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Abstract: This work presents a new analysis method for two-symbol symbolic time series based on
the time-to-space mapping achieved through a device of current carrying circular rings. An algorithm
based on the theory of prime numbers is proposed for the approximate estimation of the stratified
magnetic field produced by the aforementioned device. The main property of the specific algorithm
is that it quantizes the stratified magnetic field. If a two-symbol symbolic time series is used to
determine the flow directions of the rings’ currents, a time-to-space mapping of the dynamics of the
system producing the time series is observed. A unique “fingerprint” of the symbolic dynamics is
shaped by the spatial allocation of the values of the six-valued symmetric quantized magnetic field
produced by the device. This allows for the quantitative evaluation of the original system’s dynamics
by analyzing the resultant quantized magnetic field values space allocation, in a spectrum ranging
from the lack of dynamics (randomness) to the presence of dynamics at all scales (criticality). Two
examples of application–corresponding to the extremes of the dynamics spectrum, specifically, for
symbolic time series resulting from (a) a random numbers generator and (b) the spin alternation
of 2D-Ising in its critical state, verify the reliable time-to-space mapping of the involved symbolic
dynamics. Moreover, an application to the symbolic sequence produced by the DNA of the GAPDH
(Glyceraldehyde-3-Phosphate Dehydrogenase) human gene is presented as a real-world, intermediate
dynamics case. The proposed symbolic time series analysis method presents the advantage that
can take into account information related to both symbols, which is particularly useful in analyzing
two-symbol time series of relatively short length where the probabilities of occurrence of the two
symbols are not equal. By inferring the universality class of an artificial-neural-network-based hybrid
spin model through the value of the critical exponent δ, it is shown that for such time series, the
proposed method provides a unique way to expose the real dynamics of the underlying complex
system, in contrast to the analysis of waiting times in the time domain that leads to an ambiguous
quantitative result.

Keywords: symbolic dynamics; dynamical systems; prime numbers; quantization of magnetic field;
symmetric magnetic field; stratified magnetic field

1. Introduction

In the works [1,2], a device of identical current carrying circular rings (shown in
Figure 1) has been studied, through which electric currents of the same intensity I flow, but
their flow direction (+I,−I) is randomly chosen, with equal probability.
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Assuming that the number of rings is N, then the magnetic field at the center of the
k-th ring (k = 1, 2, . . . , N) is of the following form [2]:

Bk =
1
2

α2d−3 I
{

∑k−1
n=0

Ik−n

(n2 + c2)
3/2 + ∑N−k−1

n=0
In+1+k[

(n + 1)2 + c2
]3/2

}
, (1)

where α is the radius of the rings, d is the distance between two consecutive rings, c = a/d
and in each ring flows a current of intensity I and direction, Ik−n, In+1+k, described by
a dichotomic variable taking the values +1,−1. The two sums appearing in the curly
brackets of Equation (1) can respectively be written as:

∑k−1
n=0

Ik−n

(n2 + c2)
3/2 =

Ik
c3 + ∑k−1

n=1
Ik−n

(n2 + c2)
3/2 (2)

and

∑N−k−1
n=0

In+1+k[
(n + 1)2 + c2

]3/2 = ∑N−k
m=1

Im+k

[m2 + c2]
3/2 , (3)

where m = n + 1.
Substituting Equations (2) and (3) in Equation (1) one gets:

Bk =
1
2

α2d−3 I

{
Ik
c3 + ∑k−1

n=1
Ik−n

(n2 + c2)
3/2 + ∑N−k

m=1
Im+k

[m2 + c2]
3/2

}
. (4)

Equation (4) can be seen as a “physics-based algorithm” (PA) based on the Biot-Savart
law that calculates the magnetic field Bk at all positions k of the device’s axis. As it has been
shown in [1,2], the magnetic field inside the device is interesting when c < 1. In this case, for
directions of currents determined by a dichotomic variable taking the values +1,−1 with
equal probability, a stratification of the values of the magnetic field appears characterized
by the existence of empty regions (cancelation) and zones where the fluctuations dominate
(see Figure 2a in Section 2).
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Figure 1. A device of identical rings through which currents of intensity I and random directions
flow [2]. The radius of the rings is a and the distance of two consecutive rings is d.

Symbolic dynamics refers to a description of complex systems, according to which a
complex system is considered as an information generator producing messages consisting
of a discrete set of symbols defined by partitioning the full continuous phase space into a
finite number of cells, thus implementing a coarse graining strategy. The simplest possible
coarse graining corresponds to the assignment of just two symbols “0” and “1”, or “−1”
and “+1”, etc., to the original time series, depending on whether the time series original
value is above or below a specific threshold (binary partition). On the other hand, some



Symmetry 2022, 14, 2366 3 of 22

physical or numerical systems are inherently described in terms of discrete states, e.g., spin
systems or DNA sequences, and thus we can say that these innately fit the description of
the symbolic dynamics.

Let us consider a two-symbol symbolic time series {x(ti)}, ti = i·τ, τ being the
sampling period and i = 1, 2, . . . , N, with x(ti) taking the (symbol) values “−1” and “+1”.
The “introduction” of such a two-symbol symbolic time series into the device of current
carrying circular rings of Figure 1 can be achieved by mapping the chronological order of
the symbols of the symbolic time series to the positions k of the rings, while the symbol of
each specific time point is used to determine the flow direction of the ring’s current at the
corresponding position. Namely, the sequence of currents of the device, and specifically
their flow direction, is determined by the corresponding time series symbol in such way
that the symbol of x(t1) determines the current flow direction I1 of the ring at the position
k = 1, the symbol of x(t2) determines the current flow direction I2 of the ring at k = 2, and
so on. For example, for i = k = 1, if x(t1) = −1, then I1 = −1, while if x(t1) = +1, then
I1 = +1, etc.

In the present work, we first investigate whether such an “introduction” of a two-symbol
symbolic time series–that is produced directly or indirectly (after coarse graining) by a
dynamic system–into the device of Figure 1 could be seen as a “transformation” from the
time domain to the space domain, through which the dynamics of the system producing
the time series can be carried over to the magnetic field produced by the device of Figure 1.
Specifically, it is investigated whether the spatial allocation of the values of such a magnetic
field can be considered as a “fingerprint” of the dynamics of the system that produces
the symbolic time series, which can provide information about the evaluation of system’s
dynamics, and thus constitutes a time-to-space mapping of symbolic dynamics. In such
a case, it should be able to identify the dynamic behaviors in a spectrum that extends
from the complete absence of dynamics, where the successive values of the time series
are completely uncorrelated to each other, to the presence of dynamics at all scales–as
happens in critical dynamics, where correlations appear in all space-time scales. As it
is shown in the following, this is accomplished after the discretization (“quantization”)
of the stratified magnetic field of the device of Figure 1 that is successfully verified by a
prime-numbers-based algorithm for the approximate estimation of the magnetic field.

Inspired by the time domain analysis of complex systems’ time series that is based on
the study of waiting times distribution, we propose a space domain analysis of two-symbol
symbolic time series that is based on the study of the spatial allocation of the values of the
six-valued symmetric quantized magnetic field produced by the device when the sequence
of currents’ flow direction is determined by the time series symbols.

It is shown that although the existence of dynamics in two-symbol symbolic time
series can be revealed in the time domain by the scaling behavior of waiting times, the
quantitative result is ambiguous; the involved exponent cannot be definitely determined
since the exponent’s value depends on the considered symbol. The proposed analysis in
the space domain, and specifically by taking into account the dynamics of both symbols of
the original symbolic time series, provides a solution to this problem. It provides a unique
way to expose the real dynamics of a complex system for which a relatively short time
series is available and the probabilities of occurrence of the two symbols are not equal. As
an example, demonstrating the usefulness of the proposed symbolic time series analysis
method, the universality class of an artificial-neural-network-based hybrid spin model
is successfully inferred through by value of the critical exponent δ, while for the same
example it is shown that the analysis in the time domain, i.e., by means of waiting times,
leads to an ambiguous quantitative result.

2. The Application of the Physics-Based Algorithm to Symbolic Dynamics

First, as it has been mentioned in the introduction, we will investigate the two extreme
cases: (a) complete absence of dynamics, and (b) the dynamics of a critical system. It
is known that the distributions of the so-called “waiting times” of a time series values,
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at specific value levels or within specific value zones, are exponential distributions in
the case (a) [3], while in the case (b) they are power-law (scale free) distributions [4]. A
two-symbol symbolic time series belonging to case (a) could be produced by a random
number generator, while one belonging to case (b) could be produced by a system in its
critical state–for example, the critical state of the well-known 2D-Ising magnetic model.

For a Z(M) spin system, spin variables are defined as: s(ai) = ei2πai/M (lattice vertices
i = 1, . . . , imax) with ai = 0, 1, 2, 3, . . . , M− 1. Specifically, for M = 2 and for 2 dimensions
we consider the 2D-Ising model. An effective algorithm that produces configurations for the
2D-Ising model is the Metropolis algorithm. According to this algorithm, the configurations
at constant temperatures are selected with Boltzmann statistical weights e−βH , where H,
the Hamiltonian of the spin system with nearest neighbors’ interactions, can be written as:

H = −∑〈i,j〉 Jijsisj , si, sj = ±1. (5)

It is known [5] that this model undergoes a second-order phase transition when the
temperature drops below a critical value. Thus, for a 1002 lattice the critical (or pseudocriti-
cal for finite size lattices) temperature has been found to be Tc = 2.308 (Jij =1). The sweep
of the whole lattice represents the algorithmic time unit. As shown in Equation (5), the
possible values that the spin takes in the model are ±1. One can produce a time series of
symbolic dynamics [6,7] with two symbols, “+1”, “−1”, by randomly selecting a position of
the lattice and monitoring, vs. the algorithmic time, the evolution of the spin at the specific
position. It is of particular interest when the production of such a time series takes place at
critical temperatures. It is known that at critical temperatures the power-laws dominate the
size distributions, such as temporal and spatial lengths, and especially quantities that have
the character of waiting times (laminar lengths) [8].
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Figure 2. The transformation of a symbolic time series into a magnetic field through the device of
Figure 1 using PA with c < 1 (here c = 0.1): (a) For currents directions determined by a random time
series. (b) For currents directions determined by the 2D-Ising symbolic dynamics at spin lattice site
(15,88) in critical state.

In Figure 2, we present the magnetic field produced by the device of Figure 1 ac-
cording to PA, i.e., according to Equation (4), in the cases that the flow directions of the
rings’ currents are determined by the symbolic time series produced by a random number
generator (Figure 2a), and by the values of the spin at a randomly selected point of a 1002

lattice of 2D-Ising for temperature T = Tc = 2.308 (Figure 2b). In both cases, the values
a = 1, d = 10, c = 0.1, I = 1, and N = 10, 000 were used for the parameters of the device
of Figure 1 for the calculation of the magnetic field values presented in Figure 2. In both



Symmetry 2022, 14, 2366 5 of 22

cases, the transformations are performed from the time domain (t) to the space domain
(ring positions k). Each spatial pattern of the magnetic field is unique, determined by the
respective symbolic dynamics.

We will now investigate whether one can infer the dynamics of each symbolic time
series by studying the resulting magnetic field values in the space domain, i.e., for different
ring positions k. Specifically, we will check the distributions of the “k waiting lengths”, L,
i.e., the spatial lengths corresponding to numbers of consecutive ring positions yielding
magnetic field values at a specific value level or within a specific value zone, which is the
analogous of waiting times (laminar lengths) in the space domain. If the dynamics of the
symbolic time series are indeed imprinted in the resulting magnetic field values in the
space domain, one would expect that the distributions of the “k waiting lengths” should
be: exponential for the case (a) and power-laws for the case (b), respectively, according
to the corresponding time domain statistics (waiting times distributions) of each driving
time series. This would indicate the completeness of the transformation act performed
by the device. Beyond that, the study of the resulting magnetic field distribution in
the space domain could be used to characterize the dynamic state of a system that can
produce symbolic time series by quantitatively evaluating the intermediate states between
randomness and criticality.

As a first step, one must determine the magnetic field values or value zones for which
the “k waiting lengths” is reasonable to be calculated. By observing Figure 2, it is clear
that for values c < 1 (here c = 0.1) three zones appear in the positive half-plane, and,
respectively, three symmetric zones in the negative half-plane (not shown in Figure 2),
within which the fluctuations of the magnetic field values are the main characteristic. It
is therefore reasonable to use one of these zones, e.g., the central positive zone, for the
calculation of the “k waiting lengths” and the study of their distribution.

Figure 2a shows that the borders of the central positive zone are the values 0.50022
and 0.49978 of the magnetic field. Thus, we must calculate the values that the number, L, of
consecutive ring positions k for which the magnetic field takes any value between these
values, i.e., 0.49978 < Bk < 0.50022, takes. Unfortunately, it turned out that the “k waiting
lengths” L take only three (3) values, and this means that no reliable information can be
extracted from their distribution. Similar results were obtained from the magnetic field
depicted in Figure 2b for the central positive zone, while the selection of any other (positive
or negative) zone did not lead to better results. Moreover, the results do not improve even
if one increases the statistics, i.e., by increasing the number of rings (and corresponding
number of time series values), N. The existence of zones within which many different
magnetic field values fall is the reason why very long “k waiting lengths”, L, result, thus
rendering the number of different L values very small.

A solution to this problem could be the “quantization” of the magnetic field, i.e., if the
magnetic field could only take a very limited number of values and not be able to fluctuate
within value zones. In such a case, the “k waiting lengths”, L, are expected to have shorter
lengths and consequently take a larger number of different values that would allow us to
produce adequate distributions of L, permitting us to extract safe conclusions. As we will
show in the rest of this work, this can be done through the theory of prime numbers.

Although the results presented in Figure 2 do not allow us to extract the sought
quantitative information about the dynamics of the driving time series, they do provide
some qualitative information. Indeed, in Figure 2b one can see the existence of a structure
in the form of intermittency at all (spatial) scales for the revealed magnetic field value
zones. However, the development of the phenomenon of intermittency presupposes the
existence of correlations [9]. Therefore, the existence of intermittency is an indication for the
existence of underlying dynamics. On the other hand, the almost homogeneous structures
in Figure 2a exclude the existence of structures at all scales. Structures similar to that of
Figure 2b have been presented in [10] for the order parameter of the hybrid artificial neural
network in the critical state.
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3. A Prime-Numbers-Based Solution

The central forces of classical physics obey mathematical laws of the form ∼ 1
rs , where

s = 2 for the gravitational field (law of universal gravitation), electric field (Coulomb
law), elementary magnetic field (dB) (Biot-Savart law). Given that in all three of these
fundamental forces between bodies, the sums of the forces appear in their calculations, i.e.,
quantities of the form ∑i

1
rs

i
, their convergence must be ensured. A more general expression

of the harmonic series is the Riemann zeta function, which is defined as ζ(s) = ∑∞
i=1

1
is ,

with Re{s} > 1 [11]. Thus, within the framework of a discretization of space with unit
l, where ri ∼ i·l (i = 1, 2, . . .), the sum of the interactions can be treated as the Riemann
zeta function.

One of the most famous unsolved issues in mathematics, which dates back to 1859, is
the Riemann hypothesis [11–13] that asks where the zeros of the Riemann zeta function,
ζ(s), are located. This function is an analytic complex function. For complex numbers,
s, with real part Re{s} > 1, Riemann zeta function equals both an infinite sum over all
integers, and an infinite product over the prime numbers. A natural number is called a
prime number if it is > 1 and cannot be written as the product of two smaller natural
numbers. Thus, by going one step further, one can “move” from the Riemann zeta function
to the prime numbers through a theorem known as the Euler product [14,15], according to
which one can write:

ζ(s) = ∑∞
n=1

1
ns = ∏p:prime

1
1− p−s = ∏p:prime

ps

ps − 1
, Re{s} > 1. (6)

For a long time, the study of prime numbers has been examined as the canonical
example of pure mathematics, with no applications outside of mathematics. The concept of
prime numbers is so important that it has been generalized in different ways in various
branches of mathematics. Beyond pure mathematics, prime numbers are used in a series
of various applications. Several public-key-cryptography algorithms, such as RSA and
the Diffie-Hellman key exchange, are based on large prime numbers (2048-bit primes are
common) [16]. Shor’s algorithm can make any integer factor in a polynomial number
of steps on a quantum computer [17]. Prime numbers are also used in pseudorandom
number generators including linear congruential generators [18]. Beyond mathematics
and computing, prime numbers have potential connections to quantum mechanics [19–22].
They have also been used in evolutionary biology to explain the life cycles of cicadas [23].

In this context, in the following we present an application of prime numbers to the
current carrying circular rings device of Figure 1. Thus, out of the above-mentioned three
central forces, here we focus on the application of prime numbers to the calculation of the
magnetic field (Biot-Savart law). The connection of the zeta function [24] with the Biot-
Savart theory has already been presented in [1]. In the following, we present the connection
of the Riemann zeta function with the Biot-Savart theory and, furthermore, the connection
with prime numbers for the first time. Specifically, we investigate to which extent can a
prime-numbers-based algorithm (PNA) (presented in Section 3.1) closely approach the
results of PA (see Section 1) regarding the calculation of the magnetic field of the device
of Figure 1. The rapid convergence of values as ensured by Euler’s product (Equation (6))
was our motivation to introduce the prime numbers in the stratified magnetic field of the
device of Figure 1 with the expectation that values convergence would turn the stratified
magnetic field zones presented in Section 2 into levels of fixed values, i.e., to the sought
“quantization” of the magnetic field.

3.1. The Prime-Numbers-Based Algorithm for the Calculation of the Magnetic Field

Since our intention is to introduce the harmonic series to the magnetic field calculation
(Equation (4)), to lead to the prime numbers according to Equation (6), we consider the case
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c2 � 1. Then, given the fact that n, m ≥ 1 and using the condition c2 � 1, we can consider
the approximations for the two sums appearing in Equation (4):

∑k−1
n=1

Ik−n

(n2 + c2)
3/2 ≈∑k−1

n=1
Ik−n
n3 , (7)

∑N−k
m=1

Im+k

[m2 + c2]
3/2 ≈∑N−k

m=1
Im+k
m3 . (8)

In Equations (7) and (8), the directions of currents Ik−n, In+1+k appear, which, as
mentioned in Sections 1 and 2, are described by a dichotomic variable taking the values
+1,−1, according to the corresponding symbolic time series driving the device. This
fact does not allow the calculation of the above sums since these sums are dynamically
alternating sequences.

Let us assume that the hypothesis that currents’ directions are determined by a sym-
bolic time series is suspended and all currents have the same–for example, positive–direction,
i.e., Ik−n = +1, In+1+k = +1, which would lead to a constant magnetic field (the same
magnetic field value at all positions k of the device’s axis). In such a case, one successively
gets the following.

For large k values, as k→ ∞ , the sum in Equation (7) is written:

∑∞
n=1

1
n3 = ζ(3) ≈ 1.20205690 . . . (9)

For small k values and as N → ∞ , the sum in Equation (8) is written:

∑∞
m=1

1
m3 = ζ(3) ≈ 1.20205690 . . . (10)

In Equations (9) and (10), ζ(3) is the Riemann zeta function ζ(s) for s = 3, and since
the condition Re{s} > 1 is valid for s = 3, one could introduce the prime numbers using
Equation (6), for s = 3:

ζ(3) = ∏p:prime∈{1,∞}
1

1− p−3 = ∏p:prime∈{1,∞}
p3

p3 − 1
. (11)

As already mentioned, the effort here is to accomplish a suitable approximation that
allows to introduce the Euler product (prime numbers) to the estimation of the magnetic
field of the device of Figure 1. The difficulty in the studied case is to introduce the prime
numbers and also to restore the hypothesis that currents’ directions are determined by a
symbolic time series by appropriately introducing the information of currents’ directions.

The proposed approximate solution is a prime-numbers-based algorithm (PNA) ac-
complished in three steps (the segment of the code that calculates the magnetic field
through the proposed prime numbers approximation for the random case, i.e., for random
alternations of the signs +1,−1, of the currents Ik, is presented in the Appendix A):

• Initially, the currents’ directions are determined by a symbolic time series, e.g., a
symbolic time series produced by a random generator or by a dynamic system, such
as 2D-Ising, etc. Specifically (see also Section 1), for a two-symbol time series x(ti) of
length N (i = 1, 2, . . . , N) a device of N current carrying circular rings (Figure 1) is
considered. In all rings, the current has the same intensity I = 1, but the flow direction
Ik in each ring (taking values +1,−1) is determined by the corresponding time series
symbol in such way that the symbol of x(t1) determines the current flow direction
I1 of the ring at the position k = 1, the symbol of x(t2) determines the current flow
direction I2 of the ring at k = 2, and so on. For example, for i = k = 1, if x(t1) = −1,
then I1 = −1, while if x(t1) = +1, then I1 = +1, etc.
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• In a second step, the above determined directions are not yet taken into account and all
currents are considered as having the same direction, Ik = +1. In this case, the sums
appearing in Equation (4) are approximated as shown in Equations (9) and (10) (for
c2 � 1) and, using Equation (11), prime numbers are introduced in their calculation,
allowing the fast convergence to ζ(3) value. In the practical implementation, the
ζ(3) Riemann zeta function is calculated using the first 168 prime numbers (i.e.,
employing all p < 1000), since it is found that the ζ(3) value converges up to the
8th decimal. Therefore, for large k values, the following first approximation is done:

∑∞
n=1

1
n3 = ∑∞

m=1
1

m3 = ζ(3) ≈ ∏p:prime∈{1,1000}
p3

p3−1 . Of course, in cases that lower or
higher accuracy in the calculation of ζ(3) value is sought, one can employ less or more
prime numbers, respectively, in the calculations.

• Finally, an iterative procedure is proposed, comprising of a nested loop that intro-
duces the actual signs (directions) of Ik−n, Ik+m, and Ik to the magnetic field val-
ues’ calculation, Bk, at each position k. Specifically, at each outer loop step, the
two inner loops (Inner Loop 1 & Inner Loop 2 in the Appendix A) calculate the cor-
responding “sign-corrected Riemann zeta function” by introducing the signs of the
currents (determined in the first step) to the Riemann zeta function value (calculated
during the second step), by implementing the following products: ∏k−1

n=1 Ik−nζ(3)
(denoted as “piA” in the Appendix A) and ∏N−k

m=1 Im+kζ(3) (denoted as “piB” in the
Appendix A). Actually, the inner loops suggest the following approximation for the
Equations (7) and (8), respectively: ∑k−1

n=1
Ik−n

(n2+c2)
3/2 ≈ ∑k−1

n=1
Ik−n
n3 ∼ ∏k−1

n=1 Ik−nζ(3) and

∑N−k
m=1

Im+k

[m2+c2]
3/2 ≈ ∑N−k

m=1
Im+k
m3 ∼ ∏N−k

m=1 Im+kζ(3). The outer loop calculates the magnetic

field values, Bk, using Equation (4), the sign of each current Ik, and the “sign-corrected Rie-
mann zeta function” values, calculated in the corresponding inner loops, in place of the
two sums of Equation (4). Therefore, it finally calculates the following approximate value
for Bk: Bk ∼ 1

2 α2d−3 I
{

Ik
c3 + ∏k−1

n=1 Ik−nζ(3) + ∏N−k
m=1 Im+kζ(3)

}
, i.e., Bk ∼ 1

2 α2d−3 I{
Ik
c3 + ∏k−1

n=1

(
Ik−n ∏p:prime∈{1,1000}

p3

p3−1

)
+ ∏N−k

m=1

(
Im+k ∏p:prime∈{1,1000}

p3

p3−1

)}
.

It is clear that in the above-presented proposed algorithm, there is mathematical
gap concerning the way the signs of the currents are introduced in the calculation, since
the hypothesis that the approximations ∑k−1

n=1
Ik−n
n3 ∼ ∏k−1

n=1 Ik−nζ(3) and ∑N−k
m=1

Im+k
m3 ∼

∏N−k
m=1 Im+kζ(3) are valid cannot be rigorously proven. However, the numerical experiments

presented in Section 4 prove that PNA provides a reasonable approximation of the actual
magnetic field (calculated using PA), as well as the very important feature of “quantization”
of the magnetic field, which is necessary in order to be possible to proceed with the analysis
of “k waiting lengths” distribution, as explained in Section 2. Importantly, the results
obtained by the analysis of the “k waiting lengths” distribution (after having applied PNA)
prove that the dynamics of the analyzed symbolic time series are successfully uncovered
(see Section 5). Moreover, it should be mentioned that, as proven during the applications
runs, the PNA is almost 20 times faster than the PA for the same data.

4. Quantization of the Magnetic Field Using the Prime-Numbers-Based Algorithm

In Figure 3, we present the results obtained using the approximate algorithm PNA
(see Section 3.1) for the calculation of the magnetic field of the device of Figure 1, for
the same symbolic time series used in Section 2, i.e., in case (a) produced by a random
number generator, and in case (b) produced by 2D-Ising in critical state. Moreover, the same
parameters were used for the device as in the PA obtained results presented in Section 2,
namely, a = 1, d = 10, c = 0.1, I = 1, and N = 10, 000.
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Figure 3. The transformation of a symbolic time series into a magnetic field through the device of
Figure 1 using PNA with c < 1 (here c = 0.1): (a) For currents directions determined by a random
time series. (b) For currents directions determined by the 2D-Ising symbolic dynamics at spin lattice
site (15,88) in critical state. Panels (c,d) are zoom-in pictures of (a,b), respectively, for an arbitrary
selected range of k values.

From Figure 3a,b, we observe that the use of PNA led to the following interesting result:
PNA eliminated the three magnetic field value zones produced by the PA (Figure 2a,b
respectively), yielding in their place three distinct levels, i.e., “quantized” values, of the
magnetic field. Specifically, by using PNA, three distinct levels appear in the positive
half-plane and, respectively, three symmetric levels in the negative half-plane (not shown in
Figure 3). Moreover, as apparent from Figure 3c,d, the magnetic field value does not remain
the same for long lengths of consecutive ring positions k. As mentioned in Section 2, this
provides a solution in the problem of extracting adequate distributions of the “k waiting
lengths”, L, since they have shorter lengths and consequently take a larger number of
different values. Therefore, the “quantization” of the magnetic field by using PNA indeed
provided a solution to the problem of studying the dynamics of the driving symbolic time
series that emerged in the case that the magnetic field fluctuates within zones of values (see
also Section 2).
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Finally, it is important to note that the “quantized” magnetic field is a kind of coarse
graining of the real magnetic field that seems to be more compatible to the notion of
symbolic dynamics. Consequently, the specific transformation from the time domain (t) to
the space domain (ring positions k) performed by the device of Figure 1 using the PNA, may
be reasonable for one to expect that could carry over the dynamics of the driving symbolic
time series to the spatial allocation of the “quantized” magnetic field. Thus, the rest of the
paper focuses on the application of PNA to symbolic time series aiming at revealing their
dynamics by analyzing the statistics of the spatial information of the resulting magnetic
field–specifically, the distribution of the “k waiting lengths”.

Although this is not so important for our approach, at this point we would like to
discuss the question of whether PNA produces a reasonable approximation of the real
magnetic field. The PNA could be considered to provide a reasonable approximation of
the magnetic field produced by the PA if the middle values of the fluctuation zones of the
PA results (Figure 2) were very close to the values of the quantized fixed levels of the PNA
results (Figure 3). Indeed, by comparing Figures 2 and 3, one can verify that the values
of the two sides (upper and lower) of the magnetic field fluctuation zones of Figure 2 are
clearly related to the two sides (upper and lower) of the quantized magnetic field values of
Figure 3, Bk = 0.4987, and Bk = 0.5012, respectively. Specifically, Bk = 0.4987 lower-bounds
the lower fluctuation zone of Figure 2 and Bk = 0.5012 upper-bounds the upper fluctuation
zone of Figure 2. Moreover, the middle quantized magnetic field value of Figure 3 coincides
with the middle of the central zone of Figure 2 (Bk = 0.500).

It is also interesting that in the case of the random time series (case (a)) for N = 1000 rings
(the rest of the parameters were kept the same with the ones used to produce the results of
Figures 2 and 3), it was found that the probabilities with which the PA calculated magnetic
field values that are distributed to the three fluctuation zones of Figure 2a are 24%, 45.5%,
and 30.5%, for the upper, central, and lower zone, respectively. Interestingly, for the case of
PNA, the corresponding probabilities are 23%, 46%, and 31%. These results are almost the
same for both algorithms, confirming the fact that the PNA approximation is very close
to the real results. As ones approaches the asymptotic limit (for example N = 30, 000),
then both algorithms converge in the probability ratio 1:2:1 for upper, central, and lower
zones, respectively.

Taking into account all the above-mentioned evidence, we deem that the PNA can be
considered a reasonable approximation of PA.

5. Analysis of the Quantized Magnetic Field Produced by Symbolic
Dynamics Sequences

In this Section, we analyze the spatial information of the results presented in Figure 3.
Specifically, the distribution of “k waiting lengths”, L, (see Section 2) of the quantized
magnetic field values of the device of Figure 1 driven by symbolic time series, as calculated
by the PNA, is calculated. The objective is to find out whether the symbolic dynamics of
the currents’ directions sequence are reflected in the quantized magnetic field values, as
estimated by the PNA, by quantifying how far or close the dynamics of the system are
to randomness. As already mentioned in Section 2, if the dynamics of the symbolic time
series are indeed imprinted in the resulting magnetic field values in the space domain, one
would expect that the distributions of the “k waiting lengths” should be: exponential for
the case (a) and power-laws for the case (b), respectively, according to the corresponding
time domain statistics (waiting times distributions) of each driving time series.

As already mentioned in Section 4, the equivalent of the central zone of Figure 2—that
was selected in Section 2 for the analysis of “k waiting lengths”, in the quantized magnetic
fields of Figure 3—is the positive central fixed level Bk = 0.5 (the same for both cases (a)
and (b)). Therefore, our analysis focuses on the calculation of the “k waiting lengths” at
this central fixed magnetic field value. Specifically, we calculate the lengths L by counting
the number of consecutive ring positions for which the quantized magnetic field values
is Bk = 0.5. Namely, we sequentially scan the ring positions; the counting, for each case,
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starts as soon as the magnetic field takes the value Bk = 0.5, and the counting is continued
as long as the magnetic field in consecutive ring positions keeps taking this value; as soon
as the magnetic field takes any other positive or negative value, the counting is interrupted,
and so on.

Figure 4 presents the obtained distributions of the “k waiting lengths”, L, for the two
symbolic time series, using the following parameters for the device of Figure 1: a = 1,
d = 10, c = 0.1, I = 1, and N = 30, 000. Note that we chose to repeat the arithmetic
experiment of Figure 3 for a higher N value, which ensures the convergence of the magnetic
field distributions to the different zones/quantized values (see Section 4) for PA and PNA,
respectively. We should mention, however, that even if the results of Figure 3 are used, the
“k waiting lengths” distributions of Figure 4 practically remain unchanged.
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Figure 4. The distributions, P(L), of “k waiting lengths” for the central discrete positive value of the
magnetic field (shown in Figure 3): (a) for random currents’ directions, resulting to an exponential
decay P(L) ∼ e−0.34L, and (b) for currents’ directions determined by the 2D-Ising symbolic dynamics
in spin lattice site (15,88), yielding a power-law distribution P(L) ∼ L−1.24.

From Figure 4a,b it can be confirmed that the symbolic dynamics of the currents’
directions sequence are indeed reflected on the magnetic field values as estimated by the
PNA. Therefore, the PNA is consistent with the results expected, which means that it
preserves the two following basic behaviors of dynamic systems, that is:

(a) the exponential distribution of waiting times in “time series” that randomness domi-
nates, and

(b) the power-law distribution of waiting times in “time series” that are produced from
critical states (critical points) of natural systems.

The information provided by the waiting times’ distribution is important for time
series analysis, including the analysis of symbolic time series. The “k waiting lengths”,
L, at the quantized magnetic field value, produced by the PNA, can therefore indeed be
considered a space-domain-analogue to the waiting times at specific symbols of the driving
time series, as expected (see also Section 6). In direct analogy to what happens for waiting
times in the time domain, in the space domain, an exponential distribution of the “k waiting
lengths” means that the long lengths are cut. Thus, in such cases, the long-range correlations
and the dynamics produced by them are absent. The quantitative evaluation of how close
the system is to randomness can be inferred by means of the value of the negative factor
in the exponent of the exponential distribution (its absolute value is often called “the rate
parameter”). The more negative the factor is (the higher the rate parameter), the narrower
the (short) lengths range included the distribution, the closer the system is to randomness.
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At the opposite end of the complete absence of dynamics, the “full dynamics” case exists,
characterized by the presence of all scales of lengths L, from the very short up to very long
lengths, which could be equal to the size of the system. The distribution of these lengths
is mathematically expressed by power-laws. Thus, between the two extreme behaviors–
that is, the exponential and the power-law–all real systems’ dynamic behaviors can be
found, while their dynamic state can be inferred by the “k waiting lengths” distribution,
quantitatively evaluating the intermediate states between randomness and criticality. As
mentioned in Section 2, we chose to study the two extreme distributions of “k waiting
lengths”, i.e., the exponential and the power-law, as an indication of the completeness of
the transformation act performed by the device. Therefore, the study of the quantized
magnetic field can be an autonomous method that can be used to provide a quantitative
indication of how close or far the dynamics of a system is from each end, i.e., randomness,
on one hand, and extended dynamics at all scales as it appears at the critical point on the
other hand.

In order to demonstrate the ability of the device of Figure 1–using PNA for the
calculation of the quantized magnetic field–to respond to changes in the time series that
determines the current directions’ sequence, we present Figure 5. Specifically, Figure 5a
shows the deviation from the power-law of Figure 4b if the 2D-Ising time series is produced
for a temperature higher than the pseudocritical (T = 3.2 > Tc), whereas Figure 5b shows
the distribution of “k waiting lengths” if one imposes in the data which gave the power-law
of the Figure 4b a form of shuffling (surrogate type). In the latter case, an exponential
distribution results with a rate parameter close to the exponent of the randomness case
presented in Figure 4a.
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when the temperature in 2D-Ising model has not its critical value (T = 3.2 > Tc). (b) After a surrogate
type shuffling on the data that give the power-law of Figure 4b, the power-law is destroyed and an
exponential distribution for the “k waiting lengths” appears.

A Real Example: The DNA Sequence Case

The example presented in this section refers to a human (Homo sapiens) gene. The
DNA is a sequence of four bases, Adenine, Guanine, Cytosine, and Thymine, denoted by
the letters A, G, C, T, respectively. Bases A, G belong to the category of purines and bases
C, T to the category of pyrimidines. Thus, we could express the DNA sequence of the
GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) gene of the Homo sapiens, as a
sequence of purines and pyrimidines, that is as a symbolic “time series” of the symbols
“+1”, “−1”. After turning the gene into a symbolic “time series”, it was used as the driving
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time series to determine the currents’ directions of the device of Figure 1, and the PNA
was applied to calculate a quantized approximation of the magnetic field, as presented in
Section 4, whereas the distribution of the corresponding “k waiting lengths” was calculated
as presented in Section 5. The results are shown in Figure 6.
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of Figure 1 using PNA when the currents’ direction is determined by the symbolic dynamics of the
GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) gene of Homo sapiens.

As shown in Figure 6, the value of the negative factor in the exponent of the exponen-
tial distribution is higher than the corresponding exponent value of a random sequence
(−0.24 > −0.34) (Figure 4a). This means that longer lengths survive. Thus, in contrast to
a random sequence, the human gene presents some kind of structure. The correlations
that are responsible for this structure must have organized the coding part of the gene.
Finding quantitative relationships between a large number of genes through the use of the
PNA methodology is a challenging task for a future study. It will also be interesting in
the future to use the Blocked Bloom Filter methodology in genome assemblies [25], where
prime numbers are used in the random string algorithms.

In this example, we saw that a pure mathematical theory such as prime numbers,
combined with a device of physics such as a device of current carrying circular rings, is
able of extracting biological information from a biological structure such as DNA.

6. The PNA-Algorithm-Based Symbolic Time Series Analysis Compared to Time
Domain (Waiting Times) Analysis

As already mentioned in Section 2, the stratified magnetic field value zones, produced
for c < 1 by the studied current carrying circular rings device, present a symmetry around
zero, while the introduction of prime numbers for the approximate calculation of the
magnetic field values results to three positive and their symmetrical three negative fixed
magnetic field value levels (see Section 4). In the analysis results presented in Section 5,
the calculation of the “k waiting lengths” at the positive central magnetic field value
was considered.

It might have seemed an arbitrary choice to use the positive central field value for
the calculation of the “k waiting lengths”. However, we will show that this is not so and
that the specific choice is directly connected to the driving time series structure, i.e., to the
use of two symbols. When one performs the analysis of a two-symbol time series in the
time domain, then the only way is to use waiting times at one of the two symbols. For the
case of the random two-symbol time series (case (a)), keeping the same a and I parameters
of the device (a = 1, I = 1), at the limit c � 1, e.g., c = 0.002, the magnetic field values
produced by the device using PNA converge to two fixed magnetic field values, Bk = ±0.5.
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This result means that when the distance between consecutive rings is large compared to
ring diameter (c � 1) the two symbols “±1” are mapped by the device to the magnetic
field values Bk = ±0.5. As the consecutive rings distance is reduced (so that c < 1), the
“quantized” magnetic field of Figure 3a (see also Figure 3c) appears, where, as already
pointed out, two phenomena are observed. First, three distinct levels appear in the positive
half-plane and, respectively, three symmetric levels in the negative half-plane, where in
each half-plane the central level is Bk = +0.5 and Bk = −0.5, respectively. Second, as
shown in Figure 3c, the existence of a structure in the form of intermittency at all (spatial)
scales around the central level. Therefore, each central level value can be considered to
correspond to one of the symbols of the driving symbolic time series, so it is reasonable to
study the “k waiting lengths” at one of the central values–e.g., the positive one.

It is also interesting to investigate what happens for the two extreme time series cases
considered in Section 5, if one applies the analysis (i) to the “k waiting lengths” at the
negative central magnetic field value (the symmetrical to the positive central one), and
(ii) directly to the driving time series in the time domain, i.e., by analyzing the waiting times
at each of the symbols (“−1” and “+1”). For the ease of the reader, the results obtained for
the abovementioned cases are summarized in Table 1 along with the corresponding results
presented in Figure 4. It is mentioned that out of the total values of the driving symbolic
time series (N = 30, 000), the random case, as expected, presented an almost symmetrical
distribution of the two symbols (N“−1” = 15, 029, N“+1” = 14, 971), while in the 2D-Ising
case the “+1” symbol appeared more frequently than the “−1” symbol (N“−1” = 12791,
N“+1” = 17, 209).

Table 1. Analysis of “k waiting lengths” and waiting times distributions for the symbolic time series
produced by (a) a random number generator and (b) the 2D-Ising symbolic dynamics at spin lattice
site (15,88) in critical state.

“k Waiting Lengths” Distribution Waiting Times Distribution

At the Positive
Central Value

At the Negative
Central Value At “+1” Symbol At “−1” Symbol

Random P(L) ∼ e−0.34L

(Figure 4a)
P(L) ∼ e−0.33L P(L) ∼ e−0.32L P(L) ∼ e−0.31L

2D-Ising P(L) ∼ L−1.24

(Figure 4b) P(L) ∼ L−1.56 P(L) ∼ L−1.24 P(L) ∼ L−1.59

Table 1 Analysis of “k waiting lengths” and waiting times distributions for the symbolic
time series produced by (a) a random number generator and (b) the 2D-Ising symbolic
dynamics at spin lattice site (15,88) in critical state.

Table 1 shows that the analysis of the “k waiting lengths” at the negative central
magnetic field value yields almost the same results as the analysis of the “k waiting lengths”
at the positive one for the random case, where the distribution of the two symbols is almost
symmetrical but leads to different results (higher exponent) for the 2D-Ising case. Moreover,
the time-domain analysis (using the waiting times of the driving time series) showed that
for the random case, almost the same exponents as the ones of the “k waiting lengths”
analysis were found for both symbols. On the other hand, for the 2D-Ising time series, the
analysis resulted in different exponents for the waiting times at the “+1” symbol and for
the waiting times at the “−1” symbol, whereas the exponent calculated for the waiting
times at “+1” was the same as that obtained for the “k waiting lengths” at the positive
central value.

At this point, it must be clarified that in the case of 2D-Ising, if one increases the
statistics, i.e., if a long enough time series is produced by prolonging simulation runs, the
power-law exponents obtained for the waiting times at each symbol will eventually be
the same. For example, after increasing the length to N = 150, 000, the probabilities of
appearance of the two symbols become very close (49–51%) and the power-law exponents
for the “−1” symbol and the “+1” symbol were found to be 1.40 and 1.37, respectively—i.e.,
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much closer than the ones presented in Table 1 (for N = 30, 000). By further increasing N,
these two exponents will converge to the same value. However, this cannot be done for
real systems’ time series, especially if these are of relatively short length.

As already mentioned, the only way to analyze a two-symbol time series in the time
domain by means of waiting times is to use waiting times at one of the two symbols. In case
one of the symbols appears more often than the other, which is the usual case for (finite-,
much more for short-, length) time series resulting from real dynamical systems, then the
result depends on the symbol at which the waiting times are calculated for. Therefore, in
such a case, although the existence of dynamics can be revealed by the scaling behavior
of waiting times, the quantitative result is ambiguous; the involved exponent cannot be
definitely determined, since the exponent’s value depends on the considered symbol.

On the other hand, when one performs the analysis in the space domain, using the
“k waiting lengths”, the problem is mitigated in the following way. There are six possible
magnetic field values (three positive and their symmetrical three negative). Instead of
analyzing “k waiting lengths” at the positive or the negative central magnetic field value,
one can calculate the “k waiting lengths” at both of them, considering the rest four possible
values as values “interrupting k waiting”. That is, as long as the magnetic field values at
consecutive ring positions, k, keep taking any the two central field values, the magnetic
field is considered to be waiting at these values and the “k waiting length” is increasing;
as soon as the magnetic field takes any other positive or negative value, the “k waiting” is
interrupted. Consequently, a single distribution of “k waiting lengths” is obtained, which
has taken into account the dynamics of both symbols of the original symbolic time series.
Therefore, the exponents resulting from the above-described approach could be considered
as a quantitative expression of the dynamics of the original system, without the inherent
ambiguity of the time domain analysis as of which symbol best describes the system’s
dynamics. It is worth investigating in the future how close this estimate is to the actual
exponents by analyzing systems whose exponents are known. However, Section 7 presents
an example corroborating the view that the specific approach is indeed able to expose
the real dynamics of a complex system that can be described in terms of two-symbol
symbolic dynamics.

7. An Example Demonstrating the Usefulness of the Proposed Symbolic Time Series
Analysis Method

In this section, we present an application of the proposed PNA-algorithm-based,
symbolic time series analysis method to an artificial neural network (ANN). Through the
specific application, the usefulness of the analysis method is demonstrated for systems that
can be studied in terms of two-symbol symbolic dynamics.

As already mentioned in previous sections, the dynamics of a system can be revealed
through the study of the distribution of waiting times (directly in the time domain). For
a two-symbol symbolic dynamics time series, the information of this distribution can be
extracted very simply, as long as the probabilities of appearance of the two symbols are
exactly equal, i.e., 50%-50%. As already demonstrated in Section 6, any deviation from
this rule leads to waiting times distributions that are different for the two symbols, and,
consequently, the values of the exponents calculated for the corresponding waiting times
distributions are different. Therefore, the quantitative result is ambiguous; the involved
exponent reflecting the dynamics of the system cannot definitely be determined since the
exponent’s value depends on the considered symbol. Especially for real systems’ time
series of relatively short length, for which the statistics cannot be changed (as in the case of
simulation results where one can increase the statistics by just prolonging simulation time),
the problem is evident. As it is shown in the following, the application of the proposed
PNA-algorithm-based symbolic time series analysis by taking into account the dynamics
of both symbols of the original symbolic time series, as suggested in Section 6, that is by
calculating the “k waiting lengths” at both the positive and the negative central magnetic
field values, provides a unique way to expose the real dynamics of such a complex system.
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7.1. The Hybrid Spin Model

In the following, we briefly present the key concepts of a hybrid spin model (HSM)
that has recently been proposed [10] by combining concepts of ANNs with the stochastic
dynamics of Ising spin lattices. The reader is referred to [10] for details on the HSM.

We focus on quantized states in an ANN by considering a network of n neurons,
whose output states are random variables ξi(t), i = 1, 2, . . . , n that can take the values +1
or −1. Each neuron of the network connects to all others comprising an extensive feedback
structure spanning over the whole network. Moreover, the connection weights wij may take
either positive or negative values, reflecting synaptic properties in the connection between
two neurons. Then, according to the ANN formalism, the energy function representing the
state of the HSM at time t is given by:

E(t) = −∑n
i,j=1 wijξi(t)ξ j(t) (12)

The quantity 1/β is considered the control parameter of the HSM. As it is known [10,26],
such a quantity corresponds to the temperature of a thermal system that undergoes a phase
transition of second order. Then, a local field could be mi(t), which under the consideration
βi = β takes the same value for all neurons [10]:

mi(t) = tan h
(

β

2
E(t)

)
, (13)

where t is the algorithmic time of the model [10].
The mean field of all neurons is estimated as [10]:

Field(t) = ∑n
i=1 mi(t)

n
. (14)

The HSM presents similarities with spin systems at thermal equilibrium, such as Ising
models, defined on lattices of various forms and dimensions–usually two or three dimen-
sions. An effective algorithm that produces configurations at thermal equilibrium is the
Metropolis algorithm, whose basic principle is the second law of Thermodynamics which
describes the energy minimization in macroscopic systems. According to this algorithm,
the configurations at constant temperature are selected with Boltzmann statistical weights,
i.e., e−βH , with H the Hamiltonian of the spin system. In the case of nearest neighbor
interactions, H is given by Equation (5). The main differences of the HSM from the Ising
models are: (a) in the HSM no lattice structures are considered and thus the interactions
between the neurons extend over the entire network, and (b) in the HSM the Boltzmann
statistics have been replaced with the Fermi statistics that considers spins as fermions [10].

7.2. Analysis of the HSM Time Series

Let us consider an HSM of n = 20 neurons, with a control parameter 1/β = 2.3.
For the specific HSM, the time series of the quantity Field(t) was produced according to
Equation (14), for the algorithmic time t = 1, 2, . . . , 150, 000. For the Metropolis algorithm
that produces the Field(t) time series, Jij = 1 has been considered in the calculation of H
(see Equation (5)). The choice of the above-mentioned value for the control parameter in an
HSM with n = 20 has been thoroughly justified in [10]. Here it is just mentioned that for
1/β = 2.3, and under the appropriate initial conditions, it has been found that the lengths
of the waiting times extend to all scales, which leads to the conclusion that for the specific
value of the control parameter, the HSM is in its critical state [10].

Figure 7 presents a 1000-points-long segment of the produced Field(t) time series to
show the typical variation of Field vs. the algorithmic time t.
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Figure 7. A 1000-points-long segment of the HSM Field(t) time series.

In order to proceed with the analysis, the whole obtained HSM Field(t) time series
(150, 000 values) is first converted into a two-symbol symbolic dynamics time series by
corresponding positive values to the “+1” symbol and negative values to the “−1” symbol.
In the resultant symbolic dynamics time series, the probability of appearance of each
symbol, “−1” and “+1”, was 47.5% and 52.5%, respectively.

If one performs an analysis of waiting times (i.e., directly in the time domain), as
already mentioned, one can take into account only one of the symbols. Consequently,
there are two options to determine the distribution of the waiting times, Lt, from which
the dynamics of the HSM is expected to be revealed: (a) by considering as waiting times
the number of consecutive time points that the time series remains at the symbol “+1”,
which are interrupted by the waiting times at the symbol “−1”; and (b) by considering the
waiting times at the symbol “−1”. As it has been shown in Section 6, if the probabilities
of appearance of the two symbols are the same, then the exponents of the distributions
obtained by these two ways would be the same. Here, however, there is a deviation
from this symmetry. In Figure 8, the results for these two waiting times distributions
are presented.
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The fitting line has been derived using the fitting function f (x) = p1x−p2e−p3x that is
usually employed to calculate the critical exponents [8]. The fitting result for the distribution
of Figure 8a (since p2 = 1.33 and p3 ≈ 0) is the power-law P(Lt) ∼ Lt

−1.33, whereas for
the distribution of Figure 8b (since p2 = 1.18 and p3 ≈ 0) is the power-law P(Lt) ∼ Lt

−1.18.
The observed asymmetry in the symbolic dynamics, i.e., in the probability of occurrence
of “+1” (52.5%) and “−1” (47.5%), is the reason that the exponents obtained for the two
considered waiting times analysis options are different.

The first observation is that both distributions of Figure 8 are very close to the power-
law. As it has been mentioned in the previous sections, this indicates critical state; that is,
the considered HSM is in critical state. The second observation is that the exponents p2 that
quantitatively reflect these critical dynamics are quite different, although the probabilities
of occurrence of the two symbols do not significantly differ. To understand how important
this difference is, the concept of universality classes from the theory of critical phenomena
is used. As it has been shown in [8], the exponent of the power-law, q (i.e., p2 of the
f (x) fitting function), above the critical point is directly connected to one of the 6 critical
exponents, specifically to the exponent δ (isothermal exponent) with the relation:

q = 1 + (1/δ). (15)

Using Equation (15) and the above-presented results, it is found that for case of the
“+1” branch of the time series, the exponent δ is calculated to be δ = 3, which indicates
the MFT (mean field theory) universality class, whereas for the case of the “−1” branch
the calculated exponent δ is very close to δ = 5, which indicates the 3D-Ising universality
class [5]. Thus, beyond the information about the existence of criticality, the particular dy-
namic evolution inferred by the value of the exponent q is completely different if calculated
for each branch separately.

From the above-presented results, it is clear that the waiting times analysis (analysis
of the symbolic time series in the time domain) leads to an ambiguity about the dynamics
of the examined HSM; no specific conclusion can be drawn. As mentioned in Section 6, the
only way to mitigate this problem is to apply the proposed PNA-algorithm-based symbolic
time series analysis by taking into account the dynamics of both symbols of the original
symbolic time series, i.e., by calculating the “k waiting lengths” at both the positive and
the negative central magnetic field values (+0.5, −0.5), considering the rest four possible
values of the magnetic field as values “interrupting k waiting”.

In the Figure 9, we present the results obtained from the PNA-algorithm-based sym-
bolic time series analysis by taking into account the dynamics of both symbols.
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Using once again the fitting function f (x) = p1x−p2 e−p3x on the distribution of the “k
waiting lengths” of Figure 9, since p2 = 1.19 and p3 ≈ 0, the result is P(L) ∼ L−1.19. The
power-law exponent q(= p2) = 1.19 indicates the 3D-Ising universality class. This result is
consistent with that of the dynamics of the HSM described by the Metropolis algorithm,
and thus it follows the dynamic evolution of the Ising models. Therefore, the proposed
PNA-algorithm-based symbolic time series analysis carried out by taking into account the
dynamics of both symbols of the original symbolic time series proved to be able to uncover
the specific dynamics of the HSM, allowing us to recognize how such an ANN evolves
dynamically over time. Another important outcome is that this result also confirms that the
HSM is a complex system because the exponent q does not come out as an average value of
the corresponding exponents obtained for each one of the two branches (“−1” and “+1”)
of the time series if taken separately, nor is it affected by the statistics of the two symbols.

The application presented for the HSM is considered an important application as with
the specific ANN it has recently been possible to achieve a simulation of the real biological
neuron, where the neuron spikes but also the dynamics of the fluctuations in the inter-spike
time interval were successfully reproduced [27]. Two very interesting applications of the
proposed PNA-algorithm-based symbolic time series analysis to real systems are currently
in the process of implementation. Specifically, related to the dynamic behavior of strong
earthquake preparation processes [28] and memristors [29].

8. Conclusions

Any symbolic time series of two symbols, that can emerge from a dynamical system,
can be transformed through the device of Figure 1 into a magnetic field, whose values are
stratified. Through the application of an algorithm based on the theory of prime numbers–
the PNA–it is possible to convert this field into a field of quantized values. This allows
the reproduction of the waiting times’ distribution of the symbolic dynamics time series
in the space domain (ring positions k), in the form of the distribution of the “k waiting
lengths”, L, from which the dynamics of the system can be determined. Therefore, the
spatial allocation of the values of such a magnetic field can be considered as a “fingerprint”
of the dynamics of the system that produces the symbolic time series. We confirmed this
result with two extreme examples of dynamics, referring to (a) the random generation of
the “+1”, “−1” symbols through a random number generator, and (b) the sequence of
+1, −1 spin states of a lattice point of the 2D-Ising model in critical state. Moreover, the
symbolic sequence produced by the DNA of the GAPDH (Glyceraldehyde-3-Phosphate
Dehydrogenase) human gene was also successfully analyzed as a real-world, intermediate
dynamics case.

In the case that the analyzed two-symbol time series is of relatively short length and
one of the symbols appears more often than the other–which is the usual case for time
series resulting from real dynamical systems–the analysis in the time domain, i.e., by
means of waiting times, can only be applied to one of the symbols, leading to ambiguous
quantitative result; the involved exponent cannot be definitely determined, since the
exponent’s value depends on the considered symbol. On the contrary, the proposed space
domain analysis can be applied by taking into account the dynamics of both symbols,
i.e., a single distribution of “k waiting lengths” is obtained, which has taken into account
the dynamics of both symbols of the original symbolic time series. Thus, the resulting
exponents could be considered as a quantitative expression of the dynamics of the original
system, without the inherent ambiguity of the time domain analysis as of which symbol best
describes the system’s dynamics. This unique feature of the proposed analysis method was
confirmed by successfully inferring the universality class of an artificial-neural-network-
based hybrid spin model by the value of the critical exponent δ, whereas for the same
example, the analysis of waiting times led to an ambiguous quantitative result.

We consider that the suggested approach offers a new perspective in the study of
complex systems that could offer a unified way of studying diverse complex systems, which
is something that remains to be explored in depth in the future. For example, one could
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apply the suggested analysis to other artificial neural networks, where two-symbol symbolic
time series can be produced by corresponding the symbols to inhibitory/excitatory states,
to magnetic or photonic materials, or polarization systems, corresponding the two symbols
to polarization states, logic circuits, two-state switches, stock-market time series, after an
appropriate symbolic coarse-graining, symbolic representations of sociological, humanistic
or linguistic data, etc.

However, beyond the applications, the introduction of the theory of prime numbers in
the study of natural phenomena is in itself an important fact that has conceptual extensions.
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Appendix A

FORTRAN code for the calculation of the magnetic field through the proposed prime
number approximation, the prime-numbers-based algorithm (PNA), for the random case.

1. Code for the production of the random current directions Ik−n, Im+k, described by a
dichotomic variable taking the values +1, −1 with equal probabilities, while “NuRings”
corresponds to the length of the time series. In the case of a given two-symbol symbolic time
series this step is omitted since Ik−n, Im+k are directly determined by the corresponding
time series symbol (by mapping the chronological order of the symbols of the symbolic
time series to the positions k of the rings, while the symbol of each specific time point is
used to determine the flow direction of the ring’s current at the corresponding position).

First step: Determination of currents directions (here the random case is shown)
do L = 1,NuRings

call random(rnd)
if(rnd.le.0.5) then

I(L) = 1
else

I(L) = −1
endif

enddo

2. Code for the calculation of the series of Equations (9) and (10) during the sec-
ond step of PNA. The introduction of prime numbers has been done in the form of the
vector elements: “prime(i)” for i = 1 to 168 (for the first 168 prime numbers, i.e., all
p < 1000), while “piA”, “piB” are the values of the series of Equations (9) and (10) cal-

culated using Equation (11), i.e., ∑∞
n=1

1
n3 = ∑∞

m=1
1

m3 = ζ(3) ≈ ∏p:prime∈{1,1000}
p3

p3−1 .

Second step: Prime numbers introduction
piA = 1
do I = 1168

piA = piA*((prime(i)**3)/(prime(i)**3 − 1))
enddo
piB = piA

3. Code for the calculation of the magnetic field, during the third step of PNA. Currents’
directions, as determined by the first step of PNA, are introduced by the inner loops (shown
in the following code as “Inner Loop 1” and “Inner Loop 2”) by calculating the products
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∏k−1
n=1 Ik−nζ(3) and ∏N−k

m=1 Im+kζ(3) (denoted in the code as “piA” and “piB”, respectively),
and to the final calculation of the magnetic field value by the outer loop (shown in the fol-
lowing code as “Outer Loop”). “NuRings” is the total number of rings, “I(k)” is the current’s
sign (+1 or −1) for the k-th ring, “piA”, ‘piB” are considered to be approximations of the
two sums appearing in Equation (4) (i.e., that ∑k−1

n=1
Ik−n

(n2+c2)
3/2 ≈ ∑k−1

n=1
Ik−n
n3 ∼ ∏k−1

n=1 Ik−nζ(3)

and ∑N−k
m=1

Im+k

[m2+c2]
3/2 ≈ ∑N−k

m=1
Im+k
m3 ∼ ∏N−k

m=1 Im+kζ(3)), “coef” is the quantity 1
2 α2d−3 I ap-

pearing in Equation (4), “Beta(k)” is the magnetic field at the k-th position of device’s axis
(Equation (4)).

Therefore, the value of the magnetic field at the position k is approximated as:

Bk ∼ 1
2 α2d−3 I

{
Ik
c3 + ∏k−1

n=1 Ik−nζ(3) + ∏N−k
m=1 Im+kζ(3)

}
, that is, to be exact, as: Bk ∼

1
2 α2d−3 I

{
Ik
c3 + ∏k−1

n=1

(
Ik−n ∏

p:prime∈{1,1000}

p3

p3−1

)
+ ∏N−k

m=1

(
Im+k ∏

p:prime∈{1,1000}

p3

p3−1

)}
.

Third step: Introduction of currents’ direction information
* Start of Outer Loop
do k = 1, NuRings

* Start of Inner Loop 1
do n = 1, k − 1

piA = I(k − n)*piA
enddo

* End of Inner Loop 1

* Start of Inner Loop 2
do m = 1, NuRings-k − 1

piB = I(m + k)*piB
enddo

* End of Inner Loop 2

Beta(k) = coef*(I(k)*(c**(−3)) + piA + piB))

Enddo
* End of Outer Loop
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