov(\hat{\theta},\hat{\beta}) & Var(\hat{\theta}) \end{pmatrix}.$$
(17)

Hence,  $(\hat{\delta}, \hat{\beta}, \hat{\theta}) \sim N[(\delta, \beta, \theta), \hat{l}^{-1}(\delta, \beta, \theta)]$ , and then the  $(1 - \gamma)100\%$  ACIs for  $\Phi = (\delta, \beta, \theta)$  are given by

$$\left[\hat{\Phi} - Z_{\gamma/2}\sqrt{Var(\hat{\Phi})}, \hat{\Phi} + Z_{\gamma/2}\sqrt{Var(\hat{\Phi})}\right],$$
(18)

where  $Z_{\gamma/2}$  is the standard normal distribution percentile with probability right-tailed  $\gamma/2$ .

# 3.2. Delta Method

The  $(1 - \gamma)100\%$  ACIs for  $\Psi = (S(t), h(t), CV)$  can be given by

$$\left[\hat{\Psi} - Z_{\gamma/2}\sqrt{Var(\hat{\Psi})}, \hat{\Psi} + Z_{\gamma/2}\sqrt{Var(\hat{\Psi})}\right],\tag{19}$$

where  $Var(\hat{\Psi})$  is the variance of  $\hat{\Psi}$ , which can be obtained by using the delta method, see Green [26], and can be written as

$$Var(\hat{\Psi}) \simeq \left[B^T \hat{I}^{-1} B\right]_{\left(\hat{\delta}, \hat{\beta}, \hat{\theta}\right)'}$$
(20)

where *B* is the first derivative of  $\hat{\Psi}$  with respect to  $\hat{\delta}$ ,  $\hat{\beta}$ , and  $\hat{\theta}$ ,  $B_i^T$  is the transpose matrix of *B* and  $\hat{l}^{-1}$  is in (17).

3.3. Log Transformation Method

The  $(1 - \gamma)100\%$  *L*TCIs for  $\Psi = (S(t), h(t), CV)$  can be obtained, respectively, by

$$\ln\left(\frac{\hat{\Psi}}{1-\hat{\Psi}}\right) \mp Z_{\gamma/2} \frac{\sqrt{Var(\hat{\Psi})}}{1-\hat{\Psi}}.$$
(21)

If (L, U) denote the lower and upper bounds of  $\mathcal{L}TCIs$  of  $\Psi$ , then the  $(1 - \gamma)100\%$  ACIs for  $\Psi$  relative to  $\mathcal{L}T$  are given by

$$\left[e^{L}\left(1+e^{L}\right)^{-1}, e^{U}\left(1+e^{U}\right)^{-1}\right].$$
(22)

## 3.4. Arcsin Transformation Method

The  $(1 - \gamma)100\%$  ASTCIs for  $\Psi = (S(t), h(t), CV)$  can be obtained by

$$\arcsin\left(\sqrt{\hat{\Psi}}\right) \mp Z_{\gamma/2} \sqrt{\frac{Var(\hat{\Psi})}{4\hat{\Psi}(1-\hat{\Psi})}}.$$
 (23)

If (L, U) denote the lower and upper bounds of ASTCIs of  $\Psi$ , then the  $(1 - \gamma)100\%$ ACIs for  $\Psi$  relative to AST are given by

$$\left[\sin^2(L),\sin^2(U)\right].$$
(24)

For more details about  $\mathcal{L}T$  and AST, see Mukherjee and Maiti [27], Krishnamoorthy and Lin [28], and Ahmed [29].

# 4. Bayesian Estimation

In this section, we discuss how to obtain the Bayes estimates and construct the corresponding CRIs for  $\delta$ ,  $\beta$ , and  $\theta$ , S(t), h(t), and CV under BLINEX and GE loss functions. Therefore, we consider that the unknown parameters  $\delta$ ,  $\beta$ , and  $\theta$  are stochastically independently distributed with conjugate gamma prior. Hence, the joint prior density can be formulated as follows

$$\pi(\delta,\beta,\theta) \propto \delta^{\gamma_1-1}\beta^{\gamma_2-1}\theta^{\gamma_3-1}\exp\{-\eta_1\delta-\eta_2\beta-\eta_3\theta\},\tag{25}$$

where the hyperparameters  $\gamma_i$  and  $\eta_i$  (where i = 1, 2, 3) are reflected prior knowledge about  $\delta$ ,  $\beta$ , and  $\theta$ . Consequently, from (6) and (25), the joint posterior density can be expressed as follows

$$\pi^{*}(\delta,\beta,\theta \mid \underline{x}) = \frac{L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta)}{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta) d\delta d\beta d\theta}$$
$$\propto \beta^{m+\gamma_{2}-1} \delta^{m+\gamma_{1}-1} \theta^{(-m+\gamma_{3}-1)} \left[ \prod_{i=1}^{m} \left( \frac{x_{i}}{\theta} \right)^{\beta-1} \right]$$
$$\times \exp\left\{ -\eta_{2}\beta - \eta_{3}\theta - \delta \left[ \eta_{1} + \sum_{i=1}^{m} k(R_{i}+1) \left( \frac{x_{i}}{\theta} \right)^{\beta} \right] \right\}.$$
(26)

The Bayes estimate of the unknown quantity  $q(\delta, \beta, \theta)$  under BLINEX and GE loss functions is given by

$$\hat{q}_{BL}(\delta,\beta,\theta) = \frac{-1}{c} \log \left( \omega e^{-cq(\delta,\beta,\theta)} + (1+\omega) E\left[ e^{-cq(\delta,\beta,\theta)} | \underline{x} \right] \right) \\
\hat{q}_{GE}(\delta,\beta,\theta) = \left( E\left[ (q(\delta,\beta,\theta))^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}}$$
(27)

where the posterior expectations of  $q(\delta, \beta, \theta)$  under BLINEX and GE loss functions can be written as

$$E\left[e^{-cq(\delta,\beta,\theta)}|\underline{x}\right] = \frac{\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} e^{-cq(\delta,\beta,\theta)} \times L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta) d\delta d\beta d\theta}{\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta) d\delta d\beta d\theta} \\ E\left[\left(q(\delta,\beta,\theta)\right)^{-b}|\underline{x}\right] = \frac{\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} q(\delta,\beta,\theta))^{-b} \times L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta) d\delta d\beta d\theta}{\int_0^{\infty} \int_0^{\infty} \int_0^{\infty} \int_0^{\infty} L(\underline{x};\delta,\beta,\theta) \times \pi(\delta,\beta,\theta) d\delta d\beta d\theta} \right\}.$$
(28)

It is noticeable that the Bayes estimates in both kinds of loss functions include three integrals and cannot be constructed in closed forms. Therefore, the Lindley and MCMC techniques will be implemented to obtain the Bayes estimates of the unknown quantities.

#### 4.1. Lindley's Approximation

There are various methods suggested to approximate the ratio of integrals of the above form, maybe the simplest one is the Lindley [30] approximation method, which approximates the Bayes estimates into a form containing no integrals. Many authors have used this approximation, see for example, Sarhan et al. [31], Sultan et al. [32], Singh et al. [33], Singh et al. [34], and Rastogi and Tripathi [35]. In short, this method works as follows: for any ratio of the integral of the form

$$I(x) = E[u(\delta, \beta, \theta) \mid \underline{x}] = \frac{\int u(\delta, \beta, \theta) e^{\ell(\delta, \beta, \theta) + \rho(\delta, \beta, \theta)} d(\delta, \beta, \theta)}{\int e^{\ell(\delta, \beta, \theta) + \rho(\delta, \beta, \theta)} d(\delta, \beta, \theta)},$$
(29)

where  $u(\delta, \beta, \theta)$  is the function of  $\delta$ ,  $\beta$ , and  $\theta$  only,  $\rho(\delta, \beta, \theta) = \log \pi(\delta, \beta, \theta)$ , and  $\pi(\delta, \beta, \theta)$  is the joint prior density. Hence, I(x) can be estimated as

$$I(x) = u(\hat{\delta}, \hat{\beta}, \hat{\theta}) + (\hat{u}_{\delta}a_{1} + \hat{u}_{\beta}a_{2} + \hat{u}_{\theta}a_{3} + a_{4} + a_{5}) + \frac{1}{2} \left[ A(\hat{u}_{\delta}\hat{\sigma}_{\delta\delta} + \hat{u}_{\beta}\hat{\sigma}_{\delta\beta} + \hat{u}_{\theta}\hat{\sigma}_{\delta\theta}) + B(\hat{u}_{\delta}\hat{\sigma}_{\beta\delta} + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta} + \hat{u}_{\theta}\hat{\sigma}_{\beta\theta}) + C(\hat{u}_{\delta}\hat{\sigma}_{\theta\delta} + \hat{u}_{\beta}\hat{\sigma}_{\theta\beta} + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}) \right],$$
(30)

where  $\hat{\delta}$ ,  $\hat{\beta}$ , and  $\hat{\theta}$  are the MLEs of  $\delta$ ,  $\beta$ , and  $\theta$ , respectively, and subscripts 1, 2, and 3 on the right-hand sides refer to  $\delta$ ,  $\beta$ , and  $\theta$ .

$$\left. \begin{array}{l} a_{i} = \hat{\rho}_{\delta}\hat{\sigma}_{i\delta} + \hat{\rho}_{\beta}\hat{\sigma}_{i\beta} + \hat{\rho}_{\theta}\hat{\sigma}_{i\theta} \\ a_{4} = \hat{u}_{\delta\beta}\hat{\sigma}_{\delta\beta} + \hat{u}_{\delta\theta}\hat{\sigma}_{\delta\theta} + \hat{u}_{\beta\theta}\hat{\sigma}_{\beta\theta} \\ a_{5} = \frac{1}{2}\left(\hat{u}_{\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{u}_{\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{u}_{\theta\theta}\hat{\sigma}_{\theta\theta}\right) \end{array} \right\},$$

$$(31)$$

$$\left. \begin{array}{l} A = \hat{\sigma}_{\delta\delta}\hat{\ell}_{\delta\delta\delta} + 2\hat{\sigma}_{\delta\beta}\hat{\ell}_{\delta\beta\delta} + 2\hat{\sigma}_{\delta\theta}\hat{\ell}_{\delta\theta\delta} + 2\hat{\sigma}_{\beta\theta}\hat{\ell}_{\beta\theta\delta} + \hat{\sigma}_{\beta\beta}\hat{\ell}_{\beta\beta\delta} + \hat{\sigma}_{\theta\theta}\hat{\ell}_{\theta\theta\delta} \\ B = \hat{\sigma}_{\delta\delta}\hat{\ell}_{\delta\delta\beta} + 2\hat{\sigma}_{\delta\beta}\hat{\ell}_{\delta\beta\beta} + 2\hat{\sigma}_{\delta\theta}\hat{\ell}_{\delta\theta\beta} + 2\hat{\sigma}_{\beta\theta}\hat{\ell}_{\beta\theta\beta} + \hat{\sigma}_{\beta\beta}\hat{\ell}_{\beta\beta\beta} + \hat{\sigma}_{\theta\theta}\hat{\ell}_{\theta\theta\beta} \\ C = \hat{\sigma}_{\delta\delta}\hat{\ell}_{\delta\delta\theta} + 2\hat{\sigma}_{\delta\beta}\hat{\ell}_{\delta\theta\theta} + 2\hat{\sigma}_{\delta\theta}\hat{\ell}_{\delta\theta\theta} + 2\hat{\sigma}_{\beta\theta}\hat{\ell}_{\beta\theta\theta} + \hat{\sigma}_{\beta\beta}\hat{\ell}_{\beta\beta\theta} + \hat{\sigma}_{\theta\theta}\hat{\ell}_{\theta\theta\theta} \end{array} \right\},$$
(32)

$$\rho_i = \frac{\partial \rho}{\partial \phi_i}, u_i = \frac{\partial u(\phi_1, \phi_2, \phi_3)}{\partial \phi_i}, u_{ij} = \frac{\partial u(\phi_1, \phi_2, \phi_3)}{\partial \phi_i \partial \phi_j}, \ell_{ij} = \frac{\partial \ell(\phi_1, \phi_2, \phi_3)}{\partial \phi_i \partial \phi_j}, \ell_{ijl} = \frac{\partial \ell(\phi_1, \phi_2, \phi_3)}{\partial \phi_i \partial \phi_j \partial \phi_l}, \tag{33}$$

where  $\phi_1 = \delta$ ,  $\phi_2 = \beta$ ,  $\phi_3 = \theta$ , i, j, l = 1, 2, 3, and  $\sigma_{ij}$  are the (i, j)th elements of  $\hat{I}^{-1}(\hat{\delta}, \hat{\beta}, \hat{\theta})$  in (17). If  $\delta$ ,  $\beta$ , and  $\theta$  are orthogonal, then  $\hat{\sigma}_{ij} = 0$  for  $i \neq j$ . The  $\ell_{ijl}$  can be obtained as follows:

$$\hat{\ell}_{\delta\delta\delta} = \frac{2m}{\hat{\delta}^3},\tag{34}$$

$$\hat{\ell}_{\delta\delta\beta} = \hat{\ell}_{\delta\beta\delta} = \hat{\ell}_{\beta\delta\delta} = \hat{\ell}_{\delta\delta\theta} = \hat{\ell}_{\delta\theta\delta} = \hat{\ell}_{\theta\delta\delta} = 0, \tag{35}$$

$$\hat{\ell}_{\delta\beta\beta} = -\sum_{i=1}^{m} k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\beta} \left[\ln\left(\frac{x_i}{\hat{\theta}}\right)\right]^2 = \hat{\ell}_{\beta\delta\beta} = \hat{\ell}_{\beta\beta\delta}.$$
(36)

$$\hat{\ell}_{\delta\beta\theta} = \frac{\hat{\beta}}{\hat{\theta}} \sum_{i=1}^{m} k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} \ln\left(\frac{x_i}{\hat{\theta}}\right) + \frac{1}{\hat{\theta}} \sum_{i=1}^{m} k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} \\ = \hat{\ell}_{\delta\theta\beta} = \hat{\ell}_{\beta\delta\theta} = \hat{\ell}_{\beta\theta\delta} = \hat{\ell}_{\theta\delta\beta} = \hat{\ell}_{\theta\beta\delta},$$
(37)

$$\hat{\ell}_{\delta\theta\theta} = -\frac{\hat{\beta}(\hat{\beta}+1)}{\hat{\theta}^2} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} = \hat{\ell}_{\theta\delta\theta} = \hat{\ell}_{\theta\theta\delta},\tag{38}$$

$$\hat{\ell}_{\beta\beta\beta} = \frac{2m}{\hat{\beta}^3} - \hat{\delta} \sum_{i=1}^m k(R_i + 1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} \left[ \ln\left(\frac{x_i}{\hat{\theta}}\right) \right]^3,\tag{39}$$

$$\hat{\ell}_{\beta\beta\theta} = \frac{\hat{\beta}\hat{\delta}}{\hat{\theta}}\sum_{i=1}^{m} k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\beta} \left[\ln\left(\frac{x_i}{\hat{\theta}}\right)\right]^2 + \frac{2\hat{\delta}}{\hat{\theta}}\sum_{i=1}^{m} k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\beta} \ln\left(\frac{x_i}{\hat{\theta}}\right)$$

$$= \hat{\ell}_{\beta\theta\beta} = \hat{\ell}_{\theta\beta\beta\beta},$$
(40)

$$\hat{\ell}_{\beta\theta\theta} = \frac{m}{\hat{\theta}^2} - \frac{(\hat{\beta}+1)\hat{\delta}}{\hat{\theta}^2} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} - \frac{\hat{\beta}\hat{\delta}}{\hat{\theta}^2} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} - \frac{\hat{\beta}(\hat{\beta}+1)\hat{\delta}}{\hat{\theta}^2} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} \ln\left(\frac{x_i}{\hat{\theta}}\right) = \hat{\ell}_{\theta\beta\theta} = \hat{\ell}_{\theta\theta\beta},$$
(41)

and

$$\hat{\ell}_{\theta\theta\theta} = \frac{-2m\hat{\beta}}{\hat{\theta}^3} + \frac{\hat{\beta}(\hat{\beta}+1)(\hat{\beta}+2)\hat{\delta}}{\hat{\theta}^3} \sum_{i=1}^m k(R_i+1) \left(\frac{x_i}{\hat{\theta}}\right)^{\hat{\beta}} \ln\left(\frac{x_i}{\hat{\theta}}\right).$$
(42)

# From the joint prior density in (25), we get

$$\rho(\delta,\beta,\theta) = \gamma_1 \ln(\eta_1) + \gamma_2 \ln(\eta_2) + \gamma_3 \ln(\eta_3) - \ln(\Gamma(\gamma_1)) - \ln(\Gamma(\gamma_2)) - \ln(\Gamma(\gamma_3)) \\
+ (\gamma_1 - 1) \ln(\delta) + (\gamma_2 - 1) \ln(\beta) + (\gamma_3 - 1) \ln(\theta) - (\eta_1 \delta + \eta_2 \beta + \eta_3 \theta).$$
(43)

Hence,

$$\hat{\rho}_{1} = \frac{\partial \ln \pi(\delta,\beta,\theta)}{\partial \delta} \Big|_{\substack{(\delta,\beta,\theta) = (\hat{\delta},\hat{\beta},\hat{\theta}) \\ \hat{\sigma}_{2} = \frac{\partial \ln \pi(\delta,\beta,\theta)}{\partial \beta}} \Big|_{\substack{(\delta,\beta,\theta) = (\hat{\delta},\hat{\beta},\hat{\theta}) \\ (\delta,\beta,\theta) = (\hat{\delta},\hat{\beta},\hat{\theta})}} = \frac{(\gamma_{2}-1)}{\hat{\beta}} - \eta_{2} \\ \hat{\rho}_{3} = \frac{\partial \ln \pi(\delta,\beta,\theta)}{\partial \theta} \Big|_{\substack{(\delta,\beta,\theta) = (\hat{\delta},\hat{\beta},\hat{\theta}) \\ (\delta,\beta,\theta) = (\hat{\delta},\hat{\beta},\hat{\theta})}} = \frac{(\gamma_{3}-1)}{\hat{\theta}} - \eta_{3} } \right\}.$$

$$(44)$$

# 4.1.1. Bayes Estimate under BLINEX Loss Function

In this subsection, we obtain the Bayes estimates of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV under the BLINEX loss function

(i) When  $u(\delta, \beta, \theta) = e^{-c\delta}$ , then  $u_{\delta} = -ce^{-c\delta}$ ,  $u_{\delta\delta} = c^2 e^{-c\delta}$ , and  $u_{\beta} = u_{\beta\beta} = u_{\theta} = u_{\theta\theta} = u_{\delta\beta} = u_{\delta\theta} = u_{\delta\theta} = u_{\delta\theta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\delta$  is given by

$$\hat{\delta}_{BL} = \frac{-1}{c} \ln \left( \omega e^{-c\hat{\delta}} + (1-\omega) E\left[ e^{-c\delta} | \underline{x} \right] \right), \tag{45}$$

where

$$E\left[e^{-c\delta}|\underline{x}\right] = e^{-c\hat{\delta}} + 0.5\left[\left(\hat{u}_{\delta\delta} + 2\hat{\rho}_{\delta}\hat{u}_{\delta}\right)\hat{\sigma}_{\delta\delta} + \hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(46)

(ii) When  $u(\delta, \beta, \theta) = e^{-c\beta}$ , then  $u_{\beta} = -ce^{-c\beta}$ ,  $u_{\beta\beta} = c^2 e^{-c\beta}$ , and  $u_{\theta} = u_{\theta\theta} = u_{\delta} = u_{\delta\delta} = u_{\delta\beta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\beta$  is given by

$$\hat{\beta}_{BL} = \frac{-1}{c} \ln \left( \omega e^{-c\hat{\beta}} + (1-\omega) E\left[ e^{-c\beta} | \underline{x} \right] \right), \tag{47}$$

where

$$E\left[e^{-c\beta}|\underline{x}\right] = e^{-c\hat{\beta}} + 0.5\left[\left(\hat{u}_{\beta\beta} + 2\hat{\rho}_{\beta}\hat{u}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(48)

(iii) When  $u(\delta, \beta, \theta) = e^{-c\theta}$ , then  $u_{\theta} = -ce^{-c\theta}$ ,  $u_{\theta\theta} = c^2 e^{-c\theta}$ , and  $u_{\delta} = u_{\delta\delta} = u_{\beta\beta} = u_{\beta\beta} = u_{\delta\beta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\theta$  is given by

$$\hat{\theta}_{BL} = \frac{-1}{c} \ln \left( \omega e^{-c\hat{\theta}} + (1-\omega) E\left[ e^{-c\theta} | \underline{x} \right] \right), \tag{49}$$

where

$$E\left[e^{-c\theta}|\underline{x}\right] = e^{-c\hat{\theta}} + 0.5\left[(\hat{u}_{\theta\theta} + 2\hat{\rho}_{\theta}\hat{u}_{\theta})\hat{\sigma}_{\theta\theta} + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right].$$
 (50)

(iv) When  $u(\delta, \beta, \theta) = e^{-cS(t)} = e^{-ce^{-\delta(\frac{t}{\theta})^{\beta}}}$ , then the Bayes estimate of S(t) is given by

$$\hat{S}_{BL}(t) = \frac{-1}{c} \ln \left( \omega e^{-c\hat{S}(t)} + (1-\omega) E\left[ e^{-cS(t)} | \underline{x} \right] \right), \tag{51}$$

where

$$E\left[e^{-cS(t)}|\underline{x}\right] = e^{-ce^{-\delta\left(\frac{t}{\theta}\right)^{\beta}}} + 0.5\left[\left(\hat{u}_{\delta\delta} + 2\hat{u}_{\delta}\hat{\rho}_{\delta}\right)\hat{\sigma}_{\delta\delta} + \left(\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \left(\hat{u}_{\theta\theta} + 2\hat{u}_{\theta}\hat{\rho}_{\theta}\right)\hat{\sigma}_{\theta\theta}\right] \\ + 0.5\left[\hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right) \\ + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(52)

(v) When  $u(\delta, \beta, \theta) = e^{-ch(t)} = e^{-c\frac{\beta\delta}{\theta}(\frac{t}{\theta})^{\beta-1}}$ , then the Bayes estimate of h(t) is given by

$$\hat{h}_{BL}(t) = \frac{-1}{c} \ln \left( \omega e^{-c\hat{h}(t)} + (1-\omega) E\left[ e^{-ch(t)} | \underline{x} \right] \right), \tag{53}$$

where

$$E\left[e^{-ch(t)}|\underline{x}\right] = e^{-c\frac{\hat{\beta}\delta}{\hat{\theta}}\left(\frac{t}{\hat{\theta}}\right)^{\hat{\beta}-1}} + 0.5\left[\left(\hat{u}_{\delta\delta} + 2\hat{u}_{\delta}\hat{\rho}_{\delta}\right)\hat{\sigma}_{\delta\delta} + \left(\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \left(\hat{u}_{\theta\theta} + 2\hat{u}_{\theta}\hat{\rho}_{\theta}\right)\hat{\sigma}_{\theta\theta}\right] \\ + 0.5\left[\hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right) \\ + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(54)

(vi) When  $u(\delta, \beta, \theta) = e^{-cCV}$ , then the Bayes estimate of *CV* is given by

$$\widehat{CV}_{BL} = \frac{-1}{c} \ln \left( \omega e^{-c\widehat{CV}} + (1-\omega)E\left[e^{-cCV}|\underline{x}\right] \right), \tag{55}$$

where

$$E\left[e^{-cCV}|\underline{x}\right] = \exp\left\{-c\frac{\sqrt{\Gamma\left(\frac{2+\hat{\beta}}{\hat{\beta}}\right) - \left[\Gamma\left(\frac{1+\hat{\beta}}{\hat{\beta}}\right)\right]^{2}}}{\Gamma\left(\frac{1+\hat{\beta}}{\hat{\beta}}\right)}\right\} + 0.5\left[\left(\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(56)

# 4.1.2. Bayes Estimate under GE Loss Function

We discuss the Bayes estimates of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t) and CV under the GE loss function.

(i) When  $u(\delta, \beta, \theta) = \delta^{-b}$ , then  $u_{\delta} = -b\delta^{-b-1}$ ,  $u_{\delta\delta} = b(b+1)\delta^{-b-2}$ , and  $u_{\beta} = u_{\beta\beta} = u_{\theta\theta} = u_{\delta\theta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\delta$  is given by

$$\hat{\delta}_{GE} = \left( E \left[ \delta^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}}, \tag{57}$$

where

$$E\left[\delta^{-b}|\underline{x}\right] = \hat{\delta}^{-b} + 0.5\left[(\hat{u}_{\delta\delta} + 2\hat{\rho}_{\delta}\hat{u}_{\delta})\hat{\sigma}_{\delta\delta} + \hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(58)

(ii) When  $u(\delta, \beta, \theta) = \beta^{-b}$ , then  $u_{\beta} = -b\beta^{-b-1}$ ,  $u_{\beta\beta} = b(b+1)\beta^{-b-2}$ , and  $u_{\theta} = u_{\theta\theta} = u_{\delta} = u_{\delta\delta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\beta$  is given by

$$\hat{\beta}_{GE} = \left( E \left[ \beta^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}}, \tag{59}$$

where

$$E\left[\beta^{-b}|\underline{x}\right] = \hat{\beta}^{-b} + 0.5\left[\left(\hat{u}_{\beta\beta} + 2\hat{\rho}_{\beta}\hat{u}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(60)

(iii) When  $u(\delta, \beta, \theta) = \theta^{-b}$ , then  $u_{\theta} = -b\theta^{-b-1}$ ,  $u_{\theta\theta} = b(b+1)\theta^{-b-2}$ , and  $u_{\delta} = u_{\delta\delta} = u_{\delta\beta} = u_{\delta\beta} = u_{\delta\theta} = u_{\delta\theta} = 0$ . The Bayes estimate of  $\theta$  is given by

$$\hat{\theta}_{GE} = \left( E \left[ \theta^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}}, \tag{61}$$

where

$$E\left[\theta^{-b}|\underline{x}\right] = \hat{\theta}^{-b} + 0.5\left[\left(\hat{u}_{\theta\theta} + 2\hat{\rho}_{\theta}\hat{u}_{\theta}\right)\hat{\sigma}_{\theta\theta} + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(62)

(iv) When  $u(\delta, \beta, \theta) = (S(t))^{-b} = \left(e^{-\delta\left(\frac{t}{\theta}\right)^{\beta}}\right)^{-b}$ , then the Bayes estimate of S(t) is given by

$$\hat{S}_{GE}(t) = \left( E\left[ (S(t))^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}},$$
(63)

where

$$E\left[(S(t))^{-b}|\underline{x}\right] = \left(e^{-\hat{\delta}\left(\frac{t}{\hat{\theta}}\right)^{\hat{\beta}}}\right)^{-b} + 0.5\left[(\hat{u}_{\delta\delta} + 2\hat{u}_{\delta}\hat{\rho}_{\delta})\hat{\sigma}_{\delta\delta} + (\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta})\hat{\sigma}_{\beta\beta} + (\hat{u}_{\theta\theta} + 2\hat{u}_{\theta}\hat{\rho}_{\theta})\right]$$
$$\hat{\sigma}_{\theta\theta} + 0.5\left[\hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right]. \tag{64}$$

10 of 26

(v) When  $u(\delta, \beta, \theta) = (h(t))^{-b} = \left(\frac{\beta\delta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1}\right)^{-b}$ , then the Bayes estimate of h(t) is given by

$$\hat{h}_{GE}(t) = \left( E\left[ (h(t))^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}},$$
(65)

where

$$E\left[(h(t))^{-b}|\underline{x}\right] = \left(\frac{\hat{\beta}\hat{\delta}}{\hat{\theta}}\left(\frac{t}{\hat{\theta}}\right)^{\hat{\beta}-1}\right)^{-b} + 0.5\left[(\hat{u}_{\delta\delta} + 2\hat{u}_{\delta}\hat{\rho}_{\delta})\hat{\sigma}_{\delta\delta} + (\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta})\hat{\sigma}_{\beta\beta} + (\hat{u}_{\theta\theta} + 2\hat{u}_{\theta}\hat{\rho}_{\theta})\hat{\sigma}_{\theta\theta}\right] + 0.5\left[\hat{u}_{\delta}\hat{\sigma}_{\delta\delta}\left(\hat{\ell}_{\delta\delta\delta}\hat{\sigma}_{\delta\delta} + \hat{\ell}_{\beta\beta\delta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\delta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right) + \hat{u}_{\theta}\hat{\sigma}_{\theta\theta}\left(\hat{\ell}_{\beta\beta\theta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\theta}\hat{\sigma}_{\theta\theta}\right)\right].$$
(66)

When  $u(\delta, \beta, \theta) = (CV)^{-b}$ , then the Bayes estimate of *CV* is given by

$$\widehat{CV}_{GE} = \left( E\left[ (CV)^{-b} | \underline{x} \right] \right)^{\frac{-1}{b}}, \tag{67}$$

where

$$E\left[(CV)^{-b}|\underline{x}\right] = \left(\frac{\sqrt{\Gamma\left(\frac{2+\hat{\beta}}{\hat{\beta}}\right) - \left[\Gamma\left(\frac{1+\hat{\beta}}{\hat{\beta}}\right)\right]^{2}}}{\Gamma\left(\frac{1+\hat{\beta}}{\hat{\beta}}\right)}\right)^{-b} + 0.5\left[\left(\hat{u}_{\beta\beta} + 2\hat{u}_{\beta}\hat{\rho}_{\beta}\right)\hat{\sigma}_{\beta\beta} + \hat{u}_{\beta}\hat{\sigma}_{\beta\beta}\left(\hat{\ell}_{\beta\beta\beta}\hat{\sigma}_{\beta\beta} + \hat{\ell}_{\theta\theta\beta}\hat{\sigma}_{\theta\theta}\right)\right].$$

$$(68)$$

Unfortunately, Lindley's approximation does not calculate the interval estimation, so we resort to the MCMC technique.

# 4.2. MCMC Technique

Now, we explain how the MCMC technique is applied to compute the Bayes estimates and construct the corresponding CRIs of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV. A common technique in the MCMC technique is the Gibbs sampler, which was introduced by Geman and Geman [36], and the M-H algorithm, which was developed by Metropolis et al. [37] and later extended by Hastings [38]. In this technique, the samples can be drawn by making use of the conditional density and proposal distributions for each of the parameters. Thereafter, by using the drawn samples, the Bayes estimates and the corresponding CRIs can be computed. From (26), the conditional densities can be obtained as follows

$$\pi_1^*(\delta \mid \beta, \theta, \underline{x}) \propto \delta^{m+\gamma_1 - 1} \exp\left\{-\delta\left[\sum_{i=1}^m k(R_i + 1)\left(\frac{x_i}{\theta}\right)^\beta + \eta_1\right]\right\},\tag{69}$$

$$\pi_2^*(\beta \mid \delta, \theta, \underline{x}) \propto \beta^{m+\gamma_2 - 1} \left[ \prod_{i=1}^m \left( \frac{x_i}{\theta} \right)^{\beta - 1} \right] \exp\left\{ -\eta_2 \beta - \delta \left[ \sum_{i=1}^m k(R_i + 1) \left( \frac{x_i}{\theta} \right)^{\beta} \right] \right\},$$
(70)

and

$$\pi_3^*(\theta \mid \delta, \beta, \underline{x}) \propto \theta^{(-m+\gamma_3-1)} \left[ \prod_{i=1}^m \left( \frac{x_i}{\theta} \right)^{\beta-1} \right] \exp\left\{ -\eta_3 \theta - \delta \left[ \sum_{i=1}^m k(R_i+1) \left( \frac{x_i}{\theta} \right)^{\beta} \right] \right\}.$$
(71)

It is noticeable that Equation (69) represents a gamma density, thus the samples of  $\delta$  can be drawn simply from any gamma-generating routine. Furthermore, Equations (70) and (71) do not represent a well-known distributions. However, when plotted, they appear similar to the normal distribution, see Figures 1 and 2. Consequently, the hybrid procedure of the Gibbs sampling and M-H algorithm will be run in the following steps:



**Figure 1.** Posterior density  $\pi_2^*(\beta|\delta, \theta, \underline{x})$  of  $\beta$ .



**Figure 2.** Posterior density  $\pi_3^*(\theta|\delta, \beta, \underline{x})$  of  $\theta$ .

- (1) Start with initial guess  $(\delta^{(0)}, \beta^{(0)}, \theta^{(0)})$ .
- (2) Set j = 1.
- (3) Generate  $\delta^{(j)}$  from gamma  $\left(m + \gamma_1, \eta_1 + \sum_{i=1}^m k(R_i + 1) \left(\frac{x_i}{\theta}\right)^{\beta}\right)$ .
- (4) Using M-H to generate  $\beta^{(j)}$  and  $\theta^{(j)}$  from  $\pi_2^*(\beta^{(j-1)}|\delta^{(j)}, \theta^{(j-1)}, \underline{x})$  and  $\pi_3^*(\theta^{(j-1)}|\delta^{(j)}, \beta^{(j)}, \underline{x})$  with  $N(\beta^{(j-1)}, Var(\beta))$  and  $N(\theta^{(j-1)}, Var(\theta))$ .
  - (i) Generate  $\beta^*$  from  $N(\beta^{(j-1)}, Var(\beta))$  and  $\theta^*$  from  $N(\theta^{(j-1)}, Var(\theta))$ .
  - (ii) Evaluate the acceptance probabilities

$$\psi_{\beta} = \min\left[1, \frac{\pi_{2}^{*}(\beta^{*}|\delta^{(j)}, \theta^{(j-1)}, \underline{x})}{\pi_{2}^{*}(\beta^{(j-1)}|\delta^{(j)}, \theta^{(j-1)}, \underline{x})}\right], \ \psi_{\theta} = \min\left[1, \frac{\pi_{3}^{*}(\theta^{*}|\delta^{(j)}, \beta^{(j)}, \underline{x})}{\pi_{3}^{*}(\theta^{(j-1)}|\delta^{(j)}, \beta^{(j)}, \underline{x})}\right].$$

- (iii) Generate a  $u_1$  and  $u_2$  from a uniform (0, 1) distribution.
- (iv) If  $u_1 < \psi_\beta$  accept the proposal and set  $\beta^* = \beta^{(j)}$ , else set  $\beta^{(j)} = \beta^{(j-1)}$ .
- (v) If  $u_2 < \psi_{\theta}$  accept the proposal and set  $\theta^* = \theta^{(j)}$ , else set  $\theta^{(j)} = \theta^{(j-1)}$ .
- (5) Compute S(t), h(t), and CV as

$$\left. \begin{array}{l} S^{(j)}(t) = e^{-\delta^{(j)} \left(\frac{t}{\theta^{(j)}}\right)^{\beta^{(j)}}} \\ h^{(j)}(t) = \frac{\beta^{(j)}\delta^{(j)}}{\theta^{(j)}} \left(\frac{t}{\theta^{(j)}}\right)^{\beta^{(j)}-1} \\ CV^{(j)} = \frac{\sqrt{\Gamma\left(\frac{2+\beta^{(j)}}{\beta^{(j)}}\right) - \left[\Gamma\left(\frac{1+\beta^{(j)}}{\beta^{(j)}}\right)\right]^2}}{\Gamma\left(\frac{1+\beta^{(j)}}{\beta^{(j)}}\right)} \right\}$$

- (6) Set j = j + 1.
- (7) Repeat Steps 3 6 N times.
- (8) Based on BLINEX and GE loss functions, the Bayes estimate of v (where  $v = \delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), or CV) under MCMC can be obtained by

$$\hat{v}_{BL} = \frac{-1}{c} \log \left( \omega e^{-c\hat{v}} + \frac{(1+\omega)}{N-M} \sum_{j=M+1}^{N} e^{-cv^{(j)}} \right), \\ \hat{v}_{GE} = \left[ \frac{1}{N-M} \sum_{j=M+1}^{N} \left( v^{(j)} \right)^{-b} \right]^{\frac{-1}{b}}.$$

where M is burn-in.

(9) To compute the CRI of  $v^{(j)}$ , order  $\{v^{M+1}, v^{M+2}, \dots, v^N\}$  as  $\{v^{[1]}, v^{[2]}, \dots, v^{[N]}\}$ . Then, the  $(1 - \gamma)100\%$  CRI of v can be given by

$$\left[v_{((N-M)(\gamma/2))},v_{((N-M)(1-\gamma/2))}\right]$$

# 5. Practical Data Analysis: Gastric Cancer Patients

To clarify the inference methods discussed in the previous sections, we present a real-life example. We use a real dataset recorded in Bekker [39] that represents the survival times for a group of gastric cancer patients. Several authors have studied reliability function and associated means based on different approaches, such as Xu et al. [5] and Luo et al. [6], among others. The data consist of 46 survival times (in years) for 46 patients. The data are randomly divided into 23 groups with (k = 2) units within each group. The groups can be divided as follows: {0.047, 0.121}, {0.115, 1.589}, {0.466, 0.540}, {0.164, 2,444}, {0.570, 3.658}, {0.203, 0.696}, {0.841, 1.271}, {0.296, 0.334}, {0.132, 1.099}, {0.395, 0.501}, {0.260, 1.219}, {0.282, 1.326}, {0.863, 1.485}, {1.553, 2.416}, {0.458, 0.534}, {1.581, 2.830}, {0.529, 1.447}, {0.507, 2.178}, {2.343, 3.743}, {2.825, 3.578}, {0.644, 3.978}, {0.641, 4.003}, and {0.197, 4.033}. Suppose that a Pro-F-F-C scheme is given by R = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0), then a Pro-F-F-C sample of size 16 out of 23 groups of data is obtained as follows:

| 0.047 | 0.466 | 0.570 | 0.696 | 0.841 | 1.099 | 1.219 | 1.326 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.553 | 1.581 | 1.589 | 2.178 | 2.343 | 2.825 | 4.003 | 4.033 |

To prove that NWPD fits the data well, we computed the Kolmogorov–Smirnov and the associated *p*-value, and the results, respectively, are 0.1077 and 0.6601. From the plot of the empirical survival (ESF) and the estimated survival functions in Figure 3, it is clear that the NWPD fits the data very well. The 95% CRIs of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV are given in Tables 1 and 2. Table 3 provides the MCMC results. Under the given previous data, we compute the MLEs of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV as tabulated in Table 4. Based on Lindley and MCMC techniques, Bayes estimates of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV with respect to BLINEX and GE loss functions are computed under gamma prior for  $\delta$ ,  $\beta$ , and  $\theta$  with hyperparameters  $\gamma_i = 4.8$  and  $\eta_i = 3.5$ , where i = 1, 2, 3. Additionally, for different values of *c* and *b*, respectively, the results are reported in Tables 4 and 5. The trace plots of the parameters generated by the MCMC approach and the associated histograms are displayed in Figures 4 and 5, respectively.



Figure 3. Fitness of real data for the NWPD.



**Figure 4.** Trace plots of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and *CV* obtained from the MCMC approach.



**Figure 5.** Histogram of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and *CV* of the MCMC approach.

| Demonsterne | ACI              |        | CRI              |        |  |  |  |
|-------------|------------------|--------|------------------|--------|--|--|--|
| Parameters  | Interval         | Length | Interval         | Length |  |  |  |
| δ           | [0.0701, 1.1007] | 1.0305 | [0.2310, 1.1572] | 0.9261 |  |  |  |
| β           | [0.9379, 2.0990] | 1.1610 | [0.9658, 1.9753] | 1.0095 |  |  |  |
| $\theta$    | [1.2278, 3.5054] | 2.2776 | [1.1282, 3.3612] | 2.2330 |  |  |  |

**Table 1.** The 95% ACIs and CRIs of  $\delta$ ,  $\beta$ , and  $\theta$ .

**Table 2.** The 95% ACIs,  $\mathcal{L}$ TCIs, ASTCIs, and CRIs of S(t), h(t), and CV.

| Parameters | ACI              |        | LTCI             |        |
|------------|------------------|--------|------------------|--------|
| ratameters | Interval         | Length | Interval         | Length |
| S(t = 0.8) | [0.8152, 0.9715] | 0.1563 | [0.8010, 0.9457] | 0.1447 |
| h(t = 0.8) | [0.0992, 0.3289] | 0.2298 | 0.1905, 0.2397   | 0.0492 |
| ĊV         | [0.4352, 0.9076] | 0.4724 | [0.4989, 0.8074] | 0.3085 |
|            | ASTCI            |        | CRI              |        |
|            | Interval         | Length | Interval         | Length |
| S(t = 0.8) | [0.8035, 0.9581] | 0.1546 | [0.7704, 0.9353] | 0.1649 |
| h(t = 0.8) | 0.1118, 0.3386   | 0.2268 | 0.1482, 0.3825   | 0.2344 |
| CV         | [0.4238, 0.8765] | 0.4527 | [0.5286, 1.0355] | 0.5069 |

**Table 3.** MCMC results of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV.

| Parameters | Mean   | Median | Mode   | SD     | Ske     |
|------------|--------|--------|--------|--------|---------|
| δ          | 0.5860 | 0.5486 | 0.4737 | 0.2402 | 0.9847  |
| β          | 1.4318 | 1.4189 | 1.3932 | 0.2553 | 0.2845  |
| θ          | 2.1188 | 2.0756 | 1.9892 | 0.5689 | 0.3694  |
| S(t = 0.8) | 0.8639 | 0.8675 | 0.8747 | 0.0426 | -0.5053 |
| h(t = 0.8) | 0.2523 | 0.2480 | 0.2394 | 0.0603 | 0.4140  |
| CV         | 0.7319 | 0.7148 | 0.6805 | 0.1295 | 1.0006  |

**Table 4.** MLEs and Bayes Lindley estimates of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV under BLINEX and GE loss functions with t = 0.8.

| (.) | $(.)_{ML}$ | $(.)_{L}$ | indley     |        |                  |        |        |                   |        |
|-----|------------|-----------|------------|--------|------------------|--------|--------|-------------------|--------|
|     |            | ω         | $(.)_{BL}$ |        |                  |        |        | (.) <sub>GE</sub> |        |
|     |            |           | c = -3     | c = -1 | <i>c</i> = 0.001 | c = 1  | c = 3  | b = -2            | b = 1  |
| δ   | 0.5854     | 0.0       | 0.6665     | 0.6535 | 0.6451           | 0.6357 | 0.6142 | 0.6588            | 0.6095 |
|     |            | 0.3       | 0.6442     | 0.6335 | 0.6272           | 0.6203 | 0.6053 |                   |        |
|     |            | 0.6       | 0.6202     | 0.6132 | 0.6093           | 0.6052 | 0.5966 |                   |        |
|     |            | 0.9       | 0.5945     | 0.5924 | 0.5914           | 0.5903 | 0.5882 |                   |        |
| β   | 1.5184     | 0.0       | 1.5202     | 1.4289 | 1.389            | 1.3588 | 1.3259 | 1.4142            | 1.352  |
|     |            | 0.3       | 1.5197     | 1.4566 | 1.4279           | 1.4041 | 1.3730 |                   |        |
|     |            | 0.6       | 1.5191     | 1.4836 | 1.4667           | 1.4515 | 1.4278 |                   |        |
|     |            | 0.9       | 1.5186     | 1.5098 | 1.5055           | 1.5013 | 1.4934 |                   |        |
| θ   | 2.3666     | 0.0       | 2.4015     | 2.2444 | 2.1756           | 2.1300 | 2.0954 | 2.202             | 2.1363 |
|     |            | 0.3       | 2.3914     | 2.2826 | 2.2329           | 2.1953 | 2.1563 |                   |        |
|     |            | 0.6       | 2.3810     | 2.3195 | 2.2902           | 2.2652 | 2.2309 |                   |        |
|     |            | 0.9       | 2.3702     | 2.3550 | 2.3475           | 2.3403 | 2.3271 |                   |        |

| Ta | ble | 4. | Cont. |  |
|----|-----|----|-------|--|
|----|-----|----|-------|--|

| (.)  | $(\cdot)_{ML}$ | $(.)_{L}$ | indley            |        |           |        |        |                   |        |
|------|----------------|-----------|-------------------|--------|-----------|--------|--------|-------------------|--------|
|      |                | ω         | (.) <sub>BL</sub> |        |           |        |        | (.) <sub>GE</sub> |        |
|      |                |           | c = -3            | c = -1 | c = 0.001 | c = 1  | c = 3  | b = -2            | b = 1  |
| S(t) | 0.8934         | 0         | 0.848             | 0.8476 | 0.8475    | 0.8474 | 0.8473 | 0.8476            | 0.8474 |
|      |                | 0.3       | 0.8623            | 0.8616 | 0.8612    | 0.861  | 0.8605 |                   |        |
|      |                | 0.6       | 0.8759            | 0.8753 | 0.875     | 0.8747 | 0.8742 |                   |        |
|      |                | 0.9       | 0.8891            | 0.8889 | 0.8888    | 0.8887 | 0.8885 |                   |        |
| h(t) | 0.2141         | 0         | 0.2844            | 0.2834 | 0.2827    | 0.2817 | 0.2789 | 0.2857            | 0.2609 |
|      |                | 0.3       | 0.2648            | 0.2631 | 0.2621    | 0.2609 | 0.2581 |                   |        |
|      |                | 0.6       | 0.244             | 0.2424 | 0.2415    | 0.2405 | 0.2385 |                   |        |
|      |                | 0.9       | 0.2218            | 0.2212 | 0.2209    | 0.2206 | 0.22   |                   |        |
| CV   | 0.6714         | 0.0       | 0.7575            | 0.7518 | 0.7479    | 0.7432 | 0.7313 | 0.7537            | 0.7313 |
|      |                | 0.3       | 0.7339            | 0.7284 | 0.7250    | 0.7211 | 0.7122 |                   |        |
|      |                | 0.6       | 0.7085            | 0.7043 | 0.7020    | 0.6995 | 0.6941 |                   |        |
|      |                | 0.9       | 0.6811            | 0.6797 | 0.6790    | 0.6783 | 0.6769 |                   |        |

**Table 5.** Bayes MCMC estimates of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV under BLINEX and GE loss functions with t = 0.8.

| (.)  | $(.)_{M}$ | СМС        |        |                  |        |        |                   |        |
|------|-----------|------------|--------|------------------|--------|--------|-------------------|--------|
|      | ω         | $(.)_{BL}$ |        |                  |        |        | (.) <sub>GE</sub> |        |
|      |           | c = -3     | c = -1 | <i>c</i> = 0.001 | c = 1  | c = 3  | b = -1            | b = 1  |
| δ    | 0.0       | 0.6997     | 0.6174 | 0.5860           | 0.5593 | 0.5156 | 0.6333            | 0.4941 |
|      | 0.3       | 0.6693     | 0.6079 | 0.5858           | 0.5670 | 0.5351 |                   |        |
|      | 0.6       | 0.6359     | 0.5983 | 0.5856           | 0.5749 | 0.5557 |                   |        |
|      | 0.9       | 0.5988     | 0.5886 | 0.5855           | 0.5827 | 0.5777 |                   |        |
| β    | 0.0       | 1.5367     | 1.4652 | 1.4317           | 1.4000 | 1.3407 | 1.4544            | 1.3852 |
|      | 0.3       | 1.5313     | 1.4814 | 1.4578           | 1.4341 | 1.3848 |                   |        |
|      | 0.6       | 1.5259     | 1.4975 | 1.4838           | 1.4694 | 1.4357 |                   |        |
|      | 0.9       | 1.5203     | 1.5132 | 1.5098           | 1.5059 | 1.4958 |                   |        |
| θ    | 0.0       | 2.6651     | 2.2913 | 2.1187           | 1.9684 | 1.7286 | 2.1939            | 1.960  |
|      | 0.3       | 2.6000     | 2.3145 | 2.1930           | 2.0722 | 1.8270 |                   |        |
|      | 0.6       | 2.5190     | 2.3371 | 2.2674           | 2.1879 | 1.9674 |                   |        |
|      | 0.9       | 2.4117     | 2.3593 | 2.3418           | 2.3188 | 2.2145 |                   |        |
| S(t) | 0         | 0.8665     | 0.8648 | 0.8638           | 0.8629 | 0.8611 | 0.8649            | 0.861  |
|      | 0.3       | 0.8748     | 0.8734 | 0.8727           | 0.872  | 0.8704 |                   |        |
|      | 0.6       | 0.8829     | 0.8820 | 0.8816           | 0.8811 | 0.8801 |                   |        |
|      | 0.9       | 0.8908     | 0.8905 | 0.8904           | 0.8903 | 0.8900 |                   |        |
| h(t) | 0.0       | 0.2579     | 0.2542 | 0.2523           | 0.2505 | 0.2470 | 0.2594            | 0.237  |
|      | 0.3       | 0.2453     | 0.2423 | 0.2408           | 0.2394 | 0.2368 |                   |        |
|      | 0.6       | 0.2323     | 0.2303 | 0.2294           | 0.2285 | 0.2268 |                   |        |
|      | 0.9       | 0.2187     | 0.2181 | 0.2179           | 0.2176 | 0.2172 |                   |        |
| CV   | 0.0       | 0.7614     | 0.7407 | 0.7319           | 0.7239 | 0.7095 | 0.7433            | 0.711  |
|      | 0.3       | 0.7369     | 0.7204 | 0.7138           | 0.7078 | 0.6976 |                   |        |
|      | 0.6       | 0.7104     | 0.6997 | 0.6956           | 0.692  | 0.6861 |                   |        |
|      | 0.9       | 0.6816     | 0.6785 | 0.6774           | 0.6765 | 0.6750 |                   |        |

# 6. Monte Carlo Simulation Study

In our diligent quest to evaluate the performance of the inference methods proposed in this article, some computations are made according to Monte Carlo simulation experiments using *MATHEMATICA* version 12 with different combinations of n, m, and k and different censored scheme R (different  $R_i$  values). Using the algorithm introduced by Balakrishnan

and Sandhu [3], with distribution function  $1 - (1 - F(x))^k$ , we generate a Pro-F-F-C sample from the NWPD with the parameters  $\delta$ ,  $\beta$ , and  $\theta = 0.5$ , 1.5, and 1, respectively. The true values of S(t), h(t), and CV at time t = 0.3 are evaluated to be S(t) = 0.9211, h(t) = 0.4108, and CV = 0.679. The performance of the resulting estimators of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CVhave been considered in terms of their average mean (AVM) and the corresponding mean squared error (MSE), which are computed, for k = 1, 2, ..., 6 and  $\phi_1 = \delta$ ,  $\phi_2 = \beta$ ,  $\phi_3 = \theta$ ,

$$\phi_4 = S(t), \phi_5 = h(t) \text{ and } \phi_6 = CV \text{ as } AVM = \frac{1}{M} \sum_{j=1}^M \hat{\phi}_k^{(j)}, \text{ and } MSE = \frac{1}{M} \sum_{j=1}^M (\hat{\phi}_k^{(j)} - \phi_k)^2.$$

Additionally, we compare different CIs obtained by using asymptotic distributions of the MLEs, the delta method, and symmetric CRIs, which were made in terms of the average CI, CRI lengths, and coverage percentages (CPs). Under the consideration of informative gamma priors for  $\delta$ ,  $\beta$ , and  $\theta$  with hyperparameters  $\gamma_1 = 5$ ,  $\eta_1 = 5$ ,  $\gamma_2 = 6$ ,  $\eta_2 = 4$ ,  $\gamma_3 = 6$ , and  $\eta_3 = 5$ , the Bayes estimators using Lindley and MCMC have been obtained. Moreover, Bayes estimates are obtained under BLINEX and GE loss functions for the choice c = -1, 1 with  $\omega = 0.3, 0.9$  and b = -2, -1, 1, respectively. In our study, we adopted two different groups k = 2, 6, and the following CS:

CS I :  $R_1 = n - m$ ,  $R_i = 0$  for  $i \neq 1$ .

CS II :  $R_{\frac{m}{2}} = \frac{m}{2}$ ,  $R_i = 0$  for  $i \neq \frac{m}{2}$ .

CS III :  $\vec{R_m} = n - m$ ,  $R_i = 0$  for  $i \neq m$ .

The results of the AVM and MSE of estimates are listed in Tables 6–11, while the results of the ACI, CRI lengths, and CPS of the estimates are shown in Table 12.

**Table 6.** Average mean and MSE of estimates for the parameter  $\delta$ .

| k | (n,m)   | CS  | MLE      | Lindley        |              |                  |          |          |          |          |
|---|---------|-----|----------|----------------|--------------|------------------|----------|----------|----------|----------|
|   |         |     |          | $\omega = 0.3$ | )            | $(\omega = 0.9)$ |          |          |          |          |
|   |         |     |          | BLINEX         |              | BLINEX           |          | GE       |          |          |
|   |         |     |          | c = -1         | <i>c</i> = 1 | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |
| 2 | (30,20) | Ι   | 0.5622   | 0.5802         | 0.5682       | 0.5648           | 0.563    | 0.5912   | 0.5792   | 0.5538   |
|   |         |     | (0.0602) | (0.0535)       | (0.0475)     | (0.0592)         | (0.0582) | (0.0511) | (0.0466) | (0.0403) |
|   |         | II  | 0.5754   | 0.5922         | 0.5797       | 0.5778           | 0.5759   | 0.6027   | 0.5904   | 0.5645   |
|   |         |     | (0.0643) | (0.0569)       | (0.0503)     | (0.0631)         | (0.062)  | (0.0543) | (0.0494) | (0.0425) |
|   |         | III | 0.5833   | 0.5987         | 0.5857       | 0.5856           | 0.5836   | 0.6079   | 0.5957   | 0.5705   |
|   |         |     | (0.0815) | (0.0701)       | (0.0622)     | (0.0797)         | (0.0784) | (0.0655) | (0.06)   | (0.0525) |
|   | (40,30) | Ι   | 0.5479   | 0.5617         | 0.5541       | 0.5499           | 0.5487   | 0.5704   | 0.5622   | 0.5448   |
|   |         |     | (0.0468) | (0.0436)       | (0.0403)     | (0.0463)         | (0.0458) | (0.0425) | (0.04)   | (0.0362) |
|   |         | II  | 0.5765   | 0.5879         | 0.5793       | 0.5781           | 0.5768   | 0.5952   | 0.5866   | 0.5688   |
|   |         |     | (0.0642) | (0.0586)       | (0.054)      | (0.0634)         | (0.0626) | (0.0563) | (0.0531) | (0.048)  |
|   |         | III | 0.5719   | 0.5839         | 0.5754       | 0.5736           | 0.5724   | 0.5914   | 0.5829   | 0.5654   |
|   |         |     | (0.0685) | (0.0622)       | (0.0573)     | (0.0675)         | (0.0667) | (0.0595) | (0.0562) | (0.0511) |
| 6 | (30,20) | Ι   | 0.609    | 0.6201         | 0.6063       | 0.6107           | 0.6085   | 0.6276   | 0.6147   | 0.5886   |
|   |         |     | (0.0856) | (0.0723)       | (0.0639)     | (0.0837)         | (0.0821) | (0.0669) | (0.0611) | (0.0532) |
|   |         | II  | 0.629    | 0.6379         | 0.6231       | 0.6304           | 0.6281   | 0.6444   | 0.6308   | 0.604    |
|   |         |     | (0.0915) | (0.0782)       | (0.0687)     | (0.0895)         | (0.0878) | (0.0727) | (0.0661) | (0.057)  |
|   |         | III | 0.6417   | 0.648          | 0.6327       | 0.6427           | 0.6403   | 0.6531   | 0.6394   | 0.6128   |
|   |         |     | (0.1044) | (0.0873)       | (0.0769)     | (0.1019)         | (0.0999) | (0.08)   | (0.073)  | (0.0637) |
|   | (40,30) | Ι   | 0.6012   | 0.6096         | 0.6003       | 0.6025           | 0.601    | 0.6154   | 0.6064   | 0.5883   |
|   |         |     | (0.08)   | (0.0715)       | (0.0657)     | (0.0788)         | (0.0778) | (0.0678) | (0.0639) | (0.058)  |
|   |         | II  | 0.6133   | 0.6207         | 0.611        | 0.6144           | 0.6129   | 0.6261   | 0.6168   | 0.5983   |
|   |         |     | (0.0829) | (0.0746)       | (0.0685)     | (0.0817)         | (0.0807) | (0.0711) | (0.0668) | (0.0604) |
|   |         | III | 0.6334   | 0.6393         | 0.629        | 0.6343           | 0.6327   | 0.6439   | 0.6343   | 0.6154   |
|   |         |     | (0.0938) | (0.0842)       | (0.0772)     | (0.0924)         | (0.0912) | (0.08)   | (0.0753) | (0.0679) |

| k | (n,m)   | CS  | $\frac{\text{MCMC}}{(\omega = 0.3)}$ |              | $(\omega = 0.9)$                       |              |          |          |          |
|---|---------|-----|--------------------------------------|--------------|----------------------------------------|--------------|----------|----------|----------|
|   |         |     | $\frac{(w = 0.3)}{\text{BLINEX}}$    |              | $\frac{(\omega = 0.9)}{\text{BLINEX}}$ |              | GE       |          |          |
|   |         |     | $\frac{c = -1}{c}$                   | <i>c</i> = 1 | c = -1                                 | <i>c</i> = 1 | b = -2   | b = -1   | b = 1    |
| 2 | (30,20) | Ι   | 0.6422                               | 0.5977       | 0.5764                                 | 0.5647       | 0.6721   | 0.6435   | 0.5806   |
| 2 | (00,20) | 1   | (0.0244)                             | (0.0127)     | (0.0501)                               | (0.0472)     | (0.0346) | (0.025)  | (0.0101) |
|   |         | II  | 0.6419                               | 0.5978       | 0.5875                                 | 0.576        | 0.6666   | 0.6376   | 0.5749   |
|   |         | п   | (0.0245)                             | (0.0128)     | (0.0539)                               | (0.0504)     | (0.0321) | (0.0229) | (0.0087) |
|   |         | III | 0.6497                               | 0.6003       | 0.5959                                 | 0.5826       | 0.6722   | 0.6412   | 0.5755   |
|   |         |     | (0.0287)                             | (0.0146)     | (0.0686)                               | (0.0638)     | (0.0342) | (0.024)  | (0.0089) |
|   | (40,30) | Ι   | 0.5704                               | 0.5419       | 0.5528                                 | 0.545        | 0.5787   | 0.5591   | 0.5151   |
|   | ())     |     | (0.0091)                             | (0.0044)     | (0.0385)                               | (0.0356)     | (0.0102) | (0.0072) | (0.0034) |
|   |         | II  | 0.5786                               | 0.5471       | 0.5788                                 | 0.5695       | 0.5757   | 0.5563   | 0.5128   |
|   |         |     | (0.0115)                             | (0.0052)     | (0.0536)                               | (0.0484)     | (0.0094) | (0.0066) | (0.0031) |
|   |         | III | 0.5752                               | 0.5429       | 0.5744                                 | 0.5649       | 0.5725   | 0.5527   | 0.5086   |
|   |         |     | (0.0119)                             | (0.0054)     | (0.0573)                               | (0.0517)     | (0.0086) | (0.0059) | (0.0026) |
| 6 | (30,20) | Ι   | 0.6704                               | 0.6161       | 0.6209                                 | 0.6068       | 0.6908   | 0.6558   | 0.5833   |
|   |         |     | (0.0342)                             | (0.0169)     | (0.0731)                               | (0.0673)     | (0.0406) | (0.0279) | (0.0097) |
|   |         | II  | 0.6809                               | 0.6235       | 0.6396                                 | 0.6249       | 0.6972   | 0.6598   | 0.583    |
|   |         |     | (0.0372)                             | (0.0184)     | (0.0785)                               | (0.0723)     | (0.043)  | (0.0291) | (0.0095) |
|   |         | III | 0.7102                               | 0.6411       | 0.655                                  | 0.6381       | 0.7323   | 0.6865   | 0.5964   |
|   |         |     | (0.05)                               | (0.0242)     | (0.0908)                               | (0.0834)     | (0.0578) | (0.0381) | (0.0119) |
|   | (40,30) | Ι   | 0.5965                               | 0.5583       | 0.6029                                 | 0.5917       | 0.5892   | 0.566    | 0.5163   |
|   |         |     | (0.0151)                             | (0.0061)     | (0.0673)                               | (0.0601)     | (0.0112) | (0.0073) | (0.0026) |
|   |         | II  | 0.6037                               | 0.5637       | 0.6143                                 | 0.6027       | 0.5945   | 0.5698   | 0.5173   |
|   |         |     | (0.0161)                             | (0.0067)     | (0.0698)                               | (0.0626)     | (0.0123) | (0.0079) | (0.0026) |
|   |         | III | 0.6257                               | 0.5795       | 0.635                                  | 0.622        | 0.6174   | 0.5878   | 0.5274   |
|   |         |     | (0.0217)                             | (0.0095)     | (0.0796)                               | (0.0716)     | (0.0172) | (0.0107) | (0.0031) |

Table 6. Cont.

**Table 7.** Average mean and MSE of estimates for the parameter  $\beta$ .

| k | (n,m)   | CS  | MLE                | Lindley            |                    |                    |                    |                    |                    |                    |
|---|---------|-----|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|   |         |     |                    | $(\omega = 0.3)$   | 1                  | $(\omega = 0.9)$   |                    |                    |                    |                    |
|   |         |     |                    | BLINEX             |                    | BLINEX             |                    | GE                 |                    |                    |
|   |         |     |                    | c = -1             | c = 1              | c = -1             | <i>c</i> = 1       | b = -2             | b = -1             | b = 1              |
| 2 | (30,20) | Ι   | 1.567<br>(0.06)    | 1.5331<br>(0.041)  | 1.4952             | 1.5623             | 1.5563<br>(0.0559) | 1.5072             | 1.4899             | 1.4602             |
|   |         | II  | 1.561              | 1.5318             | (0.0387)<br>1.4937 | (0.0571)<br>1.557  | 1.551              | (0.0324)<br>1.5079 | (0.0329)<br>1.4904 | (0.036)<br>1.4603  |
|   |         | III | (0.0615)<br>1.5746 | (0.0413)<br>1.5466 | (0.0385)<br>1.4924 | (0.0584)<br>1.5709 | (0.0571)<br>1.5622 | (0.0319)<br>1.5173 | (0.0322)<br>1.4929 | (0.0351)<br>1.4522 |
|   | (40.20) | т   | (0.071)            | (0.0418)           | (0.0357)           | (0.0666)           | (0.0639)           | (0.0275)           | (0.0271)           | (0.0309)           |
|   | (40,30) | Ι   | 1.5509<br>(0.0426) | 1.5281<br>(0.0332) | 1.5014<br>(0.0313) | 1.5477<br>(0.0412) | 1.5437<br>(0.0405) | 1.5108<br>(0.0285) | 1.4984<br>(0.0285) | 1.4763<br>(0.0295) |
|   |         | II  | 1.5287             | 1.5104             | 1.4837             | 1.5261             | 1.5221             | 1.4953             | 1.4828             | 1.4602             |
|   |         | III | (0.0388)<br>1.5505 | (0.0303)<br>1.5336 | (0.0291)<br>1.4968 | (0.0375)<br>1.5482 | (0.037)<br>1.5426  | (0.0262)<br>1.5158 | (0.0264)<br>1.4989 | (0.0279)<br>1.4687 |
|   |         |     | (0.0491)           | (0.0357)           | (0.032)            | (0.0471)           | (0.046)            | (0.0285)           | (0.0279)           | (0.0291)           |

# Table 7. Cont.

| k | (n,m)   | CS  | MLE      | Lindley        |          |                  |          |          |          |          |
|---|---------|-----|----------|----------------|----------|------------------|----------|----------|----------|----------|
|   |         |     |          | $\omega = 0.3$ |          | $(\omega = 0.9)$ |          |          |          |          |
|   |         |     |          | BLINEX         |          | BLINEX           |          | GE       |          |          |
|   |         |     |          | c = -1         | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |
| 6 | (30,20) | Ι   | 1.5214   | 1.5254         | 1.4923   | 1.522            | 1.5171   | 1.5181   | 1.5029   | 1.4743   |
|   |         |     | (0.0319) | (0.025)        | (0.0209) | (0.0309)         | (0.03)   | (0.0204) | (0.0191) | (0.0185) |
|   |         | II  | 1.5083   | 1.5155         | 1.4895   | 1.5094           | 1.5055   | 1.5117   | 1.4997   | 1.4766   |
|   |         |     | (0.0267) | (0.0221)       | (0.0191) | (0.026)          | (0.0255) | (0.0189) | (0.0178) | (0.0171) |
|   |         | III | 1.5137   | 1.5219         | 1.4948   | 1.5149           | 1.5109   | 1.518    | 1.5057   | 1.4821   |
|   |         |     | (0.0286) | (0.0239)       | (0.0197) | (0.0279)         | (0.0272) | (0.0202) | (0.0187) | (0.0171) |
|   | (40,30) | Ι   | 1.5077   | 1.5107         | 1.4878   | 1.5081           | 1.5048   | 1.506    | 1.4954   | 1.475    |
|   |         |     | (0.0247) | (0.021)        | (0.0188) | (0.0241)         | (0.0237) | (0.0185) | (0.0178) | (0.0173) |
|   |         | II  | 1.4995   | 1.5041         | 1.485    | 1.5002           | 1.4974   | 1.5012   | 1.4923   | 1.4751   |
|   |         |     | (0.0221) | (0.0193)       | (0.0175) | (0.0217)         | (0.0213) | (0.0173) | (0.0167) | (0.0163) |
|   |         | III | 1.4968   | 1.5027         | 1.483    | 1.4977           | 1.4948   | 1.5001   | 1.491    | 1.4733   |
|   |         |     | (0.0226) | (0.0197)       | (0.0176) | (0.0222)         | (0.0218) | (0.0177) | (0.0169) | (0.0161) |
| k | (n,m)   | CS  |          | MCMC           |          |                  |          |          |          |          |
|   |         |     |          | $\omega = 0.3$ |          | $(\omega = 0.9)$ |          |          |          |          |
|   |         |     |          | BLINEX         |          | BLINEX           |          | GE       |          |          |
|   |         |     |          | c = -1         | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |
| 2 | (30,20) | Ι   |          | 1.5568         | 1.5169   | 1.5656           | 1.5595   | 1.5416   | 1.5238   | 1.4877   |
|   |         |     |          | (0.0458)       | (0.0383) | (0.0579)         | (0.0561) | (0.0373) | (0.0353) | (0.0333) |
|   |         | II  |          | 1.5595         | 1.5209   | 1.5609           | 1.5551   | 1.5484   | 1.5312   | 1.496    |
|   |         |     |          | (0.0483)       | (0.0404) | (0.0596)         | (0.0578) | (0.0399) | (0.0377) | (0.0351) |
|   |         | III |          | 1.5942         | 1.5396   | 1.5776           | 1.5694   | 1.5867   | 1.5629   | 1.5143   |
|   |         |     |          | (0.0554)       | (0.0424) | (0.0686)         | (0.066)  | (0.0445) | (0.04)   | (0.0345) |
|   | (40,30) | Ι   |          | 1.5381         | 1.5098   | 1.5492           | 1.5449   | 1.5252   | 1.5124   | 1.4864   |
|   |         |     |          | (0.0344)       | (0.0305) | (0.0414)         | (0.0405) | (0.0297) | (0.0287) | (0.0277) |
|   |         | II  |          | 1.5241         | 1.497    | 1.528            | 1.5241   | 1.5152   | 1.5027   | 1.4775   |
|   |         |     |          | (0.0327)       | (0.0298) | (0.0379)         | (0.0372) | (0.029)  | (0.0283) | (0.0279) |
|   |         | III |          | 1.5574         | 1.5203   | 1.5515           | 1.5461   | 1.5502   | 1.5335   | 1.4998   |
|   |         |     |          | (0.0405)       | (0.0341) | (0.0478)         | (0.0466) | (0.0345) | (0.0325) | (0.0301) |
| 6 | (30,20) | Ι   |          | 1.5655         | 1.5274   | 1.5278           | 1.5222   | 1.5734   | 1.5564   | 1.5221   |
|   |         |     |          | (0.0308)       | (0.025)  | (0.0314)         | (0.0308) | (0.0289) | (0.0262) | (0.0225) |
|   |         | II  |          | 1.5574         | 1.5224   | 1.5155           | 1.5103   | 1.5684   | 1.5528   | 1.5211   |
|   |         |     |          | (0.0264)       | (0.0217) | (0.0263)         | (0.0259) | (0.0255) | (0.0232) | (0.0199) |
|   |         | III |          | 1.5983         | 1.5491   | 1.5263           | 1.5187   | 1.6187   | 1.5979   | 1.5556   |
|   |         |     |          | (0.0328)       | (0.0234) | (0.0283)         | (0.0277) | (0.0342) | (0.0292) | (0.0218) |
|   | (40,30) | Ι   |          | 1.5427         | 1.515    | 1.5128           | 1.5087   | 1.5501   | 1.5375   | 1.5122   |
|   |         |     |          | (0.0243)       | (0.0212) | (0.0244)         | (0.0241) | (0.0234) | (0.0219) | (0.02)   |
|   |         | II  |          | 1.5387         | 1.5126   | 1.5052           | 1.5014   | 1.5482   | 1.5364   | 1.5125   |
|   |         |     |          | (0.0217)       | (0.019)  | (0.0218)         | (0.0216) | (0.0212) | (0.0198) | (0.0181) |
|   |         | III |          | 1.5636         | 1.528    | 1.5066           | 1.5012   | 1.5814   | 1.5659   | 1.5346   |
|   |         |     |          | (0.0243)       | (0.0195) | (0.0223)         | (0.022)  | (0.0252) | (0.0226) | (0.0188) |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                    | b = -1 1.1821 (0.1415) 1.197 (0.1458) 1.1981 (0.1627) 1.1425 (0.1192) 1.1749 (0.1524) 1.172 (0.1527) 1.2188                                         | b = 1 1.1609 (0.1301) 1.1749 (0.1337) 1.1765 (0.1512) 1.1275 (0.1119) 1.1592 (0.1438) 1.1566 (0.1442)                                     |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                    | $\begin{array}{c} 1.1821\\ (0.1415)\\ 1.197\\ (0.1458)\\ 1.1981\\ (0.1627)\\ 1.1425\\ (0.1192)\\ 1.1749\\ (0.1524)\\ 1.172\\ (0.1527) \end{array}$  | $\begin{array}{c} 1.1609\\ (0.1301)\\ 1.1749\\ (0.1337)\\ 1.1765\\ (0.1512)\\ 1.1275\\ (0.1119)\\ 1.1592\\ (0.1438)\\ 1.1566\end{array}$  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                     | $\begin{array}{c} 1.1821\\ (0.1415)\\ 1.197\\ (0.1458)\\ 1.1981\\ (0.1627)\\ 1.1425\\ (0.1192)\\ 1.1749\\ (0.1524)\\ 1.172\\ (0.1527) \end{array}$  | $\begin{array}{c} 1.1609\\ (0.1301)\\ 1.1749\\ (0.1337)\\ 1.1765\\ (0.1512)\\ 1.1275\\ (0.1119)\\ 1.1592\\ (0.1438)\\ 1.1566\end{array}$  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} (0.1415) \\ 1.197 \\ (0.1458) \\ 1.1981 \\ (0.1627) \\ 1.1425 \\ (0.1192) \\ 1.1749 \\ (0.1524) \\ 1.172 \\ (0.1527) \end{array}$ | $\begin{array}{c} (0.1301) \\ 1.1749 \\ (0.1337) \\ 1.1765 \\ (0.1512) \\ 1.1275 \\ (0.1119) \\ 1.1592 \\ (0.1438) \\ 1.1566 \end{array}$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} 1.197\\ (0.1458)\\ 1.1981\\ (0.1627)\\ 1.1425\\ (0.1192)\\ 1.1749\\ (0.1524)\\ 1.172\\ (0.1527) \end{array}$                      | $\begin{array}{c} 1.1749\\ (0.1337)\\ 1.1765\\ (0.1512)\\ 1.1275\\ (0.1119)\\ 1.1592\\ (0.1438)\\ 1.1566\end{array}$                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} (0.1458) \\ 1.1981 \\ (0.1627) \\ 1.1425 \\ (0.1192) \\ 1.1749 \\ (0.1524) \\ 1.172 \\ (0.1527) \end{array}$                      | $\begin{array}{c} (0.1337) \\ 1.1765 \\ (0.1512) \\ 1.1275 \\ (0.1119) \\ 1.1592 \\ (0.1438) \\ 1.1566 \end{array}$                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} 1.1981\\ (0.1627)\\ 1.1425\\ (0.1192)\\ 1.1749\\ (0.1524)\\ 1.172\\ (0.1527) \end{array}$                                         | $\begin{array}{c} 1.1765 \\ (0.1512) \\ 1.1275 \\ (0.1119) \\ 1.1592 \\ (0.1438) \\ 1.1566 \end{array}$                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} (0.1627) \\ 1.1425 \\ (0.1192) \\ 1.1749 \\ (0.1524) \\ 1.172 \\ (0.1527) \end{array}$                                            | $\begin{array}{c} (0.1512) \\ 1.1275 \\ (0.1119) \\ 1.1592 \\ (0.1438) \\ 1.1566 \end{array}$                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | $\begin{array}{c} 1.1425\\(0.1192)\\1.1749\\(0.1524)\\1.172\\(0.1527)\end{array}$                                                                   | 1.1275<br>(0.1119)<br>1.1592<br>(0.1438)<br>1.1566                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | (0.1192)<br>1.1749<br>(0.1524)<br>1.172<br>(0.1527)                                                                                                 | (0.1119)<br>1.1592<br>(0.1438)<br>1.1566                                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | 1.1749<br>(0.1524)<br>1.172<br>(0.1527)                                                                                                             | 1.1592<br>(0.1438)<br>1.1566                                                                                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | (0.1524)<br>1.172<br>(0.1527)                                                                                                                       | (0.1438)<br>1.1566                                                                                                                        |
| III 1.1651 1.1778 1.1625 1.167 1.1645 1.1797                               | 1.172<br>(0.1527)                                                                                                                                   | 1.1566                                                                                                                                    |
|                                                                            | (0.1527)                                                                                                                                            |                                                                                                                                           |
| (0.1928) $(0.172)$ $(0.1575)$ $(0.1898)$ $(0.1872)$ $(0.1579)$             | · /                                                                                                                                                 | (0, 1, 1, 1, 0)                                                                                                                           |
|                                                                            | 1 0100                                                                                                                                              | (0.1443)                                                                                                                                  |
| 6 (30,20) I 1.2196 1.2319 1.2075 1.2215 1.2175 1.2305                      | 1.2188                                                                                                                                              | 1.1959                                                                                                                                    |
| (0.252) $(0.2154)$ $(0.1904)$ $(0.2467)$ $(0.2417)$ $(0.1908)$             | (0.182)                                                                                                                                             | (0.1688)                                                                                                                                  |
| II 1.2524 1.2628 1.2367 1.2541 1.2498 1.2599                               | 1.2477                                                                                                                                              | 1.2238                                                                                                                                    |
| (0.2819) $(0.2437)$ $(0.2151)$ $(0.2764)$ $(0.2708)$ $(0.2169)$            | (0.2068)                                                                                                                                            | (0.1914)                                                                                                                                  |
| III 1.2703 1.2751 1.2485 1.2712 1.2668 1.2691                              | 1.2568                                                                                                                                              | 1.2333                                                                                                                                    |
| (0.3111)  (0.2642)  (0.2338)  (0.3044)  (0.2983)  (0.2326)                 | (0.2223)                                                                                                                                            | (0.207)                                                                                                                                   |
| (40,30) I 1.1974 1.2073 1.1905 1.1989 1.1962 1.2074                        | 1.1991                                                                                                                                              | 1.1827                                                                                                                                    |
| (0.2341) $(0.2102)$ $(0.1925)$ $(0.2306)$ $(0.2274)$ $(0.1934)$            | (0.1872)                                                                                                                                            | (0.1772)                                                                                                                                  |
| II 1.2154 1.225 1.2075 1.2169 1.2141 1.2248                                | 1.2162                                                                                                                                              | 1.1993                                                                                                                                    |
| (0.2452) $(0.2228)$ $(0.2038)$ $(0.2419)$ $(0.2386)$ $(0.2063)$            | (0.1994)                                                                                                                                            | (0.1882)                                                                                                                                  |
| III 1.246 1.252 1.2335 1.247 1.2441 1.2497                                 | 1.2408                                                                                                                                              | 1.2235                                                                                                                                    |
| (0.2726) $(0.2468)$ $(0.2256)$ $(0.2689)$ $(0.2652)$ $(0.2279)$            | (0.2204)                                                                                                                                            | (0.208)                                                                                                                                   |
| k (n,m) CS MCMC                                                            |                                                                                                                                                     |                                                                                                                                           |
| $(\omega = 0.3) \qquad \qquad (\omega = 0.9)$                              |                                                                                                                                                     |                                                                                                                                           |
| BLINEX BLINEX GE                                                           |                                                                                                                                                     |                                                                                                                                           |
| c = -1 $c = 1$ $c = -1$ $c = 1$ $b = -2$                                   | b = -1                                                                                                                                              | b = 1                                                                                                                                     |
| 2 (30,20) I 1.1926 1.1323 1.1654 1.1469 1.1818                             | 1.1644                                                                                                                                              | 1.1233                                                                                                                                    |
| (0.0593) $(0.0299)$ $(0.161)$ $(0.1422)$ $(0.0339)$                        | (0.028)                                                                                                                                             | (0.0166)                                                                                                                                  |
| II 1.2009 1.1406 1.1855 1.1668 1.1839                                      | 1.1667                                                                                                                                              | 1.1265                                                                                                                                    |
| (0.0626) $(0.0314)$ $(0.1683)$ $(0.1477)$ $(0.0346)$                       | (0.0288)                                                                                                                                            | (0.0174)                                                                                                                                  |
| III 1.2118 1.1447 1.2048 1.1828 1.1853                                     | 1.1685                                                                                                                                              | 1.129                                                                                                                                     |
| (0.0723) $(0.034)$ $(0.2042)$ $(0.1767)$ $(0.0352)$                        | (0.0294)                                                                                                                                            | (0.018)                                                                                                                                   |
| (40,30) I 1.097 1.0525 1.1189 1.1043 1.0672                                | 1.0549                                                                                                                                              | 1.0258                                                                                                                                    |
| (0.0273) $(0.0111)$ $(0.1199)$ $(0.104)$ $(0.005)$                         | (0.0035)                                                                                                                                            | (0.0014)                                                                                                                                  |
| II 1.1146 1.0612 1.1579 1.1391 1.0673                                      | 1.055                                                                                                                                               | 1.0259                                                                                                                                    |
| $(0.0381) \qquad (0.0131) \qquad (0.1623) \qquad (0.1362) \qquad (0.0049)$ | (0.0035)                                                                                                                                            | (0.0014)                                                                                                                                  |
| III 1.1184 1.064 1.162 1.1427 1.0698                                       | 1.0578                                                                                                                                              | 1.0291                                                                                                                                    |
| (0.0397)  (0.0133)  (0.1678)  (0.1401)  (0.0053)                           | (0.0038)                                                                                                                                            | (0.0015)                                                                                                                                  |

| Table 8. Average mean | and MSE of estimates for | r the parameter $\theta$ . |
|-----------------------|--------------------------|----------------------------|

| k | (n,m)   | CS     | MCMC             |          |                  |          |          |          |         |  |
|---|---------|--------|------------------|----------|------------------|----------|----------|----------|---------|--|
|   |         |        | $(\omega = 0.3)$ |          | $(\omega = 0.9)$ |          |          |          |         |  |
|   |         | BLINEX |                  | BLINEX   |                  | GE       |          |          |         |  |
|   |         |        | c = -1           | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1   |  |
| 6 | (30,20) | Ι      | 1.2154           | 1.1462   | 1.2236           | 1.2007   | 1.1798   | 1.1628   | 1.1233  |  |
|   | ( , ,   |        | (0.0761)         | (0.0356) | (0.2221)         | (0.192)  | (0.033)  | (0.0272) | (0.0162 |  |
|   |         | II     | 1.2253           | 1.1523   | 1.2534           | 1.2288   | 1.1772   | 1.16     | 1.12    |  |
|   |         |        | (0.0834)         | (0.0384) | (0.249)          | (0.2146) | (0.032)  | (0.0263) | (0.0153 |  |
|   |         | III    | 1.2279           | 1.1493   | 1.2695           | 1.2422   | 1.1689   | 1.1514   | 1.1112  |  |
|   |         |        | (0.0886)         | (0.0376) | (0.2751)         | (0.2334) | (0.0292) | (0.0237) | (0.0134 |  |
|   | (40,30) | Ι      | 1.1307           | 1.0691   | 1.1921           | 1.1693   | 1.0678   | 1.0557   | 1.0273  |  |
|   | ,       |        | (0.0488)         | (0.0156) | (0.2045)         | (0.1689) | (0.0049) | (0.0034) | (0.0012 |  |
|   |         | II     | 1.1361           | 1.0724   | 1.2085           | 1.1849   | 1.0664   | 1.0542   | 1.0255  |  |
|   |         |        | (0.0503)         | (0.0165) | (0.2139)         | (0.178)  | (0.0047) | (0.0032) | (0.0011 |  |
|   |         | III    | 1.1467           | 1.0779   | 1.2367           | 1.2107   | 1.0644   | 1.0522   | 1.0235  |  |
|   |         |        | (0.056)          | (0.0178) | (0.2382)         | (0.1971) | (0.0044) | (0.0031) | (0.001) |  |

Table 8. Cont.

**Table 9.** Average mean and MSE of estimates for S(t) with t = 0.3.

| k | (n,m)   | CS  | MLE      | Lindley          |          |                  |          |          |          |          |
|---|---------|-----|----------|------------------|----------|------------------|----------|----------|----------|----------|
|   |         |     |          | $(\omega = 0.3)$ |          | $(\omega = 0.9)$ |          |          |          |          |
|   |         |     |          | BLINEX           |          | BLINEX           |          | GE       |          |          |
|   |         |     |          | c = -1           | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |
| 2 | (30,20) | Ι   | 0.9279   | 0.9215           | 0.9209   | 0.927            | 0.9269   | 0.9188   | 0.9183   | 0.9173   |
|   |         |     | (0.0711) | (0.0591)         | (0.061)  | (0.0688)         | (0.069)  | (0.0565) | (0.0583) | (0.0621) |
|   |         | II  | 0.9281   | 0.9218           | 0.9212   | 0.9272           | 0.9271   | 0.9191   | 0.9186   | 0.9177   |
|   |         |     | (0.0638) | (0.0522)         | (0.0538) | (0.0616)         | (0.0618) | (0.0497) | (0.0512) | (0.0545) |
|   |         | III | 0.9294   | 0.9216           | 0.9209   | 0.9283           | 0.9282   | 0.9183   | 0.9178   | 0.9167   |
|   |         |     | (0.069)  |                  |          | (0.0658)         | (0.0659) | (0.049)  | (0.0509) | (0.0549) |
|   | (40,30) | Ι   | 0.9262   | 0.9218 0.9213    |          | 0.9256           | 0.9255   | 0.9199   | 0.9195   | 0.9188   |
|   |         |     | (0.0565) | (0.0495)         | (0.0505) | (0.0553)         | (0.0554) | (0.0477) | (0.0486) | (0.0506) |
|   |         | II  | 0.9246   | 0.9202           | 0.9197   | 0.924            | 0.9239   | 0.9183   | 0.918    | 0.9172   |
|   |         |     | (0.0486) | (0.0435)         | (0.0445) | (0.0476)         | (0.0477) | (0.0424) | (0.0434) | (0.0455) |
|   |         | III | 0.9272   | 0.9219           | 0.9213   | 0.9264           | 0.9263   | 0.9196   | 0.9192   | 0.9184   |
|   |         |     | (0.051)  | (0.0426)         | (0.0436) | (0.0494)         | (0.0495) | (0.0407) | (0.0417) | (0.0438) |
| 6 | (30,20) | Ι   | 0.9256   | 0.9218           | 0.9212   | 0.9251           | 0.925    | 0.9202   | 0.9197   | 0.9187   |
|   |         |     | (0.0393) | (0.0312)         | (0.0321) | (0.0379)         | (0.038)  | (0.0287) | (0.0296) | (0.0315) |
|   |         | II  | 0.9251   | 0.9221           | 0.9215   | 0.9247           | 0.9246   | 0.9208   | 0.9203   | 0.9194   |
|   |         |     | (0.0317) | (0.0258)         | (0.0264) | (0.0307)         | (0.0307) | (0.0239) | (0.0245) | (0.0258) |
|   |         | III | 0.9254   | 0.9223           | 0.9217   | 0.925            | 0.9249   | 0.9209   | 0.9205   | 0.9196   |
|   |         |     | (0.0325) | (0.0258)         | (0.0264) | (0.0313)         | (0.0314) | (0.0236) | (0.0242) | (0.0256) |
|   | (40,30) | Ι   | 0.9239   | 0.9212           | 0.9208   | 0.9236           | 0.9235   | 0.9201   | 0.9198   | 0.9191   |
|   |         |     | (0.029)  | (0.0249)         | (0.0254) | (0.0283)         | (0.0284) | (0.0237) | (0.0241) | (0.0252) |
|   |         | II  | 0.9235   | 0.9212           | 0.9208   | 0.9232           | 0.9231   | 0.9203   | 0.92     | 0.9193   |
|   |         |     | (0.0254) | (0.0221)         | (0.0226) | (0.0249)         | (0.0249) | (0.0211) | (0.0215) | (0.0223) |
|   |         | III | 0.9234   | 0.921            | 0.9206   | 0.923            | 0.923    | 0.9201   | 0.9197   | 0.9191   |
|   |         |     | (0.0244) | (0.0211)         | (0.0215) | (0.0238)         | (0.0239) | (0.02)   | (0.0204) | (0.0213) |

| k | (n,m)     | CS  | MCMC             |          |                  |          |          |          |          |
|---|-----------|-----|------------------|----------|------------------|----------|----------|----------|----------|
|   |           |     | $(\omega = 0.3)$ |          | $(\omega = 0.9)$ |          |          |          |          |
|   |           |     | BLINEX           |          | BLINEX           |          | GE       |          |          |
|   |           |     | c = -1           | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |
| 2 | (30,20)   | Ι   | 0.9197           | 0.9189   | 0.9267           | 0.9266   | 0.9162   | 0.9156   | 0.9145   |
|   |           |     | (0.0591)         | (0.0604) | (0.0685)         | (0.0685) | (0.0581) | (0.0595) | (0.0628  |
|   |           | II  | 0.9215           | 0.9209   | 0.9272           | 0.9271   | 0.9186   | 0.9182   | 0.9173   |
|   |           |     | (0.0536)         | (0.0544) | (0.0618)         | (0.0618) | (0.0519) | (0.0528) | (0.0548  |
|   |           | III | 0.9238           | 0.9232   | 0.9286           | 0.9285   | 0.9214   | 0.921    | 0.9201   |
|   | ( ( ) = ) | -   | (0.054)          | (0.0545) | (0.0664)         | (0.0664) | (0.0496) | (0.0502) | (0.0516  |
|   | (40,30)   | Ι   | 0.9189           | 0.9184   | 0.9252           | 0.9251   | 0.9158   | 0.9154   | 0.9146   |
|   |           | **  | (0.05)           | (0.0509) | (0.0549)         | (0.055)  | (0.0505) | (0.0515) | (0.0536  |
|   |           | II  | 0.9186           | 0.9181   | 0.9237           | 0.9237   | 0.916    | 0.9156   | 0.915    |
|   |           |     | (0.0449)         | (0.0456) | (0.0476)         | (0.0477) | (0.0455) | (0.0463) | (0.0479  |
|   |           | III | 0.9218           | 0.9213   | 0.9264           | 0.9263   | 0.9195   | 0.9191   | 0.9184   |
|   |           |     | (0.0426)         | (0.043)  | (0.0494)         | (0.0494) | (0.0408) | (0.0413) | (0.0424  |
| 6 | (30,20)   | Ι   | 0.9228           | 0.9225   | 0.9252           | 0.9252   | 0.9216   | 0.9213   | 0.9209   |
|   |           |     | (0.0358)         | (0.0361) | (0.0387)         | (0.0387) | (0.0348) | (0.0351) | (0.0357  |
|   |           | II  | 0.9225           | 0.9222   | 0.9247           | 0.9247   | 0.9213   | 0.9211   | 0.9207   |
|   |           |     | (0.03)           | (0.0302) | (0.0314)         | (0.0314) | (0.0297) | (0.0299) | (0.0303  |
|   |           | III | 0.9232           | 0.923    | 0.9251           | 0.9251   | 0.9223   | 0.9221   | 0.9218   |
|   |           |     | (0.0316)         | (0.0317) | (0.0323)         | (0.0323) | (0.0315) | (0.0317) | (0.032)  |
|   | (40,30)   | Ι   | 0.9215           | 0.9212   | 0.9236           | 0.9236   | 0.9204   | 0.9202   | 0.9199   |
|   |           |     | (0.0275)         | (0.0277) | (0.0287)         | (0.0287) | (0.0272) | (0.0274) | (0.0278) |
|   |           | II  | 0.9212           | 0.921    | 0.9231           | 0.9231   | 0.9202   | 0.92     | 0.9198   |
|   |           |     | (0.0247)         | (0.0249) | (0.0252)         | (0.0253) | (0.0248) | (0.0249) | (0.0252) |
|   |           | III | 0.9216           | 0.9214   | 0.9231           | 0.9231   | 0.9208   | 0.9207   | 0.9204   |
|   |           |     | (0.0242)         | (0.0243) | (0.0243)         | (0.0243) | (0.0243) | (0.0245) | (0.0247  |

Table 9. Cont.

Note that the MSE of S(t) is multiplied by  $10^{-2}$ .

| Table 10. Average mean | and MSE of estimates for $h(t)$ with $t = 0.3$ . |
|------------------------|--------------------------------------------------|
|------------------------|--------------------------------------------------|

| k | (n,m)   | CS  | MLE                            | Lindley                          |                                |                                |                                |                                  |                                 |                                  |  |
|---|---------|-----|--------------------------------|----------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|---------------------------------|----------------------------------|--|
|   |         |     |                                | $(\omega = 0.3)$                 |                                | $(\omega = 0.9)$               |                                |                                  |                                 |                                  |  |
|   |         |     |                                | BLINEX                           |                                | BLINEX                         | BLINEX                         |                                  | GE                              |                                  |  |
|   |         |     |                                | c = -1                           | c = 1                          | c = -1                         | c = 1                          | b = -2                           | b = -1                          | b = 1                            |  |
| 2 | (30,20) | Ι   | 0.3733<br>(0.0107)             | 0.3961<br>(0.0082)               | 0.3838<br>(0.0078)             | 0.3766<br>(0.0103)             | 0.3748<br>(0.0103)             | 0.4175<br>(0.0078)               | 0.3972<br>(0.007)               | 0.3518<br>(0.0095)               |  |
|   |         | II  | (0.0107)<br>0.3714<br>(0.0097) | 0.3951<br>(0.0073)               | 0.3829<br>(0.0071)             | 0.3748 (0.0093)                | 0.373<br>(0.0093)              | (0.0010)<br>(0.4168)<br>(0.0069) | 0.3966<br>(0.0063)              | (0.0050)<br>(0.3514)<br>(0.0088) |  |
|   |         | III | 0.3659                         | 0.3947                           | 0.3823                         | 0.37                           | 0.3682                         | 0.4187                           | 0.3984                          | 0.3505                           |  |
|   | (40,30) | Ι   | (0.0102)<br>0.3828<br>(0.0084) | (0.0071)<br>0.3981<br>(0.0069)   | (0.0069)<br>0.3895<br>(0.0067) | (0.0096)<br>0.385<br>(0.0081)  | (0.0096)<br>0.3838<br>(0.0081) | (0.0068)<br>0.4131<br>(0.0065)   | (0.006)<br>0.3986<br>(0.0062)   | (0.0087)<br>0.3675<br>(0.0075)   |  |
|   |         | II  | (0.0004)<br>0.3871<br>(0.0068) | (0.0009)<br>(0.4029)<br>(0.0057) | (0.0007)<br>0.3941<br>(0.0055) | 0.3894 (0.0066)                | 0.3881 (0.0066)                | (0.0000)<br>0.4182<br>(0.0055)   | (0.0002)<br>0.4035<br>(0.0051)  | (0.0073)<br>0.3719<br>(0.0062)   |  |
|   |         | III | (0.0000)<br>0.377<br>(0.0072)  | (0.0057)<br>(0.3958)<br>(0.0056) | (0.0055)<br>(0.0056)           | (0.0000)<br>0.3797<br>(0.0069) | (0.0000)<br>0.3785<br>(0.0069) | (0.0053)<br>0.4125<br>(0.0052)   | (0.0051)<br>(0.3976)<br>(0.005) | (0.0002)<br>0.3647<br>(0.0066)   |  |

| Table 1 | <b>0.</b> Cont. |
|---------|-----------------|
|---------|-----------------|

| k | (n,m)   | CS  | MLE      | Lindley          |          |                  |          |          |          |          |  |
|---|---------|-----|----------|------------------|----------|------------------|----------|----------|----------|----------|--|
|   |         |     |          | $(\omega = 0.3)$ |          | $(\omega = 0.9)$ |          |          |          |          |  |
|   |         |     |          | BLINEX           |          | BLINEX           |          | GE       |          |          |  |
|   |         |     |          | c = -1           | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |  |
| 6 | (30,20) | Ι   | 0.3824   | 0.693            | 0.6878   | 0.6806           | 0.6798   | 0.7007   | 0.6955   | 0.6844   |  |
|   |         |     | (0.0055) | (0.0041)         | (0.0039) | (0.0049)         | (0.0049) | (0.004)  | (0.0037) | (0.0034) |  |
|   |         | II  | 0.3838   | 0.4014           | 0.3895   | 0.3864           | 0.3846   | 0.4207   | 0.4005   | 0.3583   |  |
|   |         |     | (0.0047) | (0.0037)         | (0.0037) | (0.0045)         | (0.0046) | (0.0036) | (0.0033) | (0.0056) |  |
|   |         | III | 0.3831   | 0.4017           | 0.3899   | 0.3858           | 0.3841   | 0.4213   | 0.4013   | 0.359    |  |
|   |         |     | (0.0048) | (0.0038)         | (0.0037) | (0.0046)         | (0.0047) | (0.0037) | (0.0034) | (0.0055) |  |
|   | (40,30) | Ι   | 0.3903   | 0.4034           | 0.395    | 0.3921           | 0.3909   | 0.4174   | 0.403    | 0.3731   |  |
|   |         |     | (0.0039) | (0.0033)         | (0.0032) | (0.0038)         | (0.0038) | (0.0032) | (0.003)  | (0.0041) |  |
|   |         | II  | 0.3917   | 0.4038           | 0.3955   | 0.3934           | 0.3922   | 0.4173   | 0.4031   | 0.3739   |  |
|   |         |     | (0.0035) | (0.003)          | (0.003)  | (0.0034)         | (0.0034) | (0.0029) | (0.0027) | (0.0038) |  |
|   |         | III | 0.3917   | 0.4045           | 0.3962   | 0.3936           | 0.3924   | 0.4183   | 0.4041   | 0.3747   |  |
|   |         |     | (0.0034) | (0.0029)         | (0.0028) | (0.0033)         | (0.0033) | (0.0027) | (0.0026) | (0.0037) |  |
| k | (n,m)   | CS  |          | MCMC             |          |                  |          |          |          |          |  |
|   |         |     |          | $(\omega = 0.3)$ |          | $(\omega = 0.9)$ |          |          |          |          |  |
|   |         |     |          | BLINEX           |          | BLINEX           |          | GE       |          |          |  |
|   |         |     |          | c = -1           | c = 1    | c = -1           | c = 1    | b = -2   | b = -1   | b = 1    |  |
| 2 | (30,20) | Ι   |          | 0.4085           | 0.399    | 0.3784           | 0.3769   | 0.4318   | 0.4166   | 0.3851   |  |
|   |         |     |          | (0.0081)         | (0.0079) | (0.0102)         | (0.0103) | (0.0078) | (0.0074) | (0.008)  |  |
|   |         | II  |          | 0.4003           | 0.3927   | 0.3756           | 0.3744   | 0.4197   | 0.4071   | 0.3812   |  |
|   |         |     |          | (0.0075)         | (0.0074) | (0.0093)         | (0.0093) | (0.007)  | (0.0068) | (0.0076) |  |
|   |         | III |          | 0.3911           | 0.3841   | 0.3695           | 0.3685   | 0.4088   | 0.3968   | 0.3722   |  |
|   |         |     |          | (0.0077)         | (0.0078) | (0.0097)         | (0.0098) | (0.0068) | (0.007)  | (0.0083) |  |
|   | (40,30) | Ι   |          | 0.4133           | 0.4064   | 0.3873           | 0.3862   | 0.4323   | 0.4213   | 0.3988   |  |
|   |         |     |          | (0.0068)         | (0.0067) | (0.008)          | (0.0081) | (0.0068) | (0.0065) | (0.0065) |  |
|   |         | II  |          | 0.4127           | 0.4069   | 0.3908           | 0.3899   | 0.4288   | 0.4194   | 0.4003   |  |
|   |         |     |          | (0.0058)         | (0.0056) | (0.0066)         | (0.0066) | (0.0058) | (0.0055) | (0.0056) |  |
|   |         | III |          | 0.4001           | 0.3947   | 0.3804           | 0.3796   | 0.4152   | 0.4061   | 0.3875   |  |
|   |         |     |          | (0.0056)         | (0.0056) | (0.0069)         | (0.0069) | (0.0052) | (0.0052) | (0.0058) |  |
| 6 | (30,20) | Ι   |          | 0.4024           | 0.397    | 0.3853           | 0.3845   | 0.4161   | 0.407    | 0.3887   |  |
|   |         |     |          | (0.005)          | (0.0049) | (0.0054)         | (0.0054) | (0.0051) | (0.005)  | (0.0051) |  |
|   |         | II  |          | 0.4057           | 0.4003   | 0.387            | 0.3862   | 0.4199   | 0.4111   | 0.3935   |  |
|   |         | *** |          | (0.0045)         | (0.0043) | (0.0046)         | (0.0046) | (0.0047) | (0.0045) | (0.0044) |  |
|   |         | III |          | 0.4101           | 0.4041   | 0.387            | 0.3861   | 0.4265   | 0.4173   | 0.3987   |  |
|   | (10.50) |     |          | (0.0051)         | (0.0048) | (0.0048)         | (0.0047) | (0.0058) | (0.0053) | (0.0048) |  |
|   | (40,30) | Ι   |          | 0.4075           | 0.4037   | 0.3927           | 0.3922   | 0.4185   | 0.4122   | 0.3994   |  |
|   |         |     |          | (0.0037)         | (0.0037) | (0.0039)         | (0.0039) | (0.0039) | (0.0037) | (0.0037) |  |
|   |         | II  |          | 0.4102           | 0.4063   | 0.3943           | 0.3937   | 0.4215   | 0.4153   | 0.4029   |  |
|   |         | *** |          | (0.0035)         | (0.0033) | (0.0035)         | (0.0035) | (0.0037) | (0.0035) | (0.0034) |  |
|   |         | III |          | 0.4132           | 0.4091   | 0.3948           | 0.3942   | 0.4258   | 0.4194   | 0.4066   |  |
|   |         |     |          | (0.0036)         | (0.0034) | (0.0033)         | (0.0033) | (0.0041) | (0.0038) | (0.0034) |  |

| k | (n,m)                         | CS                                                       | MLE                | Lindley                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------------------------|----------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                               |                                                          |                    | $(\omega = 0.3)$                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        | $(\omega = 0.9)$                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                               |                                                          |                    | BLINEX                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                        | BLINEX                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 | GE                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                               |                                                          |                    | c = -1                                                                                                                                                                                                       | c = 1                                                                                                                                                                                                                                                                                                  | c = -1                                                                                                                                                                                                                                                                                                                                                   | c = 1                                                                                                                                                                                                                                                           | b = -2                                                                                                                                                                                       | b = -1                                                                                                                                                                                                                                                                             | b = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 | (30,20)                       | Ι                                                        | 0.6651             | 0.6969                                                                                                                                                                                                       | 0.6909                                                                                                                                                                                                                                                                                                 | 0.6697                                                                                                                                                                                                                                                                                                                                                   | 0.6687                                                                                                                                                                                                                                                          | 0.7117                                                                                                                                                                                       | 0.7064                                                                                                                                                                                                                                                                             | 0.6937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               |                                                          | (0.0076)           | (0.007)                                                                                                                                                                                                      | (0.0064)                                                                                                                                                                                                                                                                                               | (0.0074)                                                                                                                                                                                                                                                                                                                                                 | (0.0074)                                                                                                                                                                                                                                                        | (0.0075)                                                                                                                                                                                     | (0.0069)                                                                                                                                                                                                                                                                           | (0.0057)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                               | II                                                       | 0.6674             | 0.6971                                                                                                                                                                                                       | 0.6912                                                                                                                                                                                                                                                                                                 | 0.6717                                                                                                                                                                                                                                                                                                                                                   | 0.6708                                                                                                                                                                                                                                                          | 0.7111                                                                                                                                                                                       | 0.7057                                                                                                                                                                                                                                                                             | 0.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                               |                                                          | (0.0074)           | (0.0066)                                                                                                                                                                                                     | (0.006)                                                                                                                                                                                                                                                                                                | (0.0072)                                                                                                                                                                                                                                                                                                                                                 | (0.0071)                                                                                                                                                                                                                                                        | (0.0069)                                                                                                                                                                                     | (0.0063)                                                                                                                                                                                                                                                                           | (0.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | III                                                      | 0.664              | 0.6989                                                                                                                                                                                                       | 0.691                                                                                                                                                                                                                                                                                                  | 0.669                                                                                                                                                                                                                                                                                                                                                    | 0.6678                                                                                                                                                                                                                                                          | 0.7155                                                                                                                                                                                       | 0.7084                                                                                                                                                                                                                                                                             | 0.6914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | (10.00)                       |                                                          | (0.0086)           | (0.0067)                                                                                                                                                                                                     | (0.006)                                                                                                                                                                                                                                                                                                | (0.0081)                                                                                                                                                                                                                                                                                                                                                 | (0.0081)                                                                                                                                                                                                                                                        | (0.0069)                                                                                                                                                                                     | (0.006)                                                                                                                                                                                                                                                                            | (0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | (40,30)                       | Ι                                                        | 0.6682             | 0.6908                                                                                                                                                                                                       | 0.6865                                                                                                                                                                                                                                                                                                 | 0.6714                                                                                                                                                                                                                                                                                                                                                   | 0.6708                                                                                                                                                                                                                                                          | 0.7015                                                                                                                                                                                       | 0.6975                                                                                                                                                                                                                                                                             | 0.6884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               | п                                                        | (0.0059)           | (0.0055)                                                                                                                                                                                                     | (0.0052)                                                                                                                                                                                                                                                                                               | (0.0057)                                                                                                                                                                                                                                                                                                                                                 | (0.0057)                                                                                                                                                                                                                                                        | (0.0057)                                                                                                                                                                                     | (0.0054)                                                                                                                                                                                                                                                                           | (0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | II                                                       | 0.6769             | 0.6981                                                                                                                                                                                                       | 0.6936                                                                                                                                                                                                                                                                                                 | 0.68                                                                                                                                                                                                                                                                                                                                                     | 0.6793                                                                                                                                                                                                                                                          | 0.7082                                                                                                                                                                                       | 0.704                                                                                                                                                                                                                                                                              | 0.6947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               | III                                                      | (0.0058)<br>0.6697 | (0.0055)<br>0.6941                                                                                                                                                                                           | (0.0052)<br>0.6884                                                                                                                                                                                                                                                                                     | (0.0057)<br>0.6732                                                                                                                                                                                                                                                                                                                                       | (0.0056)<br>0.6724                                                                                                                                                                                                                                              | (0.0058)<br>0.706                                                                                                                                                                            | (0.0054)<br>0.7006                                                                                                                                                                                                                                                                 | (0.0048)<br>0.6884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                               | m                                                        | (0.0066)           | (0.0057)                                                                                                                                                                                                     | (0.0053)                                                                                                                                                                                                                                                                                               | (0.0064)                                                                                                                                                                                                                                                                                                                                                 | (0.0064)                                                                                                                                                                                                                                                        | (0.0058)                                                                                                                                                                                     | (0.0054)                                                                                                                                                                                                                                                                           | (0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               |                                                          | , ,                | . ,                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | ( /                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 | . ,                                                                                                                                                                                          | ( /                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 | (30,20)                       | Ι                                                        | 0.6785             | 0.693                                                                                                                                                                                                        | 0.6878                                                                                                                                                                                                                                                                                                 | 0.6806                                                                                                                                                                                                                                                                                                                                                   | 0.6798                                                                                                                                                                                                                                                          | 0.7007                                                                                                                                                                                       | 0.6955                                                                                                                                                                                                                                                                             | 0.6844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               |                                                          | (0.005)            | (0.0041)                                                                                                                                                                                                     | (0.0039)                                                                                                                                                                                                                                                                                               | (0.0049)                                                                                                                                                                                                                                                                                                                                                 | (0.0049)                                                                                                                                                                                                                                                        | (0.004)                                                                                                                                                                                      | (0.0037)                                                                                                                                                                                                                                                                           | (0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | II                                                       | 0.6827             | 0.6927                                                                                                                                                                                                       | 0.6885                                                                                                                                                                                                                                                                                                 | 0.6841                                                                                                                                                                                                                                                                                                                                                   | 0.6835                                                                                                                                                                                                                                                          | 0.6982                                                                                                                                                                                       | 0.694                                                                                                                                                                                                                                                                              | 0.6851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               |                                                          | (0.0043)           | (0.0036)                                                                                                                                                                                                     | (0.0035)                                                                                                                                                                                                                                                                                               | (0.0042)                                                                                                                                                                                                                                                                                                                                                 | (0.0042)                                                                                                                                                                                                                                                        | (0.0034)                                                                                                                                                                                     | (0.0033)                                                                                                                                                                                                                                                                           | (0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | III                                                      | 0.6808             | 0.6904                                                                                                                                                                                                       | 0.6863                                                                                                                                                                                                                                                                                                 | 0.6822                                                                                                                                                                                                                                                                                                                                                   | 0.6816<br>(0.0043)                                                                                                                                                                                                                                              | 0.6958                                                                                                                                                                                       | 0.6916                                                                                                                                                                                                                                                                             | 0.6827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ( | (40,30)                       | Ι                                                        | (0.0044)<br>0.6826 | (0.0035)<br>0.693                                                                                                                                                                                            | (0.0035)<br>0.6893                                                                                                                                                                                                                                                                                     | (0.0043)<br>0.6841                                                                                                                                                                                                                                                                                                                                       | 0.6835                                                                                                                                                                                                                                                          | (0.0033)<br>0.6986                                                                                                                                                                           | (0.0032)<br>0.6948                                                                                                                                                                                                                                                                 | (0.0031<br>0.6869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | (40,50)                       | 1                                                        | (0.0042)           | (0.0037)                                                                                                                                                                                                     | (0.0035)                                                                                                                                                                                                                                                                                               | (0.0041)                                                                                                                                                                                                                                                                                                                                                 | (0.0033)                                                                                                                                                                                                                                                        | (0.0036)                                                                                                                                                                                     | (0.0034)                                                                                                                                                                                                                                                                           | (0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | II                                                       | 0.6853             | 0.6932                                                                                                                                                                                                       | 0.6901                                                                                                                                                                                                                                                                                                 | 0.6865                                                                                                                                                                                                                                                                                                                                                   | 0.686                                                                                                                                                                                                                                                           | 0.6976                                                                                                                                                                                       | 0.6944                                                                                                                                                                                                                                                                             | 0.6877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               | 11                                                       | (0.0038)           | (0.0034)                                                                                                                                                                                                     | (0.0033)                                                                                                                                                                                                                                                                                               | (0.0037)                                                                                                                                                                                                                                                                                                                                                 | (0.0037)                                                                                                                                                                                                                                                        | (0.0033)                                                                                                                                                                                     | (0.0032)                                                                                                                                                                                                                                                                           | (0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                               | Ш                                                        | 0.6866             | 0.6941                                                                                                                                                                                                       | 0.6909                                                                                                                                                                                                                                                                                                 | 0.6876                                                                                                                                                                                                                                                                                                                                                   | 0.6872                                                                                                                                                                                                                                                          | 0.6983                                                                                                                                                                                       | 0.6951                                                                                                                                                                                                                                                                             | 0.6883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               |                                                          | (0.0038)           | (0.0033)                                                                                                                                                                                                     | (0.0033)                                                                                                                                                                                                                                                                                               | (0.0038)                                                                                                                                                                                                                                                                                                                                                 | (0.0038)                                                                                                                                                                                                                                                        | (0.0032)                                                                                                                                                                                     | (0.0031)                                                                                                                                                                                                                                                                           | (0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| k | (n,m)                         | CS                                                       |                    | MOMO                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| к | (11,111)                      | C3                                                       |                    | MCMC                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ĸ | (11,111)                      | Co                                                       |                    | $\frac{MCMC}{(\omega = 0.3)}$                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                        | $(\omega = 0.9)$                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ĸ | (11,111)                      | Co                                                       |                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                        | $(\omega = 0.9)$ BLINEX                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 | GE                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ĸ | (11,111)                      | 63                                                       |                    | $(\omega = 0.3)$                                                                                                                                                                                             | <i>c</i> = 1                                                                                                                                                                                                                                                                                           | , ,                                                                                                                                                                                                                                                                                                                                                      | <i>c</i> = 1                                                                                                                                                                                                                                                    | GE $b = -2$                                                                                                                                                                                  | b = -1                                                                                                                                                                                                                                                                             | b = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | (1,11)                        | I                                                        |                    | $\frac{(\omega = 0.3)}{\text{BLINEX}}$                                                                                                                                                                       | <i>c</i> = 1<br>0.6816                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{BLINEX} \\ c = -1 \\ 0.6686 \end{array}$                                                                                                                                                                                                                                                                                         | 0.6674                                                                                                                                                                                                                                                          |                                                                                                                                                                                              | 0.6941                                                                                                                                                                                                                                                                             | b = 10.6798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                               | I                                                        |                    |                                                                                                                                                                                                              | 0.6816<br>(0.0061)                                                                                                                                                                                                                                                                                     | BLINEX $c = -1$ 0.6686           (0.0074)                                                                                                                                                                                                                                                                                                                | 0.6674<br>(0.0074)                                                                                                                                                                                                                                              | b = -2<br>0.7016<br>(0.0065)                                                                                                                                                                 | 0.6941<br>(0.006)                                                                                                                                                                                                                                                                  | 0.6798<br>(0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                               |                                                          |                    |                                                                                                                                                                                                              | 0.6816                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{BLINEX} \\ c = -1 \\ 0.6686 \end{array}$                                                                                                                                                                                                                                                                                         | 0.6674                                                                                                                                                                                                                                                          | b = -2<br>0.7016                                                                                                                                                                             | 0.6941                                                                                                                                                                                                                                                                             | 0.6798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               | I<br>II                                                  |                    | $     \begin{array}{r} (\omega = 0.3) \\     \hline         BLINEX \\         \hline         c = -1 \\         0.6894 \\         (0.0065) \\         0.6875 \\         (0.0063) \\         \end{array}     $ | 0.6816<br>(0.0061)<br>0.6801<br>(0.006)                                                                                                                                                                                                                                                                | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)                                                                                                                                                                                                                                                                            | 0.6674<br>(0.0074)<br>0.6692<br>(0.0072)                                                                                                                                                                                                                        | b = -2 0.7016 (0.0065) 0.6979 (0.0062)                                                                                                                                                       | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \end{array}$                                                                                                                                                                                                             | 0.6798<br>(0.0055<br>0.6768<br>(0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                               | I                                                        |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | 0.6816<br>(0.0061)<br>0.6801<br>(0.006)<br>0.6725                                                                                                                                                                                                                                                      | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666                                                                                                                                                                                                                                                           | 0.6674<br>(0.0074)<br>0.6692<br>(0.0072)<br>0.6652                                                                                                                                                                                                              | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929                                                                                                                                                | 0.6941<br>(0.006)<br>0.6906<br>(0.0058)<br>0.6829                                                                                                                                                                                                                                  | 0.6798<br>(0.0055<br>0.6768<br>(0.0054<br>0.6644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | (30,20)                       | I<br>II<br>III                                           |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | 0.6816<br>(0.0061)<br>0.6801<br>(0.006)<br>0.6725<br>(0.0062)                                                                                                                                                                                                                                          | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)                                                                                                                                                                                                                                        | 0.6674<br>(0.0074)<br>0.6692<br>(0.0072)<br>0.6652<br>(0.0082)                                                                                                                                                                                                  | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006)                                                                                                                                        | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \end{array}$                                                                                                                                                                                       | $\begin{array}{c} 0.6798 \\ (0.0055 \\ 0.6768 \\ (0.0054 \\ 0.6644 \\ (0.0054 \end{array})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                               | I<br>II                                                  |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \end{array}$                                                                                                                                                                                                 | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711                                                                                                                                                                                                                       | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \end{array}$                                                                                                                                                         | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982                                                                                                                                 | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \end{array}$                                                                                                                                                                             | $\begin{array}{c} 0.6798 \\ (0.0055 \\ 0.6768 \\ (0.0054 \\ 0.6644 \\ (0.0054 \\ 0.6826 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | (30,20)                       | I<br>II<br>III<br>I                                      |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \end{array}$                                                                                                                                                                                      | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)                                                                                                                                                                                                    | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \end{array}$                                                                                                                                             | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053)                                                                                                                        | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \end{array}$                                                                                                                                                                  | 0.6798<br>(0.0055<br>0.6768<br>(0.0054<br>(0.0054<br>0.6644<br>0.6826<br>(0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | (30,20)                       | I<br>II<br>III                                           |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \end{array}$                                                                                                                                                                            | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793                                                                                                                                                                                   | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \end{array}$                                                                                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021                                                                                                                 | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6968 \end{array}$                                                                                                                                                        | 0.6798<br>(0.0055<br>0.6768<br>(0.0054<br>0.6644<br>(0.0054<br>0.6826<br>(0.0047<br>0.6867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 | (30,20)                       | I<br>II<br>II<br>I<br>II                                 |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \end{array}$                                                                                                                                                                | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)                                                                                                                                                                | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \end{array}$                                                                                                                       | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055)                                                                                                        | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \end{array}$                                                                                                                                            | 0.6798<br>(0.0055<br>0.6768<br>(0.0054<br>0.6644<br>(0.0054<br>0.6826<br>(0.0047<br>0.6867<br>(0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | (30,20)                       | I<br>II<br>III<br>I                                      |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \end{array}$                                                                                                                                                       | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793                                                                                                                                                                                   | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \end{array}$                                                                                                              | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021                                                                                                                 | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6928 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \end{array}$                                                                                                             | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0047\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 | (30,20)                       | I<br>II<br>I<br>II<br>II                                 |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \end{array}$                                                                                                                                           | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)                                                                                                                             | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0064) \end{array}$                                                                                                  | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055)                                                                                        | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \end{array}$                                                                                                                      | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6826\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6748\\ 0.6748\\ 0.0048\\ 0.6748\\ 0.0048\\ 0.0048\\ 0.0048\\ 0.0048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.00048\\ 0.000$                           |
| 2 | (30,20)                       | I<br>II<br>II<br>I<br>II                                 |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline 0.6737 \end{array}$                                                                                                                          | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787                                                                                                            | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline 0.6778 \end{array}$                                                                                 | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.683                                                                                  | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6928 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \end{array}$                                                                                                            | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6826\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 | (30,20)                       | I<br>II<br>II<br>II<br>III                               |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline 0.6737 \\ (0.004) \end{array}$                                                                                                               | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0049)                                                                                         | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0054) \\ \hline 0.6778 \\ (0.0049) \end{array}$                                                                     | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.683 (0.0038)                                                                         | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6928 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \end{array}$                                                                                                | 0.6798<br>(0.0055<br>0.6768<br>(0.0054<br>0.6644<br>(0.0054<br>0.6826<br>(0.0047<br>0.6867<br>(0.0048<br>0.6747<br>(0.0048<br>0.6634<br>(0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 | (30,20)                       | I<br>II<br>I<br>II<br>II                                 |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline 0.6737 \\ (0.004) \\ 0.6749 \end{array}$                                                                                                     | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0049)           0.6824                                                                        | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.683 (0.0038) 0.6821                                                  | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \\ 0.6758 \end{array}$                                                                 | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 | (30,20)                       | I<br>II<br>II<br>II<br>II<br>II<br>II<br>II              |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline 0.6737 \\ (0.004) \end{array}$                                                                                                               | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0049)                                                                                         | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0054) \\ \hline 0.6778 \\ (0.0049) \end{array}$                                                                     | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.683 (0.0038)                                                                         | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6928 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \end{array}$                                                                                                | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 | (30,20)                       | I<br>II<br>II<br>II<br>III                               |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \end{array}$                                                                                                                                 | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)                                                                                         | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.683 (0.0038) 0.6821 (0.0032) 0.6697                                  | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ \hline 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \\ 0.6617 \end{array}$                                    | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ (0.0032\\ 0.6646\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | (30,20)<br>(40,30)<br>(30,20) | I<br>II<br>II<br>II<br>II<br>II<br>II<br>II              |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \end{array}$                                                                                                                                 | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)           0.6794                                                                        | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.683 (0.0038) 0.6821 (0.0032)                                         | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ \hline 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \end{array}$                                              | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ (0.0054\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ (0.0032\\ 0.6646\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 | (30,20)                       | I<br>Ш<br>І<br>П<br>Ш<br>І<br>І<br>І<br>І<br>І<br>І<br>І |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \end{array}$                                                                                                            | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)           0.6794           (0.0043)                                                     | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.683 (0.0038) 0.6821 (0.0032) 0.6697 (0.0029)                         | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ \hline 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \\ 0.6617 \\ (0.003) \\ \hline \end{array}$               | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ 0.6644\\ 0.0054\\ 0.0054\\ 0.0047\\ 0.6826\\ (0.0047\\ 0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ (0.0032\\ 0.664\\ (0.0032\\ 0.6466\\ (0.0036\\ 0.6701\\ 0.6701\\ 0.6701\\ 0.6701\\ 0.0055\\ 0.6701\\ 0.0055\\ 0.0055\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0.0056\\ 0$ |
| 2 | (30,20)<br>(40,30)<br>(30,20) | I<br>Ш<br>І<br>П<br>Ш<br>І<br>І<br>І<br>І<br>І<br>І<br>І |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \\ 0.6737 \\ (0.004) \\ 0.6737 \\ (0.004) \\ 0.6749 \\ (0.0034) \\ 0.6636 \\ (0.0033) \\ 0.6782 \\ \hline \end{array}$                       | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)           0.6794           (0.0043)           0.6826                                    | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.6833 (0.0038) 0.6821 (0.0032) 0.6697 (0.0029) 0.6847 (0.0034) 0.6837 | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \\ 0.6617 \\ (0.003) \\ 0.6797 \end{array}$                      | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ 0.0054\\ 0.0054\\ 0.0054\\ 0.0047\\ 0.0048\\ 0.6747\\ (0.0048\\ 0.6747\\ (0.0032\\ 0.6634\\ (0.0032\\ 0.664\\ (0.0032\\ 0.6466\\ (0.0036\\ 0.6701\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 | (30,20)<br>(40,30)<br>(30,20) | I<br>II<br>II<br>II<br>II<br>II<br>II<br>II<br>II<br>II  |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \end{array}$                                                                                                            | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)           0.6794           (0.0043)           0.6826           (0.0041)                 | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0064) \\ \hline \end{array}$                                                                   | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6847 (0.0032) 0.6821 (0.0032) 0.6697 (0.0029) 0.6847 (0.0034)                        | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \\ 0.6617 \\ (0.003) \\ 0.6797 \\ (0.0033) \\ \end{array}$       | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ 0.6644\\ 0.6826\\ (0.0047\\ 0.6867\\ (0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ (0.0032\\ 0.6466\\ (0.0036\\ 0.6701\\ (0.0033\\ 0.66701\\ (0.0033\\ 0.6701\\ 0.0033\\ 0.6033\\ 0.6701\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.003\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.0033\\ 0.003\\$ |
| 2 | (30,20)<br>(40,30)<br>(30,20) | I<br>II<br>II<br>II<br>II<br>II<br>II<br>II<br>II<br>II  |                    | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                     | $\begin{array}{c} 0.6816 \\ (0.0061) \\ 0.6801 \\ (0.006) \\ 0.6725 \\ (0.0062) \\ 0.6828 \\ (0.005) \\ 0.6882 \\ (0.0052) \\ 0.679 \\ (0.0054) \\ \hline \\ 0.6737 \\ (0.004) \\ 0.6737 \\ (0.004) \\ 0.6749 \\ (0.0034) \\ 0.6636 \\ (0.0033) \\ 0.6782 \\ (0.0035) \\ 0.6786 \\ \hline \end{array}$ | BLINEX $c = -1$ 0.6686           (0.0074)           0.6703           (0.0072)           0.6666           (0.0082)           0.6711           (0.0057)           0.6793           (0.0057)           0.672           (0.0064)           0.6787           (0.0042)           0.6794           (0.0043)           0.6826           (0.0041)           0.685 | $\begin{array}{c} 0.6674 \\ (0.0074) \\ 0.6692 \\ (0.0072) \\ 0.6652 \\ (0.0082) \\ 0.6703 \\ (0.0057) \\ 0.6785 \\ (0.0057) \\ 0.671 \\ (0.0057) \\ 0.671 \\ (0.0042) \\ 0.6816 \\ (0.0042) \\ 0.6783 \\ (0.0042) \\ 0.6819 \\ (0.0041) \\ 0.6844 \end{array}$ | b = -2 0.7016 (0.0065) 0.6979 (0.0062) 0.6929 (0.006) 0.6982 (0.0053) 0.7021 (0.0055) 0.6947 (0.0055) 0.6947 (0.0055) 0.6833 (0.0038) 0.6821 (0.0032) 0.6697 (0.0029) 0.6847 (0.0034) 0.6837 | $\begin{array}{c} 0.6941 \\ (0.006) \\ 0.6906 \\ (0.0058) \\ 0.6829 \\ (0.0056) \\ 0.6929 \\ (0.005) \\ 0.6929 \\ (0.005) \\ 0.6968 \\ (0.0052) \\ 0.6878 \\ (0.0052) \\ 0.6762 \\ (0.0037) \\ 0.6758 \\ (0.0031) \\ 0.6617 \\ (0.003) \\ 0.6797 \\ (0.0033) \\ 0.679 \end{array}$ | $\begin{array}{c} 0.6798\\ (0.0055\\ 0.6768\\ (0.0054\\ 0.6644\\ 0.6644\\ 0.0054\\ 0.0047\\ 0.0047\\ 0.0048\\ 0.6747\\ (0.0048\\ 0.6634\\ (0.0037\\ 0.664\\ 0.0032\\ 0.6466\\ (0.0036\\ 0.6701\\ (0.0033\\ 0.6699\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Table 11.** Average mean and MSE of estimates for *CV*.

| k | (n,m)   | CS  | MLE     |         |         |         |         |         | Bayes ( | MCMC)   |         |         |         |         |
|---|---------|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   |         |     | δ       | β       | θ       | S(t)    | h(t)    | CV      | δ       | β       | θ       | S(t)    | h(t)    | CV      |
| 2 | (30,20) | Ι   | 0.9262  | 1.0301  | 1.0455  | 0.1171  | 0.4512  | 0.4032  | 0.7538  | 0.913   | 0.7467  | 0.1191  | 0.4391  | 0.4     |
|   |         |     | (0.951) | (0.937) | (0.966) | (0.972) | (0.919) | (0.946) | (0.966) | (0.945) | (0.961) | (0.962) | (0.978) | (0.935) |
|   |         | II  | 0.9458  | 1.0008  | 1.0702  | 0.1045  | 0.4025  | 0.395   | 0.7544  | 0.899   | 0.7403  | 0.1065  | 0.3958  | 0.3928  |
|   |         |     | (0.954) | (0.974) | (0.937) | (0.963) | (0.931) | (0.948) | (0.953) | (0.971) | (0.97)  | (0.975) | (0.977) | (0.951) |
|   |         | III | 0.9922  | 1.234   | 1.1022  | 0.107   | 0.3886  | 0.4805  | 0.7844  | 1.0719  | 0.7352  | 0.1067  | 0.3801  | 0.4559  |
|   |         |     | (0.937) | (0.961) | (0.973) | (0.932) | (0.907) | (0.962) | (0.941) | (0.953) | (0.953) | (0.975) | (0.967) | (0.943) |
|   | (40,30) | Ι   | 0.7334  | 0.8458  | 0.8212  | 0.0995  | 0.3806  | 0.3359  | 0.5815  | 0.7724  | 0.5939  | 0.1019  | 0.375   | 0.3369  |
|   |         |     | (0.947) | (0.941) | (0.939) | (0.94)  | (0.925) | (0.953) | (0.932) | (0.974) | (0.964) | (0.961) | (0.934) | (0.933) |
|   |         | II  | 0.7755  | 0.8186  | 0.8788  | 0.0925  | 0.3496  | 0.3351  | 0.5781  | 0.7579  | 0.5934  | 0.0945  | 0.3464  | 0.3364  |
|   |         |     | (0.944) | (0.968) | (0.929) | (0.925) | (0.93)  | (0.966) | (0.968) | (0.975) | (0.932) | (0.978) | (0.979) | (0.975) |
|   |         | III | 0.7792  | 0.9709  | 0.8778  | 0.0938  | 0.3392  | 0.3873  | 0.582   | 0.8866  | 0.5891  | 0.0949  | 0.3355  | 0.3805  |
|   |         |     | (0.931) | (0.977) | (0.941) | (0.918) | (0.926) | (0.966) | (0.946) | (0.985) | (0.973) | (0.968) | (0.967) | (0.985) |
| 6 | (30,20) | Ι   | 1.0814  | 0.9997  | 1.1363  | 0.0817  | 0.3433  | 0.4121  | 0.8433  | 0.9013  | 0.7373  | 0.0808  | 0.3367  | 0.3738  |
|   |         |     | (0.98)  | (0.975) | (0.959) | (0.938) | (0.945) | (0.967) | (0.948) | (0.938) | (0.971) | (0.969) | (0.981) | (0.968) |
|   |         | II  | 1.1639  | 0.9664  | 1.1692  | 0.0738  | 0.3445  | 0.4043  | 0.875   | 0.8623  | 0.7403  | 0.0735  | 0.3333  | 0.3597  |
|   |         |     | (0.935) | (0.954) | (0.97)  | (0.925) | (0.942) | (0.972) | (0.956) | (0.955) | (0.965) | (0.963) | (0.979) | (0.959) |
|   |         | III | 1.3348  | 1.186   | 1.1861  | 0.0709  | 0.3669  | 0.4929  | 0.9865  | 1.0119  | 0.7438  | 0.07    | 0.3448  | 0.403   |
|   |         |     | (0.96)  | (0.967) | (0.96)  | (0.919) | (0.939) | (0.944) | (0.962) | (0.962) | (0.938) | (0.95)  | (0.97)  | (0.97)  |
|   | (40,30) | Ι   | 0.8677  | 0.8228  | 0.9144  | 0.0688  | 0.2848  | 0.3443  | 0.6385  | 0.7691  | 0.5882  | 0.0686  | 0.2828  | 0.322   |
|   |         |     | (0.965) | (0.966) | (0.943) | (0.937) | (0.949) | (0.957) | (0.939) | (0.955) | (0.941) | (0.964) | (0.977) | (0.955) |
|   |         | II  | 0.9137  | 0.8021  | 0.9308  | 0.0634  | 0.2849  | 0.339   | 0.6612  | 0.7472  | 0.5909  | 0.0633  | 0.2809  | 0.3139  |
|   |         |     | (0.97)  | (0.956) | (0.973) | (0.933) | (0.948) | (0.963) | (0.973) | (0.946) | (0.957) | (0.957) | (0.963) | (0.946) |
|   |         | III | 1.0275  | 0.9373  | 0.9605  | 0.0618  | 0.2944  | 0.3976  | 0.7354  | 0.8635  | 0.5909  | 0.0615  | 0.2867  | 0.3514  |
|   |         |     | (0.973) | (0.969) | (0.931) | (0.95)  | (0.957) | (0.935) | (0.948) | (0.971) | (0.962) | (0.948) | (0.942) | (0.96)  |

**Table 12.** Average confidence, credible interval lengths, and the coverage percentages for  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and CV.

# 7. Concluding Remarks

The main aim of this article is to develop different methods to estimate the unknown quantities of the NWPD based on a Pro-F-F-C scheme, which was introduced by Wu and Kuş [9]. The ACIs of  $\delta$ ,  $\beta$ , and  $\theta$  have been constructed by using the asymptotic normality of MLEs. Furthermore, the delta,  $\mathcal{L}T$ , and AST methods have been used to obtain the CIs of S(t), h(t), and CV. The Bayes estimates have been computed based on Lindley approximation and MCMC methods under BLINEX and GE loss functions. An application to real-life data on gastric cancer survival times is analyzed for illustrative purposes. A simulation study is used to compare the performance of the proposed methods for different sample sizes (n, m, k) and different CSs. From the results, we observe the following:

- (1) It is clear from all tables that as sample size *n* increases, the MSEs and average interval lengths decrease, also the Bayes estimates perform better than the MLEs of  $\delta$ ,  $\beta$ ,  $\theta$ , S(t), h(t), and *CV* in terms of MSEs and average interval lengths.
- (2) From all tables, we observe that as the group size *k* increases, the MSEs and average interval lengths associated with  $\delta$  and  $\theta$  increase while those associated with  $\beta$ , *S*(*t*), *h*(*t*) and *CV* decrease.
- (3) It can be seen from the tables that the three CS methods vary in terms of preference, sometimes CS I is the best while at other times CS II or III is the best in the sense of having smaller MSEs and average interval lengths.
- (4) From Tables 6–12 it can been seen that in most cases, Bayes MCMC estimates perform better than Bayes Lindley approximation estimates in the sense of having smaller MSEs.
- (5) When  $\omega = 0.3$ , the MSEs of the Bayes estimates are smaller than when  $\omega = 0.9$  for all estimators.
- (6) For the values of ω, Bayes estimates for δ, β, θ, h(t), and CV under BLINEX for the choice c = 1 perform better than their estimates for the choice c = -1 in the sense of having smaller MSEs and vice versa for S(t).

- (7) It can be observed that the Bayes estimates of  $\delta$ ,  $\theta$ , and CV, which are obtained under the GE loss function for the choice of b = 1, have the smallest MSEs when compared with the other choices of b and the BLINEX loss function.
- (8) As a future work based on this study, we refer to fuzzy and packet inference in R. For more details, see Srikanth et al. [40], Tang et al. [41], and Chen et al. [42].

Author Contributions: Conceptualization, M.S.E. and R.M.E.-S.; methodology, M.S.E. and B.A.; software, M.E.-M. and S.H.E.-E.; validation, B.A., M.E.-M., and R.M.E.-S.; formal analysis, M.S.E.; investigation, M.E.-M. and B.A.; resources, F.S.A.; data curation, R.M.E.-S. and S.H.E.-E.; writing-original draft preparation, R.M.E.-S. and S.H.E.-E.; writing-review and editing, M.S.E. and R.M.E.-S.; visualization, M.E.-M. and F.S.A.; supervision, S.H.E.-E. and M.E; project administration, M.S.E.; funding acquisition, B.A. All authors have contributed to manuscript refinement, preparation, and revision. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by the Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia, grant number QU-IF-05-04-27802.

Data Availability Statement: The datasets are available in the paper.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project number QU-IF-05-04-27802. The authors also thank to Qassim University for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

## References

- 1. Kundu, D.; Howlader, H. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. *Comput. Stat. Data Anal.* **2010**, *54*, 1547–1558. [CrossRef]
- 2. Fujii, S. Designing an optimal life test with Type I censoring. *Nav. Res. Logist.* 2006, *38*, 23–32.
- Balakrishnan, N.; Sandhu, R.A. A simple simulation algorithm for generating progressively type-II censored samples. *Am. Stat.* 1995, 49, 229–230.
- Chen, P.; Xu, A.; Ye, Z. Generalized fiducial inference for accelerated life tests with Weibull distribution and progressively type-II censoring. *IEEE Trans. Reliab.* 2016, 65, 1737–1744.
- 5. Xu, A.; Zhou, S.; Tang, Y.A. Unified model for system reliability evaluation under dynamic operating conditions. *IEEE Trans. Reliab.* **2021**, *70*, 65–72. [CrossRef]
- Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. *Reliab. Eng. Syst. Saf.* 2022, 218, 108136.
- EL-Sagheer, R.M.; Shokr, E.M.; Mahmoud, M.A.W.; El-Desouky, B.S. Inferences for Weibull Fréchet distribution using a Bayesian and Non-Bayesian methods on gastric cancer survival times. *Comput. Math. Methods Med.* 2021, 9965856.
- Johnson, L.G. Theory and Technique of Variation Research; Elsevier: Amsterdam, The Netherlands, 1964.
- 9. Wu, S.J.; Kuş, C. On estimation based on progressive first-failure-censored sampling. Comput. Stat. Data Anal. 2009, 10, 3659–3670.
- 10. Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A.; Abd-Elmougod, G.A. Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. *Comput. Stat. Data Anal.* **2012**, *56*, 2471–2485. [CrossRef]
- Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A.; Modhesh, A.A. Bayesian inference and prediction of Burr Type XII distribution for progressive first failure censored sampling. *Intell. Inf. Manag.* 2011, *3*, 175–185.
- 12. ; Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A.; Modhesh, A.A. Estimation of the coefficient of variation for non-normal model using progressive first-failure-censoring data. *Appl. Stat.* **2012**, *12*, 2741–2758.
- 13. Soliman, A.A.; Abd-Ellah, A.H.; Abou-Elheggag, N.A.; EL-Sagheer, R.M. Estimation based on progressive first-failure censored sampling with binomial removals. *Intell. Inf. Manag.* **2013**, *5*, 117–125. [CrossRef]
- 14. Mahmoud, M.A.W.; Soliman, A.A.; Abd-Ellah, A.H.; EL-Sagheer, R.M. Bayesian inference and prediction using progressive first-failure censored from Generalized pareto distribution. *Stat. Appl. Probab.* **2013**, *3*, 269–279.
- 15. Mahmoud, M.A.W.; Soliman, A.A.; Abd-Ellah, A.H.; EL-Sagheer, R.M. Bayesian estimation using MCMC approach based on progressive first-failure censoring from generalized Pareto distribution. *Am. J. Theor. Appl. Stat.* **2013**, *2*, 128–141 [CrossRef]
- 16. Abushal, T.A. Estimation of the unknown parameters for the compound Rayleigh distribution based on progressive first-failurecensored sampling. *Open J. Stat.* **2011**, *1*, 161–171. [CrossRef]
- 17. Ahmed, E.A. Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failurecensored data with application. *J. Appl. Stat.* **2017**, *44*, 1576–1608. [CrossRef]
- 18. Xie, Y.; Gui, W. Statistical inference of the lifetime performance index with the Log-Logistic distribution based on progressive first-failure-censored data. *Symmetry* **2020**, *12*, 937. [CrossRef]
- 19. Shi, X.; Shi, Y. Inference for Inverse Power Lomax distribution with progressive first-failure censoring. Entropy 2021, 23, 1099.

- EL-Sagheer, R.M.; Jawa, T.M.; Sayed-Ahmed, N. Inferences for Generalized Pareto distribution based on progressive first-failure censoring scheme. *Complexity* 2021, 2021, 9325928.
- 21. Suleman, N.; Albert, L. The New Weibull-Pareto distribution. Pak. J. Stat. Oper. Res. 2015, 11, 103–114.
- 22. Almetwally, E.M.; Almongy, H.M. Estimation Methods for the new Weibull-Pareto distribution: Simulation and application. *J. Data Sci.* **2019**, *17*, 610–630.
- 23. Al-Omari, A.I.; Al-Nasser, A.D.; Gogah, F.S. Double acceptance sampling plan for time truncated life tests based on transmuted new Weibull-Pareto distribution. *Electron. J. Appl. Stat. Anal.* **2016**, *9*, 520–529.
- EL-Sagheer, R.M.; Mahmoud, M.A.; Abdallah, S.H. Statistical inferences for new Weibull-Pareto distribution under an adaptive Type-II progressive censored data. J. Stat. Manag. Syst. 2018, 21, 1021–1057. [CrossRef]
- Mahmoud, M.A.; EL-Sagheer, R.M.; Abdallah, S.H. Inferences for new Weibull-Pareto distribution based on progressively Type-II censored data. J. Stat. Appl. Probab. 2016, 5, 501–514. [CrossRef]
- 26. Mukharjee, S.P.; Maiti, S.S. Stress-strength reliability case. Front. Reliab. 1998, 4, 231–248.
- Krishnamoorthy, K.; Lin, Y. Confidence limits for stress-strength reliability involving Weibull models. *Stat. Plan. Inference* 2010, 140, 1754–1764. [CrossRef]
- 28. Ahmed, E.A. Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: An Markov chain Monte Carlo approach. *Appl. Stat.* **2013**, *4*, 752–768
- 29. Greene, W.H. *Econometric Analysis*, 4th ed.; Prentice-Hall: NewYork, NY, USA, 2000.
- 30. Lindley, D.V. Approximate Bayesian method. Trab. Estad. 1980, 31, 223–237. [CrossRef]
- 31. Sarhan, A.M.; Hamilton, D.C.; Smith, B. Parameter estimation for a two-parameter bathtub-shaped lifetime distribution. *Appl. Math. Model.* **2012**, *36*, 5380–5392.
- Sultan, K.S.; Alsadat, N.H.; Kundu, D. Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive type-II censoring. *Stat. Comput. Simul.* 2014, 84, 2248–2265 [CrossRef]
- Singh, P.K.; Singh, S.K.; Singh, U. Bayes estimator of inverse Gaussian parameters under general entropy loss function using Lindley's approximation. *Commun. Stat.-Simul. Comput.* 2008, 37, 1750–1762. [CrossRef]
- Singh, S.K.; Singh, U.; Yadav, A.S. Parameter estimation in Marshall-Olkin exponential distribution under Type-I hybrid censoring scheme. J. Stat. Appl. Probab. 2014, 2, 117–127.
- 35. Rastogi, M.K.; Tripathi, Y.M. Inference on unknown parameters of a Burr distribution under hybrid censoring. *Stat. Pap.* **2013**, *54*, 619–643. [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distribu-tions, and the Bayesian restoration of images. *IEEE Trans. Pattern Anal. Mach. Intell.* 1984, 6, 721–741. [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by fastcomputing machines. J. Chem. Phys. 1953, 21, 1087–1091. [CrossRef]
- 38. Hastings, W.K. Monte Carlo sampling methods using Markovchains and their applications. Biometrika 1970, 57, 97–109. [CrossRef]
- Bekker, A.; Roux, J.J.J.; Mosteit, P.J. A generalization of the compound Rayleigh distribution: Using a Bayesian methods on cancer survival times. *Commun. Stat. Theory Methods* 2000, 29, 1419–1433.
- Srikanth, R.K.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R. Computational intelligence for demand response exchange considering temporal characteristics of load profile via adaptive Fuzzy inference system. *IEEE Trans. Emerg. Top. Comput. Intell.* 2018, 2, 235–245.
- Tang, Y.M.; Zhang, L.; Bao, G.Q.; Ren, F.J.; Pedrycz, W. Symmetric implicational algorithm derived from intuitionistic fuzzy entropy. *Iran. J. Fuzzy Syst.* 2022, 19, 27–44.
- 42. Chen, P.; Buis, K.; Zhao, X. A comprehensive toolbox for the gamma distribution: The gammadist package. *J. Qual.* **2022**, 1–13. [CrossRef]