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Abstract: In this article, we establish the concept of intuitionistic fuzzy double-controlled metric-like
spaces by “assuming that the self-distance may not be zero”; if the value of the metric is zero, then
it has to be “a self-distance”. We derive numerous fixed-point results for contraction mappings. In
addition, we provide several non-trivial examples with their graphical views and an application of
integral equations to show the validity of the proposed results.

Keywords: controlled metric-like space; intuitionistic fuzzy metric space; fixed points; integral equation

1. Introduction

In 1965, Zadeh [1] developed “fuzzy notion” to contrast imprecise terms, in which the
membership function is used. Atanassov [2] introduced the concept of intuitionistic fuzzy
sets in which membership and non-membership functions are used. Fuzzy sets presented
in [1] and metric spaces are combined to establish the concept of fuzzy metric spaces, in
which the notion of the continuous t-norm is used, which was introduced by Schweizer
and Sklar [3]. The notion of fuzzy metric spaces was first introduced by Kramosil and
Michalak [4] in 1975 and then George and Veeramani [5,6] updated it in 1994. Garbiec [7]
established the fuzzy version of the Banach fixed-point result.

Harandi [8] established the concept of metric-like spaces and proved several fixed-
point theorems for contraction mappings. The notion of metric-like spaces is a generaliza-
tion of metric space. Mlaiki [9] established the concept of controlled metric-type spaces.
Mlaiki et al. [10] established the notion of controlled metric-like spaces as a generalization of
controlled-type metric spaces. Shukla and Abbas [11] established the notion of fuzzy metric-
like spaces as a generalization of fuzzy metric spaces. Recently, Javed et al. [12] introduced
the notion of fuzzy b-metric-like spaces as a generalization of fuzzy b-metric spaces and
fuzzy metric-like spaces and proved several fixed-point results for contraction mappings.

In 2004, Park [13] established the notion of intuitionistic fuzzy metric spaces and
discussed the topological structure. Konwar [14] established the concept of intuitionistic
fuzzy b-metric spaces as a generalization of intuitionistic fuzzy metric spaces. Shatanawi
et al. [15] used an E.A property and the common E.A property for coupled maps to obtain
new results on generalized intuitionistic fuzzy metric spaces, and Gupta et al. [16] obtained
some coupled fixed-point results on modified intuitionistic fuzzy metric spaces and applied
them to the integral-type contraction. Recently, Sezen [17] established the concept of
controlled fuzzy metric spaces and derived several fixed-point results. Saleem et al. [18]
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established the concept of fuzzy double-controlled metric spaces as a generalization of
controlled fuzzy metric spaces and proved several fixed-point results for contraction
mappings with an application of integral equations. Itoh [19] derived several random
fixed-point theorems with an application of random differential equations in Banach spaces.
Numerous fixed-point results of generalizations of fuzzy metric spaces were established by
the authors [20-24]. Recently, Farheen et al. [25] introduced the concept of intuitionistic
fuzzy double-controlled metric spaces and proved some fixed-point results. The authors
in [26-30] worked on different interesting applications of the fixed-point theory.

In this manuscript, we introduce the concept of intuitionistic fuzzy double-controlled
metric-like spaces by replacing the following properties of intuitionistic fuzzy double-
controlled metric spaces:

p(@,0,v) =1forallv >0, ifand only if @ = o,

N(w@,0,v) =0forall v > 0, if and only if @ = o,
p(@,0,v) =1forallv >0, if and only if @ = o,

with
p(@,0,v) =1forallv > 0, implies @ = o,

N(w,0,v) =0forall v > 0, implies @ = g.

We assume that the self-distance may not be zero; if the value of the metric is zero,
then it has to be a self-distance and several fixed-point results for contraction mappings
must be proven. Additionally, we establish a number of non-trivial examples with their
graphs and an application for integral equations.

2. Preliminaries

In the section, we give some basic notions that are helpful for readers to understand
the main section.

Definition 1 ([1]). A fuzzy set F defined in a space X is a non-empty set of 2-tuple elements:
F={(xulx), xe X}, VxeX

where p : X — [0,1] is a membership function of a set S, which for every element x € X assigns
its membership degree p(x) € [0,1] to the fuzzy set F. The set X is called a domain of discourse
and we write F C X.

Definition 2 ([2]). Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object having
the form A = {(u(x),v(x)) : x € X}, where the functions u,v : X — [0,1] define, respectively,
the degree of membership and degree of non-membership of the element x € X to the set A,
which is the subset of X, and for all x € X, 0 < u(x) +v(x) < 1. Furthermore, we have
t(x) =1 — pu(x) —v(x), called the index of the intuitionistic fuzzy set or the hesitation margin
of x € A. mt(x) is the degree of indeterminacy of x € X to the intuitionistic fuzzy set A and
n(x) € [0,1] for every x € X.

Definition 3 ([13]). A binary operation *: [0, 1]x [0, 1] — [0, 1] is said to be a CTN if it satisfies
the following conditions:

cxw=wxg, (V)gwel0,1];

* 1S continuous;

¢xl=¢ (V)ge [0 1);

(crw)xp=cx(wxp), (V)¢ wpel01];

If¢<pand w < A withg, w,p,A€ [0, 1], then ¢ w < p *x A.

SAIC NS
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Definition 4 ([13]). A binary operation O: [0, 1] x [0, 1] — [0, 1] is said to be a CTCN if it
satisfies the following conditions:

cOw=wOg, forallg,w € [0, 1];

O is continuous;

¢ O0=0, forallg € [0, 1];

(¢ Ow)Op=¢O(w O p) forallg,w,p € [0, 1];

If ¢ <pand w < A, withg,w,p,A € [0, 1], thenc O w <p O A.

O W=

Deﬁnltlon 5 ([14]). Suppose =Z # @. Let x bea CTN, O bea CICN and b > 1. Let o, X be FSs

on Z x B x (0,00), If they satisfy the following conditions for all @,0 € E and o,v > 0:

(IFB1) p(w, 0,v) + N(co, 0,0)<1;

(1FB2) p(®,0,v) >
(

(IFB3) (@, 0 )-1@(@-@,

(IFB4) p(@,0,v) = p(0,@,v);

(IFB5) (@, A, b(v +0)) = p(@,0,0) * p(e, A, 0);

(IFB6) p(w®, 0, -) is a non-decreasing function of R and lzm p((D ov)=1;
(IFB7) N(®@, 0,v) >

(IFB8) X(w, Q,v) = 0 S0 =0;

(IFB9) N(®@, 0,v) = R(g, @, v);

(IFB10) X(@, A, b(v+0)) < R(w@,0,v) OX(0, A, 0);
(IFB11) N(e@, o, -) is a non-increasing function of R and lim R(w@,0,v) =0;
V—00

then (2, p,RN,*, O) is said to be [FBMS.

Definition 6 ([25]). Let £ # @. Suppose IL,E: £ X & — [1,00) are non-comparable functions.
Let  be a CTN and O be a CTCN. Let p, N be FSs on & x 2 x (0, c0). If they satisfy the following
conditions for all @, 9, A € E:

(IFD1) p(w, 0,v) + N(co, o,v) <1;

(IFD2) p(®,0,v) >

(IFD3) p(®, 0,v) = 1for allv>0, if andonlyif @ = ¢;

(IFD4) p(w,0,v) = p(0,@,v);

(IFD5) p(@,A, v+ 0) > p((D, 0, 7H(Z)’Q)) * p(g,/\, ﬁ);
(IFD6) p(w,0,-) : (0 oo) — [0, 1] is left continuous;
(IFD7) X(w, 0,v) >

(IFD8) X(w, 0,v) = Ofor allv>0,if andonlyif @ = o;
(IFD9) X(®, 0,v) = R(0, @, v);

(IFDIO)N(@AU+Q)<N<LD 0 TS ))o N(Q, , (A));

(IFD11) X(®, 0,) : (0,00) — [0,1] is left continuous;
then (2, p, N, *,O) is said to be [FDCMS.

3. Main Results

In this section, we introduce the concept of IFDCMLSs and prove some FP results for
contraction mappings.

Definition 7. Let E # @. Suppose ILE : & x & — [1 oo) are non-comparable functions. Let *
bea CTN and O bea CTCN Let @ and X be FSs on & x E x (0, 00). If they satisfy the following
conditions for all @,0,A € E :

(IFDL1) p(@, 0,v) + N(c@, o,v) <1;

(IFDL2) p(w@, 0,v) >

(IFDL3) p(w, 0,v) = 1 for all v > 0, implies @ = g;

(IFDL4) p(@, 0,v) = (0, @, v);
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(IFDL5) p(@, 1,0+ 0) = 0 (@, 0, 1% ) * (0., ﬁ)
(IFDL6) p(w@,0, ) : (O 00) — [0, 1] is left continuous;
(IFDL7) X (@, 0, v) >

(IFDL8) X(®, 0,v) = Ofor all v > 0, implies @ = g;

(IFDLY9) X(w, 0, v) = N(g, @, v);

(IFDL10) R(@, A, v + 0) < N(w 0, H(wq)) o N(Q,A,ﬁ);

(IFDL11) X(w, 0, -) : (0,00) — [0,1] is left continuous;
then(E, p, R, *, ) is said to be an IFDCMLS.

Example 1. Suppose = = [0,10] and IL, € : — [1, 00) are non- compamble functions given
byIl(@,0) =@+ o0+ 1and &(w@,0) = cD2+Q +1 Define p,N : E x 5 x (0,00) — [0,1] by

((D U) — #

PLo/ev) = v+ max{®@, 0}
and

R(@,0,0) = max{@, 0} ‘

v+ max{®, o0}

Then, (2, p,N,*,0) is an IFDCMLS with CIN ¢+ w = ¢w and CTCN ¢ O w =
max{g, w}.

Remark 1. In IFDCMLS, the self-distance may be not equal to 1 for the membership function or 0
for non-membership function. So, every IFDCMS is an IFDCMLS, but the converse is not true.

Consider Example 1, and let @ = ¢ = 1. Then

p(@,0,v) = m #1
and 1)
max
R(@ 0v) = v+ max{1,1} 7 0.

Remark 2. Example 2 is also fulfilled for CTN ¢ * w = min{g,w} and CICN ¢ O w =
max{g, w}.

Example 2. Let E =[0,1] and IL,E: E x & — [1,00) be two NCFs given by I1(w,0) = @ +
Q+1and€(c@g) @? + 0% +1.
Define , X : E x 5 x (0,00) — [0,1] as

2
v max{®,
p((D’Q’ U) = 27 N((D/ Qr U) = 7{ Q} PR
v+ max{®, 0} v+ max{®, 0}

Then (E,p,R,*,0) is an IFDCMLS with CIN ¢*x w = ¢w and CICN ¢ O w =
max{g, w}. The graphical behavior of functions P and N is shown in Figure 1.

Remark 3. The above example also holds for

(e, 0) lifw=o,
w, = max
¢ 1J7:1m{(i{7(i)}g} lfw 7& ¢

and

lifo=o,
E(w,0) = 1+max{@?,¢° } ifo#o

min{@2,g2 }
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Figure 1. The graphical behavior of the functions P and X with v = 2, where the yellow color
represents P’s behavior and the blue color represents behavior of X.

Remark 4. Example 3 is also fulfilled for CTN ¢ x w = min{g,w} and CTCN ¢ O w =
max{¢g, w}.

Example 3. Let E =[0,3] and IL,E: E X E — [1,00) be two NCFs given by I1(@,0) = @ +
0+1and&(w@,0) = @*+ 0> — 1. Define p, N : E x E x (0,00) — [0,1] as

_ v+ min{®, 0}
pl@ o) = v+ max{®@, 0}
and ]
R(@,0,0) = 1 v+ min{®, 0}

v+ max{®, 0}

Then (&, p,R,*,0) is an IFDCMLS with CIN ¢*xw = ¢w and CICN ¢ O w =
max{g, w}. The graphical behavior of functions P and N is shown in Figure 2.

Figure 2. The graphical behavior of the functions P and X with v = 2, where the yellow color
represents P’s behavior and the blue color represents behavior of X.
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Remark 5. In the above example, if we let ¢ x w = min{g,w}, ¢ O w = max{g, w},
@=1,0=2A=30=001, 0= 002withT(®,0) = @+ 0+ 1and &(@,0) = @* +¢* — 1.
Then, it is not an IFDCMLS.

Proposition 1. Let & = [0,1] and I1,E: E x E — [1,00) be two NCFs given by I1(®@,0) =
2(@+o0+1)and &(@,0) = 2(@? + 0> + 1). Define X, pas

n _ max{@, g}z n _ max{@, g}z _
p(@, V") =19 o, R(w,0,0") =110 ot forallw,0 € E,v > 0

Then, let (E, p, N, *,0) be an IFDCMLS with ¢ * w = ¢w and ¢ O w = max{g, w}. The
graphical behavior of functions P and N is shown in Figure 3.

Figure 3. The graphical behavior of the P and X functions with n = 10 and v = 2, in which the yellow
color depicts P’'s behavior and the blue color depicts behavior of X.

Remark 6. Proposition 1 is also satisfied for CTN ¢ * w = min{g,w} and CTCN ¢ O w =
max{g, w}.

Proposition 2. Let & = [0,1] and I1,E: E x E — [1,00) be two NCFs given by I1(w@, 9) =
2(@+0+1)and &(@,0) = 2(@? + ¢*> + 1). Define R,  as

max{x, y}z -1
o forall ,0 € 5,v > 0.

" max{x,y}z -1 n
p(@,0,V")= {0 " , R(@,0,0")=1— |0

Then (£, ,N,*,0) is an IFDCMLS with CIN ¢*x w = ¢w and CICN ¢ O w =
max{g, w}. The graphical behavior of functions P and N is shown in Figure 4.

Remark 7. The above proposition is also satisfied for CTN ¢ « w = min{g, w} and CTCN
¢ O w=max{¢g, w}.

Definition 8. Let an open ball B(,r,v) in an IFDCMLS (&, p, N, %, O) with center @, radius
v, 0 <r <1and v > 0 be defined as follows:

B(w,r,v) ={0€ E: p(@,0,v) >1—r1, X(@,0,v) <r}.
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Figure 4. The graphical behavior of the P and R functions with n = 1 and v = 2, in which the yellow
color depicts P’'s behavior and the blue color depicts behavior of R.

Definition 9. Suppose (Z, p, X, *,0) is an IFDCMLS. Let {®@, } be a sequence in Z. Then

(i) {@n} is said to be a convergent sequence if there exists @ € & such that

Ji)ngop(wn, @, v) =p(®, ® V), nli)ngoN((Dn, @, v) =NX(w@, @, v), forallv> 0.

(i)  {R,} is said to be a Cauchy sequence (CS) if for every v > O there exists ng € N such that

Jgrgop(wn, @pap, U),and Jgrgo (@n, @y, V) exists and is finite

(iii) An IFDCMLS(E, p, X, *, O)is said to be complete if every CS is convergent in E,that is
nlg’zo@(wm w}"l+/\/ U) = JL}"C}O@(CDH/ ('D/ U) = @(CD, (D/ U)/

JLHZON(‘D”’ @pip, V) = JL"ZON(‘D”’ @, v) =X(w, @, v).

Lemma 1. Let @ and ¢ be any two points in an IFDCMLS (E, o, X, x,0). If forany T € (0,1),
we have
p(@,0,T0) = p(@,0,v), N(®@,0,Tv) < X(@,0,0),

then @ = o.

Theorem 1. Let (Z,p,N,%,0) be a complete IFDCMLS with ILE: Ex & — (0,1) and
0 < T < 1, assume that

lim p(@,0,v) =1and lim R(@,0,v) =0 1)
v (o)

V—00

forall 0,0 € Eand v > 0. Let ¢ : E — = be a mapping satisfying

p(E@, E0,T0) > p(@, ,v) and R(E@, fo,T0) < N(®@, ,) @

forall @,0 € Eand v > 0. Then ¢ has a unique FP.
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Proof. Suppose @ is an arbitrary point in Z and define a sequence @, by @, = £"@¢ =
&@n—1,n € N. By utilizing (1) for allv > 0, we deduce

v
@(wn/ (Dn+1/ TU) = p(gwn—lz ‘:wn/ TU) 2 p(wn—lzwn/ U) Z @(wan (Dl’l—l/ %)

v v
> @(@nﬁ%,@nfz/ *2> > > @(C@O/wl/ ﬁ)
T T
and

v
N((Dn/ Wy 41, TU) = N(‘:‘Dn—lz C@y, TU) < z\z(@n—l/(ﬂn/ U) < N(‘Dn72/ Wy—1, ?)

v v
S N(wn73l Wy-—2, 2) S e S Z\2((1—)0/(01/ nfl)
T T

We obtain

v v
p(wn/ wn—i—erU) 2 @(COO;COL W) and N((Dnrwn+l/ TU) S N(CDO/ w1, ﬁ) (3)

for any A € N, using (IFDL5) and (IFDL10),

v v
@, Dpyp, V) 2 Q| O, @nil, 57—y @n+1, @ntAs
o(n Dy, V) p( e Z(H(wn,wn+1))) *p< e 2(3(@n+1/@n+A>))

v v
p( s 2<H<wn,wn+l>>) L 2 )2 (E(@n g1, @ A )LDy 11, Dri2))

v
* Q| Opy2, @ntas )
< " " (2)2(€(wn+1/wn+/\)z(@n+2rwn+/\))
> go(d) @ v ) * p(c@ @ v )
e 4 I N (TT o~ o~ N\ 4 2/
SR (CIEEY) T QR E (@1, @ T (@1, @ 12))

v
* @Wy42, W43,
p( " " (2)3(8(&7;14-1, (Dn+?\>z(wn+2/ (@n+A)H((Dn+2, wn+3))>

v
* 0| Opy3, @pyrs )
(n+ " (22 (@1, @A) @2, @A )E(@n3, Dp 1))
> p((ﬂ [ v )*p((@ () v )
= ’ ' 57/ 177~ .~ 1/ 2,
O BTG,y )] ) T\ Gy, @y @, @ 2)

v
* @ 2/(0 37
@< I (2)3 (E( @it 1, @y 2 )E(Ong2s Dy r ) TH(@ny2, w”+3>)>

v
* Q| Wyi3, @ni4a, ) ¥ o e ek
( R ()4 (8 (@1, @i r )E (@t 2, @ n)E(@nt3, @ )T (@43, Dris) )

v
@(‘D A2, Dyt A—1s — )
" PV (AT (& (@1, @nr ) (@2, @ n) +  E(@ngr—2) @t )L @y -2, @nir—1))

v
* Q| OpyA—1,Dntrs — )
< " "2 A L(E (@1, @i n)E (@2, @ngr) S @ a1, @ur))

and

v v
S — ON(w oy )
2<H<wn,wn+1>>> I 2 (&(@uy1, @nra))

N (ch, @py Ay U) <R (wn/ Wp1,

v v
—— — JON ((D , 010, )
2<H<wn,wn+1>>) L 2 ()2 (E (@1, @par )T @t 1, @nt2))

S N (‘Dn/ wn+1r
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v
O N ((D 2, @Ontr, )
e (2)?(E(@p41, @y )E(@p12, @pyp))

v v
< N| w,, @ o< | O N((ﬂ , @ , )
( S 2<H<wn,wn+l>>) ML ()2 (E( @1, @A) (@1, @r2) )

v
O N <a) 0, 013, >
TSI (2)3(E(@p41, @ )E( @t 20 @) ) TL( @2, D 13))

v
O N ((D 3, OptA, )
A (2)3 (8 (@ps1, @t )E(@ny2, @) E(@nt3, @n))

v v
<N| @y, @ e~ | O N((O , @ ’ )
( o 2<H<wn,wn+l>>) T (2)2 (& (@41, @A) TT(@p 1, @nt2))

v
O N <(D /(D 4 >
n+2, Wn+3 (2)3(€(wn+1/ wn+/\)g(c’{)n+2, LDn+/\)H(wn+2/ @n+3))

U
ON((D 3,14, )O"'O
IR ()4 (€ (@1, @ r (@t 2, @2 ) E(@py3, @2 ) T (@3, @)

v
R <6@ A—2/ @pir—1, )
" " (2)M 1 E(@pt1, @y r JE(@ny2, @nyn) - E(@pga—2, @ ) )TL(@pyp—2, @pip—1))

v
O N ((D A—1, @ntAs )
" MY 2 T (E (@1, @y A)E( @2, @i n )E (@3, @pyn) - E( @1, @pin))

Using inequalities in (3), we have

= @<‘°°"”1' 2<r>"—1<n<wmwn+l>>) * p(‘”‘” “r <2>2<T>n<e<wn+1,wn+A>n<wn+1,com)))

v
* O (DO/ (Dl/ >
( (23 (7)1 (E( @1, @pa A )E( @12, @y )T @2, Dy 3))

v
* | @o, @1, >**
< (2)H(T)" 2 (E( @1, @pa A )E( @12, @) )E(@ 13, @y p ) TI(@p 43, @ ya))

v
% (COO/ 1, — — )
(2))‘ 1(7)"+’\ Z(E(wnﬂ,@n+A)€(@n+2,(Dn+/\) (@ a—2, @ ) )T (@p a2, @pga-1))

v
* 0 (DOI(Dll — — )
< ()M () A1 (& (@1, @2 )E (@2, @) )E (@3, @pin) -+ E(@pia—1, @pin))

and

Z(T)”‘l(H(@n/wnH))) N N<w0' o (2)2(T)”(E(wnﬂ,@n+A)H(wn+1,@n+z)))

S I <(D0/ @1,

v
O N((D , @01, )
o (22 ()" L (E( @1, @pa A )E( @42, @y p )TT(@p 42, @ y3))

v
ON((Oo,(i)l, )Q"'O
(2)*(7)"2(E(@n41, @n2 )E(@nt2, DA )E(@p43, @y A )TL( @43, D4

v
N (CDO/ (Dl, )
(Z)Afl (T)”M*Z(E((Dnﬂl @y )E(@p 42, @ppp) - E(@pgr—2, @pip ) TI(@pyr—2, @pyp—1))

v
O N (CDO/ @1, )
(A T) A (E (@ g1, @y 2 ) E(@ng2) @A )E(@y3, @pip) - - E(@py A1, @nyp))

Utilizing equations in (1) and for n — co, we obtain

Jiggop(wn,wn+A,v):1*1*---*1:1
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and
}}i_r}r;oN(con,wnM,v) =0000---00=0.

That is, {@,} is a CS. Therefore, (Z, p, R, *,0) is a complete IFDCMLS, and there
exists @ in Z.

Now investigate that @ is an FP of ¢, using (IFDL5), (IFDL10) and (2) of Definition 7,
we obtain

v v
p(@,fw,v) > p(cﬁ,@nﬂzz(n(w,w) * go(@n“,é‘@/w)

v v
o(@,E0,v) > p ((D @nt1, 2(“(@(%1))) * P (gwn, 6, 2(5((Dn+1<§w)))

v v
0108092 (@ 1 77 ) (% @ ) 11

asn — oo, and

[

v
N(w,fw,v) < XN <fD @nt1, Ww) O R <(D"“’§(D’ w)

v v
@800 <8001 ) © 8 (59080 7 )

N(@, E@,v) < R (c@ @ui1, 7 7

2<H<co,wn+1>>> © N(‘”""D' 27 @y, @)

as n — oo. Hence, (@ = .
Uniqueness: Given another FP, i.e., {p = p for some p € 5, then

)—>000:0

1> p(p,@,v) = p(gp, i@, v) > p(p,wrg) = p(ﬁp,é‘wfg)

v v
> p(p,w,?) > 2> p(p,a),ﬁ> — lasn — oo,
and v v
0 < R(o,@,v) = R(Zp,E@,v) < R(p,@, - ) = N(¢p, ¢, 2)
v v
< N(P,@,p) <0 < N(p,cD,T—n) —0asn — oo,
by utilizing (IFDL3) and (IFDL8), we obtain @ = p. OJ

Definition 10. Suppose (Z, p, N, *,0) is an IFDCMLS. A mapping & : & — E is said to be a
D-controlled intuitionistic fuzzy-like contraction if there exists 0 < T < 1, such that

1 1
oo tov) S T{m«o, o0 1] @
and
N(¢o, Eo,v) < TR(®, 0,v), )

orall @,0 € Eandv > 0.
Q

Theorem 2. Let (E, p, X, , O) be a complete IFDCMLS with IL,E : E x E — [1,00) and suppose
that
Ulz_)rtgop(w, 0,v) =1land JLWOZON(@’ 0,0)=0 (6)
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forall @,0 € Eand v > 0. Suppose ¢ :E — E is a D-controlled intuitionistic fuzzy-like
contraction. Moreover, assume that for a random point @0y € =, for n,A € N, with @, =
¢"wy = ¢@y_1. Then ¢ has a unique FP.

Proof. Suppose @ is an arbitrary point in Z and define a sequence @, by @, = &"®g =
E@dn_1,n € N. By utilizing (4) and (5) forallv > 0, n > A, we deduce

1 1

@((Dn, w'rlJrlrv) B @(Cwnfl/ Cwnr U)

<t ; B
9 (@ _1,@n,v) ©(@y—1,@n, V)
1 T
< +(1-7
@(@n/ Wp41, U) @(‘Dn—lz Wy, U) ( )
< TZ

< +1t(l—17)4+(1—71
p(@n—2,@y—1,0) 1=0+{1-1)
Similarly, we deduce
! < - +" M-+ 21 - 4Tl -1+ (1 - 1)
@(wn/@rﬁl/v) - p((DOI(’Dll U)

TTI

T?l
<— (" (- (1T
p((@o,(@l,v) ( )( ) p(c’Do, w1, U) ( )
We obtain .
7 < p(@n, @py1,0) (7)
@(CUOT,CDLU) T (1 B Tn)

and

N(@n, (Dn+1rv) = N(gwnfll $@n, U) < TN(Canlz @y, U) = TN(CC’Dn_z, §w@y 1, U)

S TZN((DH—ZI (anlrv) S T S TnN((DO, w1, U)

®)
for any A € N, using (IFDL5) and (IFDL10), we deduce

v v
@y, @ AU Z (CD , 0 1/)* (CD 1/‘9 Ar )
P, @, 0) 2 0\ O Prsts 57y, 5 oy ) * 9\ Pt @ i, o, )
v

U
> @ ,(D e * @ ,(D 7
= p( nr ot Z(H(wn,wnﬂ))) p( e (2)2(5(wn+1,@n+A)H(@n+1,wn+z)))

v
* Q| Ony2, Optpy )
( e (2)?(E( @11, @pyr )E(@p12, @pyp))

Y

z<n<ww+l>>) * @<“’”*1"0”“' 27 ; )

@1, @ )@ 41, Ont2))

* @<@n+2/ @n+3, 23 ° )

@41, @pgp ) E(@p g2, @y ) T1(@n 12, @1 3))

* @(‘Dnﬂl @ntAs 253 . )

@1, @pi ) ) (@2, @y ) )E(@n g3, @pgn))

Z © ((Dnr (Dn+1/

v

v
> @y, @Opil, ———— | * W41, On+2,
p( ol Z(H(@n/wn-&-l))) p( AR (Z)Z(E(wn+1/ wn+A)H((Dﬂ+1'w”+2))>

* @<@n+2/ @n+3, 2P 2 )

@41, @pg ) (@ g2, @y n ) TI(@n 12, @1 3))
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v
* Q| On3, Optd, ) ¥ oe ek
( e (2)4(E(@ns1, @y 2 )E (@12, @y 2 )E( @3, @y )T @43, @piya))

v
o (‘D A—2,@pyA—1, — )
" " (2))\ 1 (E:(wn-&-l; ‘Dn+/\)z(wn+2/ ‘Dn+A) e E((Dn+)\72/ (DnJrA)H(‘DnJr/\fZ/ (DnJr)\fl))

v
* | Wpppr—1,@ntn, — )
( " T AT E (@1, @t A)E( @+ 2, @y 2)E (@3, Dn) -+ E( @i a1, @sa))

and

v v
N(D,C@ A% SN((@ , 0 1,)ON((D 1, @ Ar )
(@ @ue0) < R\ @ @t 311, 5, 7)) O S @y, D)

S N ((Dl’l/ ('DVI+1/

v v
— — __JonN (co , Opan, )
Z(H(‘Dnr@nﬂ))) et (2)2(E(@p41, @y )@y 11, @np2))

v
O N ((D 2, @517, )
s (2)2(E(@pg1, @y )E(@pi2, @pip))

v v
R (T P PR — ON(@  Onsas >
( e 2<H<wn,wn+l>>) T (202 (& (@1, @A) TL( @41, Dng2))

v
O N <w 0, 013, )
TSI (2)3 (E(@pg 1, @ )E( @t 20 @) ) TH (@2, Dp3))

v
O N ((D 3, Onit A, )
A (2)3 (E(@ps1, @i )E(@ny2, @A) E(@nt 3, D))

v v
<N @y, @Opy1, 77— ] O N(co , @y, )
( s 2<H<wn,wn+l>>) T2 ()2 (& (@1, @A) (@1, @rr2) )

v
O N <a> 5, 013, >
RS (2)3 (8 (@t 1, @2 )E(@nt2, @ )T (@pg2, Dg3) )

v
ON(@ 3, Op 44, )O"'O
Y ) E(@n1, @ 2)E(@n2, @ 2)E@nt3, @) TL( @3, Drrva)

v
R <fD A—2, @pir—1, )
" " ()M (E (@41, @2 E(@pg2, @nsr) -+ - E(@pga—2, @ p ) TI(@pi a2, Pppa—1))

v
O N ((D A—1, DOpi A, )
" " ()M L E(@pr1, @ngr )E(@n 12, @y A )E(@n 13, @y p) - E(@pga—1, @nsn))

1 1
p(wi’l/ (*Di’l-‘r/\/ U) 2 " * o+l

- +(1-1)
p(“’O"“"z(n(wwM)) o (wo,wlr . )

@7 (E(‘Dn+l @ )@ 41.@p12) )

+ (1 _ Tn—i—l)

1

n+2 + (1 B T”+2)

@0,@01, v
p( 0 (2)3(E(‘Dn+1"on+)\)E(‘Dn+2'wn+)\)H(‘Dn+2f‘ﬂn+3)))
1
-L-n+)»—2 _'_ (1 _ T'/H_)\_Z)

@71 (E(errl'wnJrA)g(wnJrZ'wnJr)\)'"E(wn+)»—2'wn+/\)H(‘Dn+}»—2'wn+/\fl)) >
1
n+A-1 + (1 - T”+/\_1)
o | @o,01, L
< . (2)“1(E(‘ﬂnH’wnM)E(‘f’n+2rwn+A)E(w;1+3rwn+A)"'&%M—lr%ﬂ)))

and

Y <wa,@1,

*
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U) O TnJrlN((D(),(Dl, > v >
2(I(@n, @p41)) (2)*(E(@n+1, @p )T @p 41, @n42))

v
O Tn+2N<a70,601, )O"'O
(2)3(E(@nt1, @y 1) E(@nt2, @y )T (@2, @ny3))

Tn-‘r/\—ZN ((DO/ @1, — v )
(2) (€<(Dn+1/ @n+)\)€(wn+21 ‘DnJr/\) o E((Dn+)\,2, (Dn+A)H(CDn+A72/ wn+)x71))

N((Dl’l/(on-‘r)\/ U) S TnN<(D0/(Dl/

v
O Tn+A_1N ((DQ, w1, )
2)M L E (@11, @n A )E( @12, @y A)E( @13, @y n) -+ E(@nyr—1, @pyr))
Therefore,

,}iilgop(wn,wn+A,v):1*1*---*1:1

and
}%N(wn,wﬁmv) =0000---00=0.

That is, {®@,} is a CS. Therefore, let (Z, p, X, %, O) be a complete IFDCMLS, so there
exists @ in E. Now investigate that @ is an FP of &, using (IFDL5) and (IFDL10), we have

1 T
= -7

P(é‘onl g(@, U) S T{p(wnl @, U) - 1] @(CDn,CD, U)

1
- S (D/ (D,U‘
Tenen T(1-10) o(Eoy, &, v)

Using the above inequality,

(w,¢w,v) > <woo U)* (w ¢ U)
© ’ , = 0 s Wn+1, ZH((D,(D,,H_l) © n+1s 7 2(‘:((@7,+1, g(o)

> o @, 0pi1, ——— | % o EOn, E0,
Z 9 rWn+1, 2H((D,(Dn+1) % nrs ’ ZE((D”Jrl,C(i))
> o @, @pin, v « . L S 1x1=1
(2@, @p41))

+(1-1)
g (wn,w, Zg(wnvﬂ @) )

asn — oo, and

v v
N(@,C0,v) <N[w0,0,41, ——— | O N<c@ , cO,)
( é ) ( n+1 ZH((D, (Dn_l,.])) n+1 é’r 28(6’0n+1,(:c’0)

v v
) v v
- N<w’ Gt ZH(CO,cOnH)) N N(gw"’gw' za(wn+l,éw)>

v v
<N w0y, 011, =———————~ OTN((D,(D,)—)OOOZO&ISH—)OO
( S ZH(‘Dr‘Dn-H)) " 28((@n+1,§(0)

That is ¢ = w.
Uniqueness: Suppose another FP, i.e., {p = p for some p € E, then we have
-1
p(@,p,0) p(6@,&p,v)
1
- 1< —
p(@,p,v) ] p(@,p,0)

]
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a contradiction, and
N(w@,p,v) = R(¢w,Cp,v) < ™R(w@,p,v) < X(@,p,V)
a contradiction. Therefore, we must have (@, p,v) = 1and R(@, p,v) = 0, hence @ = p. O

Example 4. Let & = [0, 1] and ILE: E X & — [1,00) be non-comparable functions defined by

(e, 0) lif@=o,
@, - max{®, .
O et if @ £ ¢

and

lif@=o,
&(w,0) =< 1+ 2,02} .
R e

Define ,N: E x 5 x (0,00) — [0,1] as

max{®, o}*
v+ max{®@, o}*

v

—/N(D/ , V) =
v+ max{@, o} (@)

p(@,0,0) =
Then, (E, p, N, *,0) is a complete IFDCMS with CTN ¢ * w = ¢w and CTICN ¢ O w =
max{g, w}.
Define ¢ : E — E by &(@) = =22 and take T € {%,1), then

1-279 1-27¢
p(CcO, é(Qr TU) = @( 3 ’ 3 /TU>

TU v
= > = p(®,0,v)

_ 02 2
Tv—l—max{l_% =, = Q} v+ max{®, ¢}

and

I _ 20
(e, g o) = (1 I )

2
1-2-®@ 1-27¢
max{ — 3 }

_ 012 — 2
Tv+max{1*§ 2,12 Q} v+ max{@, o}

max{®@, 0}* — N (@, 0,0).

This is seen in Figures 5 and 6, which depict the behavior of contraction mapping.

0.95
0.9

0.85 4

10 10

Figure 5. The graphical behavior of p(®, &0, Tv) > (@, 0, V), where the yellow color shows the
left-hand side and the blue color shows the right-hand side, when v = 10 and T = 0.5.
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0.18

0.16 —

0.14 —

012~

0.1 —

0.08 —

0.06 —

0.04 —

0.02 —~

Figure 6. The graphical behavior of R(¢w, {0, Tv) < (@, 9, v), where the yellow color shows the
left-hand side and the blue color shows the right-hand side, when v = 10 and T = 0.5.

Hence, all conditions of Theorem 1 are satisfied and 0 is a unique FP for ¢ as shown
in Figure7.

Tx
0.9 =

0.8 2

0.7r T

0.6 7

0.5 T

0.4 r y

0.3 r T

0.2 T

o1r 2

0
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Figure 7. Shows that the FP of ¢ is 0 and is unique.

4. Application to an Integral Equation

Suppose E = C([8, u], R) is a set of all the real-valued continuous functions on the
closed interval [0, p].
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Suppose the following integral equation:

() =) +3 [ Fly, pe(n)ajfory, j € [8, u ©

where § > 0, F € E and #(j) is a fuzzy function of j : j € [¢, u]. Now, we define p and R by

p(@(y), o(r), v) = sup 7 5 forallw, o € Zand v >0
velo, wv +max{@(y), e(7)}
and
N(@(7), e(7), v) =1— sup 7 > forallw, o € Eand v >0
velo, v +max{@(y), o(7)}

with CIN and CTCN defined by ¢ * w = ¢w and ¢ O w = max{g, w}. Define
I[E: Ex & — [1,00) as

lifw = g;

(@, = max{®,o} . ’
00~ { sl

lif @ =g,
&(w, = 1+max{ @2,02} . .
( Q) min{iigzg}—} if @ ?é Q

Then, let (£, p, X, %, O) be a complete IFDCMLS.
Let max{F(y, ))@(7), F(7, j)o(1)}* < max{@(y),0(7)}* forall@, ¢ € &, T €

2
(0, 1) and forally, j € [0, u]. Additionally, suppose ((5 Iy A]) < 1 < 1. Then, integral
Equation (9) has a unique solution.

Proof. Define & : E — & by

Z0(y) = 1) +3 [ Flr, o(n)ajforally, j € [0, u

For all @, ¢ € E, we obtain

TV

PIER) CoM TN = P e (Eo(1), S

U
= sup

2
108 Wl vv+max{ (i) + 8 [} F(v, ))On)A], n()+96 [} F(v, )8(1)aj}

2%

= sup 5
100, rv + max{3 [ F(v, ))0(v)Aj, 8 [} F(v, j)8(7)Aj )

TV

= sup ' ] 5 0oy 2
1€l® M Tv + max{F(y, j)@(v), F(v, j)o(7)} (5 s AJ)

v
> su

= e v+ max{@(7), o(1)})?
> p(@(7), o(7), v).

N ,Ge(r), o) =1~
o) Gelnme) =1 b o (tar), 2a(n)

TV
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TV

=1- sup
velo: i ro -+ max{ () +8 3 ECr, 000G 1)+ ) F(y, )O(nAj}

TV

=1- sup 3
Ye[d, 4] ru+max{5 [EF(y, )AL, 8 [ E(y, j)19(fy)Aj}

TV

=1- sup ' ' » woa 2
1€l 1 To -+ max{E(y, )@ (), F(v, a1} (6 [ &)

v

<1- sup 5
yels, u v+ max{@(y), e(7)}

< R(@(7), e(7), v)-

Observe that all the conditions of Theorem 1 are satisfied. Hence, the integral Equation
(9) has a unique solution. J

5. Conclusions

In this paper, we introduced the notion of an IFDCMLS. In this new setting, we
established a number of new types of FP theorems. In order to demonstrate the viability of
the suggested methods, we provided non-trivial examples together with their graphs. This
research is supported by an application that demonstrates how the created methodology
outperforms the methods that are based on the literature, since our structure is more
general than the class of previously published results. It is easy to extend this research
to the structure of intuitionistic fuzzy triple-controlled metric-like spaces, neutrosophic
double-controlled metric-like spaces, and neutrosophic triple-controlled metric-like spaces.
In the future, we will work on more than one self-mapping to find the existence and
uniqueness of a fixed point in different generalized fuzzy metric structures.
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The following abbreviation are used in this study.

FSs Fuzzy sets

FMSs Fuzzy metric spaces

CIN Continuous triangular norm

CTCN Continuous triangular co-norm

IFMSs Intuitionistic fuzzy metric spaces

MLSs Metric-like spaces

CMLSs Controlled metric-like spaces

FMLSs Fuzzy metric-like spaces

IFDMSs Intuitionistic fuzzy double-controlled metric spaces
IFDCMLSs  Intuitionistic fuzzy double-controlled metric-like spaces
FP Fixed point

FDMSs Fuzzy double-controlled metric spaces
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