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Abstract: Hopf algebras, as a crucial generalization of groups, have a very symmetric structure and
have been playing a prominent role in mathematical physics. In this paper, let H be a dual quasi-Hopf
algebra which is a more general Hopf algebra structure. A. Balan firstly introduced the notion of
right-right Yetter-Drinfeld modules over H and studied its Galois extension. As a continuation,
the aim of this paper is to introduce more properties of Yetter-Drinfeld modules. First, we will
describe all the other three kinds of Yetter-Drinfeld modules over H, and the monoidal and braided
structure of the categories of Yetter-Drinfeld modules explicitly. Furthermore, we will prove that
the category H

HYD
f d of finite dimensional left-left Yetter-Drinfeld modules is rigid. Then we will

compute explicitly the canonical isomorphisms in H
HYD

f d. Finally, as an application, we will rewrite
the isomorphisms in the case of coquasitriangular dual quasi-Hopf algebra.

Keywords: dual quasi-Hopf algebra; Yetter-Drinfeld module; rigid braided monoidal category;
canonical isomorphisms

1. Introduction

Hopf algebras originated from the study of the homology of Lie groups and have
a natural relationship with groups. Hopf algebras could be seen as an important gener-
alization of groups. In fact, group algebra (a vector space with the basis being a group)
is a class of significant Hopf algebra and plays a key role in the theory of Hopf algebra.
Quasi-bialgebras and quasi-Hopf algebras have been introduced by Drinfeld in [1], in
connection with the Knizhnik-Zamolodchikov system of partial differential equations, and
have been used in several branches of mathematics and physics. In a quasi-bialgebra H,
the comultiplication is not coassociative but is quasi-coassociative in the sense that the co-
multiplication is coassociative up to conjugation by an invertible element Φ ∈ H ⊗ H ⊗ H.
Equivalently the representation category of H is not a strict monoidal category while the
reassociation is not trivial. If we draw our attention to the category of co-representations of
a coalgebra with non-associative multiplication, we get the concepts of dual quasi-bialgebra
and dual quasi-Hopf algebra. These notions have been introduced by Majid in [2] to prove
a Tannaka-Krein type theorem for quasi-Hopf algebras.

For a dual quasi-Hopf algebra H, the category of right H-comodulesMH is monoidal
with the usual tensor product. The difference between a dual quasi-Hopf algebra and a
Hopf algebra lies in the fact that the associativity of tensor product in the categoryMH

is not trivial but modified by an invertible element σ ∈ (H ⊗ H ⊗ H)∗. Consequently, the
multiplication of H is no longer associative.

In [3], the left Yetter-Drinfeld module over quasi-Hopf algebras was first constructed
by S. Majid with the help of the isomorphism between the category of Yetter-Drinfeld
modules and the center of the representation category. Subsequently, Bulacu, Caenepeel,
and Panaite in [4] introduced all kinds of Yetter-Drinfeld modules and showed that the
category of finite dimensional Yetter-Drinfeld modules is rigid. Following the ideas of S.
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Majid, in [5] Balan introduced the notion of left-left Yetter-Drinfeld modules over dual
quasi-Hopf algebra and studied its Galois extension. Later on, Ardizzoni in [6] introduced
another form of Yetter-Drinfeld module through the isomorphism between the category
of Yetter-Drinfeld modules and the category of Hopf bimodules, and characterized as
bosonizations the dual quasi-bialgebras with a projection onto a dual quasi-bialgebra. In [7],
the authors introduced the left-left and right-left Yetter-Drinfeld modules and constructed
a quantum cocommutative coalgebra in the category of Yetter-Drinfeld modules. In [8], the
authors studied coquasitriangular pointed dual quasi-Hopf algebras and braided pointed
tensor categories via the quiver approaches, and classified the Hopf quivers whose path
coalgebras admit coquasitriangular dual quasi-Hopf algebras.

Motivated by these ideas, a natural question arises: what are the braided monoidal
structures of the categories of left-left, left-right, and right-left Yetter-Drinfeld modules,
and via the braidings of other properties of these categories, what could we obtain? In
this paper, we will continue the study of the category of Yetter-Drinfeld modules over
dual quasi-Hopf algebra H. Firstly, we will give the definition of left-right Yetter-Drinfeld
modules and describe their braided monoidal structures explicitly. Moreover, we will
show that the categories H

HYD and HYDH are isomorphic, even in the situation where H is
not finite-dimensional. Then we will show that the category H

HYD
f d of finite-dimensional

left-left Yetter-Drinfeld modules is rigid, and we compute explicitly the canonical isomor-
phisms in H

HYD
f d. Finally, as an application, we rewrite the isomorphisms in the case of

coquasitriangular dual quasi-Hopf algebra.
This paper is organized as follows. In Section 2, we will review the basic results of

dual quasi-Hopf algebras and monoidal categories. In Section 3, we will describe explicitly
the braided monoidal structures of categories of all the three kinds of Yetter-Drinfeld
modules over dual quasi-Hopf algebra H. In Section 4, we will show that the category
H
HYD

f d of finite dimensional left-left Yetter-Drinfeld modules is rigid and give the explicit
forms of the left and right duals of any object. In any rigid braided monoidal category,
there exist canonical isomorphisms M ∼= M∗∗ and (M⊗ N)∗ ∼= M∗ ⊗ N∗ for any object
M. In Section 5, we will pay attention to the computations of these isomorphisms in
H
HYD

f d. In Section 6, as an application, we will recover the isomorphisms in the case of
coquasitriangular dual quasi-Hopf algebra.

2. Preliminary

Throughout this article, let k be a fixed field. All algebras, coalgebras, linear spaces,
etc. will be over k; unadorned ⊗means ⊗k.

2.1. Dual Quasi-Hopf Algebra

Recall from [9–11] that a dual quasi-bialgebra H is a coassociative coalgebra with
comultiplication ∆ and counit ε together with coalgebra morphisms mH : H ⊗ H → H
(the multiplication, we write mH(h ⊗ h′) = hh′) and ηH : k → H (the unit, we write
ηH(1) = 1), and an invertible element σ ∈ (H ⊗ H ⊗ H)∗ (the reassociation), such that for
all a, b, c, d ∈ H the following relations hold

a1(b1c1)σ(a2, b2, c2) = σ(a1, b1, c1)(a2b2)c2, (1)

1a = a1 = a, (2)

σ(a1, b1, c1d1)σ(a2b2, c2, d2) = σ(b1, c1, d1)σ(a1, b2c2, d2)σ(a2, b3, c3), (3)

σ(a, 1, b) = ε(a)ε(b). (4)

H is called a dual quasi-Hopf algebra if, moreover, there exists an anti-morphism s of
the coalgebra H and elements α, β ∈ H∗ such that for all h ∈ H,

s(h1)α(h2)h3 = α(h)1, h1β(h2)s(h3) = β(h)1, (5)

σ(h1β(h2), s(h3), α(h4)h5) = σ−1(s(h1), α(h2)h3, β(h4)s(h5)) = ε(h). (6)
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Throughout this paper, we will always assume that s is a bijective. It follows from the
axioms that s(1) = 1 and α(1)β(1) = 1. Moreover (3) and (4) imply that

σ(1, a, b) = σ(a, b, 1) = ε(a)ε(b). (7)

Together with a dual quasi-Hopf algebra H = (H, m, 1, ∆, ε, σ, s, α, β), we also have
Hop, Hcop and Hop,cop as dual quasi-Hopf algebras. The dual quasi-Hopf structures are
obtained by putting σcop = σ−1, σop = (σ−1)321, and σop,cop = σ321. sop = scop = (s−1

op,cop) =

s−1, αcop = βs−1, αop = αs−1, αop,cop = β, βcop = αs−1, βop = βs−1, βop,cop = α. Here
σ321(a, b, c) = σ(c, b, a).

We recall that an invertible element F ∈ (H ⊗ H)∗ satisfying F(1, a) = F(a, 1) = ε(a),
induces a twisting transformation

a · b = F(a1, b1)a2b2F−1(a3, b3), (8)

σF(a, b, c) = F(b1, c1)F(a1, b2c2)σ(a2, b3, c3)F−1(a3b4, c4)F−1(a4, b5). (9)

For a Hopf algebra, one knows that the antipode is an anti-algebra morphism, i.e.,
s(ab) = s(b)s(a). For a dual quasi-Hopf algebra, this is true only up to a twist, namely,
there exists a twist transformation f ∈ (H ⊗ H)∗ such that for all a, b ∈ H,

f (a1, b1)s(a2b2)g(a3, b3) = s(b)s(a), (10)

where g denotes the convolution inverse of f .
The element f can be computed explicitly. For all a, b, c, d ∈ H, set

ν(a, b, c, d) = σ(a1, b1, c1)σ
−1(a2b2, c2, d),

µ(a, b, c, d) = σ(a1b1, c1, d)σ−1(a2, b2, c2).

Define elements λ, χ ∈ (H ⊗ H)∗ by

λ(a, b) = ν(s(b1), s(a1), a3, b3)α(a2)α(b2),

χ(a, b) = µ(a1, b1, s(b3), s(a3))β(a2)β(b2).

Then f and g are given by the following formulae:

f (a, b) = σ−1(s(b1)s(a1), a3b3, s(a5b5))λ(a2, b2)β(a4b4),

g(a, b) = σ−1(s(a1b1), a3b3, s(b5)s(a5))χ(a4, b4)α(a2b2).

The elements λ, χ and the twist f fulfill the relations

f (a1, b1)α(a2b2) = λ(a, b), β(a1b1)g(a2, b2) = χ(a, b), (11)

α(a) = β(s(a2)) f (s(a1), a3) = β(s−1(a2)) f (s−1(a3), a1), (12)

β(a) = g(a1, s(a3))α(s(a2)) = α(s−1(a2))g(a3, s−1(a1)). (13)

The corresponding reassociation is given by

σf (a, b, c) = σ(s(c), s(b), s(a)). (14)

2.2. Coquasitriangular Dual Quasi-Hopf Algebra

Recall from [12] that a coquasitriangular dual quasi-Hopf algebra is a dual quasi-Hopf
algebra H with an invertible element ϕ ∈ (H ⊗ H)∗ satisfying

(1) ϕ(ab, c) = σ(c1, a1, b1)ϕ(a2, c2)σ
−1(a3, c3, b2)ϕ(b3, c4)σ(a4, b4, c5),

(2) ϕ(a, bc) = σ−1(b1, c1, a1)ϕ(a2, c2)σ(b2, a3, c3)ϕ(a4, b3)σ
−1(a5, b4, c4),
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(3) ϕ(a1, b1)a2b2 = b1a1 ϕ(a2, b2),

(4) ϕ(1, a) = ϕ(a, 1) = ε(a),

for all a, b, c ∈ H.
Let (H, ϕ) be a coquasitriangular dual quasi-Hopf algebra. Define u ∈ Hom(H, k) by

u(a) = σ−1(a7, s(a3), s2(a1))β(s(a2))ϕ(a6, s(a4))α(a5),

for all a ∈ H. It is proved in [12] that u is invertible with the inverse given by

u−1(a) = qR(a1, s2(a4))pR(s2(a6), a3)ϕ(s2(a5), a2).

Moreover u satisfies the following identities (see [12]):

s2(a1)u(a2) = u(a1)a2, (15)

α(s(a1))u(a2) = ϕ(a3, s(a1))α(a2), (16)

f (b1, a1)ϕ(a2, b2) = ϕ(s(a1), s(b1)) f (a2, b2), (17)

u ◦ s2 = u. (18)

2.3. Monoidal Categories and Center Construction

A monoidal category means a category C with objects U, V, W, etc., a functor ⊗ :
C × C → C equipped with a natural transformation consisting of functorial isomorphism
aU,V,W : (U ⊗ V)⊗W → U ⊗ (V ⊗W) satisfying a pentagon identity, and a compatible
unit object I and associated functorial isomorphisms (the left and the right unit constraints,
lV : V ∼= V ⊗ I and rV : V ∼= I ⊗ V, respectively.) Now if C and D are monoidal
categories then, roughly speaking, we say that F : C → D is a monoidal functor if it
respects the tensor products (in the sense that for any two objects U, V ∈ C there exists a
functorial isomorphism Ψ : F(U)⊗ F(V)→ F(U⊗V) such that Ψ respects the associativity
constraints), the unit object and the left and right unit constraints (for a complete Definition
see [2]).

If H is a dual quasi-Hopf algebra, then the categories MH and HM are monoidal
categories. The associative constraint onMH is the following: for any M, N, P ∈ MH , and
m ∈ M, n ∈ N, aM,N,P : (M⊗ N)⊗ P→ M⊗ (N ⊗ P) is given by

aM,N,P((m⊗ n)⊗ p) = σ(m(1), n(1), p(1))m(0) ⊗ (n(0) ⊗ p(0)).

On HM, the associative constraint is given by

aM,N,P((m⊗ n)⊗ p) = σ−1(m(−1), n(−1), p(−1))m(0) ⊗ (n(0) ⊗ p(0)).

Let (C,⊗, I, a, l, r) be a monoidal category, and V ∈ C. V∗ ∈ C is called the left dual of
V, if there exist two morphisms evV : V∗ ⊗V → I and coevV : I → V ⊗V∗ such that

(V ⊗ evV ) ◦ aV,V∗ ,V ◦ (coevV ⊗V) = V,

(evV ⊗V∗) ◦ a−1
V∗ ,V,V∗

◦ (V∗ ⊗ coevV ) = V∗.

∗V ∈ C is called a right dual of V if there exist two morphisms ev′
V

: V ⊗∗V → I and
coev′

V
: I → ∗V ⊗V such that

(∗V ⊗ ev′
V
) ◦ a∗V,V,∗V ◦ (coev′

V
⊗ ∗V) = ∗V,

(ev′
V
⊗V) ◦ a−1

V,∗V,V
◦ (V ⊗ coev′

V
) = V.

C is called a rigid monoidal category if every object of C has a left and right dual. The
category HM f d of finite dimensional modules over a dual quasi-Hopf algebra H is rigid.
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For V ∈ HM f d, V∗ = Hom(V, k) with left coaction λ(ϕ) = 〈ϕ, vi(0)〉s−1(vi(−1))⊗ vi. The
evaluation and co-evaluation are given by

evV (ϕ⊗ v) = β(s−1(v(−1)))ϕ(v(0)), coevV (1) = α(s−1(vi(−1)))vi(0) ⊗ vi.

where {vi}i is a basis in V with dual basis {vi}i.
The right dual ∗V of V is the same dual vector space equipped with the left H-

comodule structure given by λ(ϕ) = 〈ϕ, vi(0)〉s(vi(−1))⊗ vi and

ev′
V
(v⊗ ϕ) = β(v(−1))ϕ(v(0)), coev′

V
(1) = vi ⊗ α(vi(−1))vi(0).

For a braided monoidal category C, let C in be equal to C as a monoidal category, with
the mirror-reversed braiding c̃M,N = c−1

M,N
.

Following [3], the left weak center Wl(C) is the category with the objects (V, sV,−),
where V ∈ C and sV,− : V ⊗− → −⊗V is a family of natural transformations such that
sV,I = idV and for all X, Y ∈ C,

(X⊗ sV,Y ) ◦ aX,V,Y ◦ (sV,X ⊗Y) = aX,Y,V ◦ sV,X⊗Y ◦ aV,X,Y .

A morphism between (V, sV,−) and (V′, s
V′ ,−) consists of ψ : V → V′ in C such that

(X⊗ ψ) ◦ sV,X = c
V′ ,X ◦ (ψ⊗ X).

Wl(C) is a prebraided monoidal category. The tensor product is

(V, sV,−)⊗ (V′, s
V′ ,−) = (V ⊗V′, s

V⊗V′ ,−),

with
s

V⊗V′ ,X = a
X,V,V′ ◦ (sV,X ⊗V′) ◦ a−1

V,X,V′
◦ (V ⊗ s

V′ ,X ) ◦ a
V,V′ ,X ,

and the unit is (I, id). The braiding s onWl(C) is given by

c
V,V′ = s

V,V′ : (V, sV,−)⊗ (V′, s
V′ ,−)→ (V′, s

V′ ,−)⊗ (V, sV,−).

The center Zl(C) is the full subcategory ofWl(C) consisting of objects (V, sV,−) with sV,− a
natural isomorphism. Zl(C) is a braided monoidal category.

The right weak centerWr(C) is the category with the objects (V, c−,V ), where V ∈ C
and t−,V : −⊗V → V ⊗− is a family of natural transforms such that tI,V = idV and

a−1
V,X,Y
◦ tX⊗Y,V ◦ a−1

X,Y,V
= (tX,V ⊗Y) ◦ a−1

X,V,Y
◦ (X⊗ tY,V ),

for all X, Y ∈ C. A morphism between (V, t−,V ) and (V′, t−,V′ ) consists of ψ : V → V′ in C
such that

(ψ⊗ X) ◦ tX,V = t
X,V′ ◦ (X⊗ ψ).

Wr(C) is a prebraided monoidal category. The unit is (I, id) and the tensor product is

(V, t−,V )⊗ (V′, t−,V′ ) = (V ⊗V′, (V, t−,V⊗V′ )),

with
t−,V⊗V′ = a−1

V,V′ ,X
◦ (V ⊗ t

X,V′ ) ◦ a
V,X,V′ ◦ (tX,V ⊗V′) ◦ a−1

X,V,V′
.

The braiding d is given by

d
V,V′ = t

V,V′ : (V, s−,V )⊗ (V′, s−,V′ )→ (V′, s−,V′ )⊗ (V, s−,V ).
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The center Zr(C) is the full subcategory ofWr(C) consisting of objects (V, t−,V ) with
t−,V a natural isomorphism. Zr(C) is a braided monoidal category.

Let (C,⊗, I, a, l, r) be a monoidal category. Then we have a second monoidal structure
on C, defined as

C = (C,⊗ = ⊗ ◦ τ, I, a, r, l),

where τ : C × C → C × C, (U, V) 7→ (V, U) and a given by aU,V,W = a−1
W,V,U .

If c is a braiding on C, then c, defined by cU,V = cV,U is a braiding on C.
It is obvious that

Proposition 1 ([4]). Let (C,⊗, I, a, l, r) be a monoidal category. Then

Wl(C) ∼=Wr(C), Wr(C) ∼=Wl(C),

as the prebraided monoidal category, and

Zl(C) ∼= Zr(C), Zr(C) ∼= Zl(C),

as a braided monoidal category.

Definition 1 ([7]). Let H be a dual quasi-bialgebra.

(1) A k-space M is called a left-left Yetter-Drinfeld module if M is a left H-comodule (denote the
left coaction by λM : M → H ⊗M, m 7→ m(−1) ⊗ m(0)) and H acts on M from the left
(denote the left action by h ·m) such that the following conditions hold:

σ(h1, g1, m(−1))σ((h2g2 ·m(0))(−1), h3, g3)(h2g2 ·m(0))(0)

= σ(h1, (g1 ·m)(−1), g2)h2 · (g1 ·m)(0), (19)

1H ·m = m, (20)

h1m(−1) ⊗ h2 ·m(0) = (h1 ·m)(−1)h2 ⊗ (h1 ·m)(0), (21)

for all h, g ∈ H and m ∈ M. The category of left-left Yetter-Drinfeld modules over H is
denoted by H

HYD with the morphisms being left H-linear and left H-colinear.
(2) A right-left Yetter-Drinfeld module is a left H-comodule M together with a right H-action ·

on M such that for all g, h ∈ H, m ∈ M,

σ−1(m(−1), h1, g1)σ
−1(h3, g3, (m(0) · h2g2)(−1))(m(0) · h2g2)(0)

= σ−1(h2, (m · h1)(−1), g1)(m · h1)(0) · g2,

m · 1 = m,

h2(m · h1)(−1) ⊗ (m · h1)(0) = m(−1)h1 ⊗m(0) · h2.

The category of right-left Yetter-Drinfeld modules over H is denoted by HYDH with the
morphisms being right H-linear and left H-colinear.

3. Yetter-Drinfeld Modules over a Dual Quasi-Hopf Algebra

In this section, we will describe braided monoidal structures of the categories of Yetter-
Drinfeld modules over dual quasi-Hopf algebra H and show that the categories H

HYD and
HYDH are isomorphic.

Let H be a dual quasi-Hopf algebra. Recall from [5], for all a, b ∈ H, define elements
pR, qR, pL, qL in (H ⊗ H)∗ by

pR(a, b) = σ−1(a, b1, s(b3))β(b2), qR(a, b) = σ(a, b3, s−1(b1))α(s−1(b2)),

pL(a, b) = σ(s−1(a3), a1, b)β(s−1(a2)), qL(a, b) = σ−1(s(a1), a3, b)α(a2).
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Lemma 1. Let H be a dual quasi-Hopf algebra. For all a, b ∈ H,

pR(a1, b)a2 = (a1b1)pR(a2, b2)s(b3), qR(a2, b)a1 = (a2b3)qR(a1, b2)s−1(b1), (22)

pL(a, b1)b2 = s−1(a3)pL(a2, b2)(a1b1), qL(a, b2)b1 = s(a1)qL(a2, b1)(a3b2), (23)

and

qR(a1b1, s(b3))pR(a2, b2) = ε(a)ε(b), pL(s(a1), a3b2)qL(a2, b1) = ε(a)ε(b), (24)

qL(s−1(a3), a1b1)pL(a2, b2) = ε(a)ε(b), qR(a1, b2)pR(a2b3, s−1(b1)) = ε(a)ε(b). (25)

Moreover we have the following formulae

(1) qR(a1, b1)qR(a2b2, c1)σ
−1(a3, b3, c2)

= σ(a2(b4c4), s−1(c1), s−1(b1)) f (s−1(c2), s−1(b2))qR(a1, b3c3). (26)

(2) σ(a1, b1, c1)pR(a2b2, c2)pR(a3, b3)

= σ−1(a1(b1c1), s(c4), s(b4))pR(a2, b2c2)g(b3, c3). (27)

Proof. The identities (24)–(26) come from [7]. Since Hcop is also a dual quasi-Hopf algebra,
by (26) we could obtain (27).

Proposition 2. Let H be a dual quasi-Hopf algebra, M ∈ H M, and · : H ⊗M → M a k-linear
map satisfying (19) and (20). Then (21) is equivalent to

(h ·m)(−1) ⊗ (h ·m)(0) =qR((h1m(−1))1, s(h5))(h1m(−1))2s(h4)

⊗ pR((h2 ·m(0))(−1), h3)(h2 ·m(0))(0), (28)

for all h ∈ H, m ∈ M.

Proof. The proof is similar to that of [5].

Example 1. Let (H, ϕ) be a coquasitriangular dual quasi-Hopf algebra. Then any left H-comodule
M is a left Yetter-Drinfeld module over H. Indeed for all g ∈ H, m ∈ M, define

g ·m = ϕ(m(−1), g)m(0).

Then for the relation (19)

σ(h1, g1, m(−1))σ((h2g2 ·m(0))(−1), h3, g3)(h2g2 ·m(0))(0)

= σ(h1, g1, m(−1)1)σ(m(−1)3, h3, g3)ϕ(m(−1)2, h2g2)m(0)

= σ(h1, g1, m(−1)1)σ(m(−1)7, h6, g6)σ
−1(h2, g2, m(−1)2)ϕ(m(−1)3, g3)

σ(h3, m(−1)4, g4)ϕ(m(−1)5, h4)σ
−1(m(−1)6, h5, g5)m(0)

= ϕ(m(−1)1, g1)σ(h1, m(−1)2, g2)ϕ(m(−1)3, h2)m(0)

= σ(h1, (g1 ·m)(−1), g2)h2 · (g1 ·m)(0).

And for the relation (21)

h1m(−1) ⊗ h2 ·m(0) = h1m(−1)1 ⊗m(0)ϕ(m(−1)2, h2)

= ϕ(m(−1)1, h1)m(−1)2h2 ⊗m(0) = (h1 ·m)(−1)h2 ⊗ (h1 ·m)(0).

Proposition 3 ([5]). Let H be a dual quasi-bialgebra and HM the category of left H-comodules.
Then we have category isomorphism H

HYD ∼=Wr(HM).
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The action of H on the tensor product M⊗ N of two left-left Yetter-Drinfeld modules
M and N is given by

h · (m⊗ n) =σ(h1, m(−1), n(−1)1)σ
−1((h2 ·m(0))(−1)1, h3, n(−1)2)

σ((h2 ·m(0))(−1)2, (h4 · n(0))(−1), h5)(h2 ·m(0))(0) ⊗ (h4 · n(0))(0),

for all m ∈ M, n ∈ N. The braiding is given by

cM,N (m⊗ n) = m(−1) · n⊗m(0).

Furthermore we have the following result.

Theorem 1. Let H be a dual quasi-Hopf algebra. The braiding c is invertible with the inverse
c−1

N,M
: M⊗ N → N ⊗M given by

c−1
N,M

(m⊗ n) =qL(s−1(n(−1)6), m(−1)1n(−1)1)σ(s
−1(n(−1)5), m(−1)2, n(−1)2)

pR((s−1(n(−1)4) ·m(0))(−1), s−1(n(−1)3))n(0) ⊗ (s−1(n(−1)4) ·m(0))(0).

Proof. For all m ∈ M, n ∈ N,

c−1
N,M

(cN,M (n⊗m)) = c−1
N,M

(n(−1) ·m⊗ n(0))

= qL(s−1(n(−1)7), (n(−1)1 ·m)(−1)1n(−1)2)σ(s
−1(n(−1)6), (n(−1)1 ·m)(−1)2, n(−1)3)

pR((s−1(n(−1)5) · (n(−1)1 ·m)(0))(−1), s−1(n(−1)4))n(0) ⊗ (s−1(n(−1)5) · (n(−1)1 ·m)(0))(0)

= qL(s−1(n(−1)7), (n(−1)1 ·m)(−1)n(−1)2)σ(s
−1(n(−1)6), (n(−1)1 ·m)(0)(−1), n(−1)3)

pR((s−1(n(−1)5) · (n(−1)1 ·m)(0)(0))(−1), s−1(n(−1)4))n(0) ⊗ (s−1(n(−1)5) · (n(−1)1 ·m)(0)(0))(0)
(21)
= qL(s−1(n(−1)7), n(−1)1m(−1))σ(s

−1(n(−1)6), (n(−1)2 ·m(0))(−1), n(−1)3)

pR((s−1(n(−1)5) · (n(−1)2 ·m(0))(0))(−1), s−1(n(−1)4))n(0) ⊗ (s−1(n(−1)5) · (n(−1)2 ·m(0))(0))(0)
(19)
= qL(s−1(n(−1)9), n(−1)1m(−1)1)

σ(s−1(n(−1)8), n(−1)2, m(−1)2)σ((s
−1(n(−1)7)n(−1)3 ·m(0))(−1)), s−1(n(−1)6), n(−1)4)

pR((s−1(n(−1)7)n(−1)3 ·m(0))(0)(−1), s−1(n(−1)5))n(0) ⊗ (s−1(n(−1)7)n(−1)3 ·m(0))(0)(0)

= qL(s−1(n(−1)7), n(−1)1m(−1)1)σ(s
−1(n(−1)6), n(−1)2, m(−1)2)β(s−1(n(−1)4))

n(0) ⊗ s−1(n(−1)5)n(−1)3 ·m(0)

(5)
= qL(s−1(n(−1)5), n(−1)1m(−1)1)σ(s

−1(n(−1)4), n(−1)2, m(−1)2)β(s−1(n(−1)3))

n(0) ⊗m(0)

= qL(s−1(n(−1)3), n(−1)1m(−1)1)pL(n(−1)2, m(−1)2)n(0) ⊗m(0)

(25)
= n⊗m.

That is, c−1
N,M
◦ cN,M = idN⊗M. Similarly cN,M ◦ c−1

N,M
= idM⊗N . The proof is completed.

We also introduce left-right Yetter-Drinfeld modules in the following definition.

Definition 2. Let H be a dual quasi-Hopf algebra. A left-right Yetter-Drinfeld module is a right
H-comodule M together with a left H-action · on M such that for all g, h ∈ H, m ∈ M,

σ−1((h2g2 ·m(0))(1), h1, g1)σ
−1(h3, g3, m(1))(h2g2 ·m(0))(0)

= σ−1(h2, (g2 ·m)(1), g1)h1 · (g2 ·m)(0),
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1 ·m = m,

(h2 ·m)(0) ⊗ (h2 ·m)(1)h1 = h1 ·m(0) ⊗ h2m(1).

The category of left-right Yetter-Drinfeld modules over H is denoted by HYDH with the morphisms
being left H-linear and right H-colinear.

Theorem 2. Let H be a dual quasi-bialgebra. Then we have the following category isomorphisms:

Wl(
HM) ∼=HYDH , Wr(MH) ∼=HYDH .

If H is a dual quasi-Hopf algebra, then these three weak centers are equal to the centers.

Proof. The proof is straightforward and left to the reader.

• The prebraided monoidal structure on Wl(
HM) induces a monoidal structure on

HYDH . We find that the action on M⊗ N of two right-left Yetter-Drinfeld modules M
and N are given by

(m⊗ n) · h =σ−1(m(−1)1, n(−1), h1)σ(m(−1)2, h3, (n(0) · h2)(−1)1)

σ−1(h5, (m(0) · h4)(−1), (n(0) · h2)(−1)2)(m(0) · h4)(0) ⊗ (n(0) · h2)(0),

for all h ∈ H, m ∈ M, and n ∈ N.

The braiding dM,N : M⊗ N → N ⊗M is given by

dM,N (m⊗ n) = n(0) ⊗m · n(−1).

In the case when H is a dual quasi-Hopf algebra, the inverse of dM,N is given by

d−1
M,N

(n⊗m) =qR(n(−1)1m(−1)1, s(n(−1)6))σ
−1(n(−1)2, m(−1)2, s(n(−1)5))

pL(s(n(−1)3), (m(0) · s(n(−1)4))(−1))(m(0) · s(n(−1)4))(0) ⊗ n(0).

• The prebraided monoidal structure on HYDH : for M, N ∈ HYDH , the action on
M⊗ N is given by

h · (m⊗ n) =σ−1(h5, m(1), n(1)2)σ((h4 ·m(0))(1)2, h3, n(1)1)

σ−1((h4 ·m(0))(1)1, (h2 · n(0))(1), h1)(h4 ·m(0))(0) ⊗ (h2 · n(0))(0),

and
(m⊗ n)(0) ⊗ (m⊗ n)(1) = m(0) ⊗ n(0) ⊗m(1)n(1),

the braiding is the following:

tM,N (m⊗ n) = m(1) · n⊗m(0).

In the case when H is a dual quasi-Hopf algebra, the inverse of tM,N is given by

t−1
M,N

(n⊗m) = pL(s(m(1)1), n(1)2m(1)6)σ
−1(s(m(1)2), n(1)1, m(1)5)

qR((s(m(1)3) · n(0))(1), s(m(1)4))m(0) ⊗ (s(m(1)3) · n(0))(0).

Proposition 4. We have an isomorphism of monoidal categories

F : Hop,copM→MH ,
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where F acts on objects and morphisms as identity, and the right H-coaction is given by m[0] ⊗
m[1] = m(−1) ⊗m(0). Similarly, we have

MHop,cop →HM.

Proof. We only need to verify that F preserves the monoidal structure. For all objects
M, N ∈Hop,copM,

(n⊗m)(−1) ⊗ (n⊗m)(0) = m(−1)n(−1) ⊗ n(0) ⊗m(0).

The associativity constraint aP,N,M : (P⊗ N)⊗M→ P⊗ (N ⊗M) is defined as

aP,N,M(p⊗ n⊗m) = σ−1(m(−1), n(−1), p(−1))p(0) ⊗ n(0) ⊗m(0).

As for the monoidal structure on Hop,copM, we have M⊗N = N ⊗M. Then

(m⊗n)(−1) ⊗ (m⊗n)(0) = m(−1)n(−1) ⊗ (m(0)⊗n(0)).

The associativity constraint aM,N,P : (M⊗N)⊗P→ M⊗(N⊗P) is defined as

aM,N,P(m⊗n⊗p) = σ(m(−1), n(−1), p(−1))m(0)⊗n(0)⊗p(0).

The proof is completed.

Proposition 5. Let H be a dual quasi-Hopf algebra. Then we have the following isomorphisms of
braided monoidal categories:

YDH
H
∼=Hop,cop

Hop,copYD, HYDH ∼=Hop,copYDHop,cop
.

Proof. By Proposition 1 and Proposition 4, we obtain

YDH
H
∼=Zl(MH) ∼=Zl(Hop,copM) ∼=Zr(Hop,copM) ∼=Hop,cop

Hop,copYD,

and
HYDH ∼=Zl(

HM) ∼=Zl(MHop,cop
) ∼=Zr(MHop,cop

) ∼=Hop,copYDHop,cop
.

Proposition 6 ([4]). Let C be a monoidal category. Then we have a braided isomorphism of braided
monoidal categories T : Zl(C)→ Zr(C)in, given by

T(V, sV,−) = (V, s−1
V,−) and T(υ) = υ.

Of course, the conclusion holds for the right center. By this isomorphism, we have the
following result.

Proposition 7. Let H be a dual quasi-Hopf algebra, and HYDin
H the category HYDH with the

braiding
c̃M,N = c−1

M,N
.

Then we have an isomorphism of braided monoidal categories

T : HYDin
H
∼=H

HYD,

defined as follows. For M ∈HYDH , T(M) = M as a left H-comodule; the left H-action is given by

h . m = qR(h1m(−1)1, s(h6))σ
−1(h2, m(−1)2, s(h5))
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pL(s(h3), (m(0) · s(h4))(−1))(m(0) · s(h4))(0),

for all h ∈ H, m ∈ M, where · is the right action of H on M. The functor T sends a morphism to
itself.

Proof. The functor T is just the composition of the isomorphisms

HYDin
H → Zl(

HM)in → Zr(
HM)→H

HYD.

For M ∈HYDin
H , we compute the corresponding left-left Yetter-Drinfeld module structure

on M is the following:

h . m = (id⊗ ε)s−1
M,H

(h⊗m) = (id⊗ ε)c̃M,H (h⊗m) = (id⊗ ε)d−1
M,H

(h⊗m)

= qR(h1m(−1)1, s(h6))σ
−1(h2, m(−1)2, s(h5))pL(s(h3), (m(0) · s(h4))(−1))(m(0) · s(h4))(0),

as claimed.

In the same way, we have the following result.

Proposition 8. Let H be a dual quasi-Hopf algebra. Then the categories YDH
H and HYDHin are

isomorphic as braided monoidal categories.

4. The Rigid Braided Category H
HYD f d

It is well known that the category of finite dimensional Yetter-Drinfeld modules over a
Hopf algebra with a bijective antipode is rigid. Since HM f d is rigid, the same result holds
for the category of finite dimensional Yetter-Drinfeld modules over a dual quasi-Hopf
algebra. In this section, we will give the explicit forms.

Proposition 9 ([4]). Let C be a rigid monoidal category. Then the weak left (respectively right)
center of C is a rigid braided monoidal category.

For Example, for any object (V, c−,V ) ∈ Zr(C), ∗(V, c−,V ) = (∗V, c−,∗V ), with c−,∗V
given by the following composition:

cX,∗V :X⊗∗V
coev′V⊗idX⊗∗V−−−−−−−−→ (∗V ⊗V)⊗ (X⊗∗V)

a∗V,V,X⊗∗V−−−−−−→ ∗V ⊗ (V ⊗ (X⊗∗V))

id∗V⊗a−1
V,X,∗V−−−−−−−→ ∗V ⊗ ((V ⊗ X)⊗∗V)

id∗V⊗c−1
V,X
⊗id∗V

−−−−−−−−−→ ∗V ⊗ ((X⊗V)⊗∗V) (29)

id∗V⊗aV,X,∗V−−−−−−−→ ∗V ⊗ (X⊗ (V ⊗∗V))
a−1
∗V,V,V⊗∗V−−−−−−→ (∗V ⊗ X)⊗ (V ⊗∗V)

id∗V⊗X⊗ev′v−−−−−−→ ∗V ⊗ X.

Lemma 2. Let H be a dual quasi-Hopf algebra. Then for all a, b, c ∈ H, the following relations hold:

qL(a1, b1c1)σ(a2, b2, c2) = qL(a2, b1)σ
−1(s(a1), a3b2, c), (30)

pR(s(a1), a3b3)qL(a2, b2)qL(b1, s(a4b4)) = f (a, b). (31)

Proof. By the Definition of qL, it is easy to verify (30). Then for all a, b ∈ H,

pR(s(a1), a3b3)qL(a2, b2)qL(b1, s(a4b4))

= σ−1(s(a1), a3b3, s(a5b5))β(a4b4)qL(a2, b2)qL(b1, s(a6b6))

(10) (11)
= σ−1(s(a1), a3b3, s(b5)s(a5))qL(a2, b2)χ(a4, b4)qL(b1, s(b6)s(a6)) f (a7, b7)

= σ−1(s(a1), a5b3, s(b9)s(a10))σ
−1(s(a2), a4, b2)α(a3)



Symmetry 2022, 14, 2358 12 of 22

σ(a6b4, s(b8), s(a9))σ
−1(a7, b5, s(b7))β(a8)β(b6)qL(b1, s(b10)s(a11)) f (a12, b11)

(3) (5)
= σ−1(s(a2), a4, b2)σ

−1(s(a1), a5b3, s(b9)s(a10))σ
−1(a6, b4, s(b8)s(a9))

α(a3)σ(b5, s(b7), s(a8))β(b6)β(a7)qL(b1, s(b10)s(a11)) f (a12, b11)

(3) (5)
= σ−1(s(a1), a3, b2(s(b6)s(a6)))α(a2)σ(b3, s(b5), s(a5))

β(b4)β(a4)qL(b1, s(b7)s(a7)) f (a8, b8)

(1) (5)
= σ−1(s(a1), a3, s(a5))α(a2)σ(b2, s(b4), s(a6))β(b3)β(a4)qL(b1, s(b5)s(a7)) f (a8, b6)

(1) (5)
= σ(b2, s(b4), s(a1))β(b3)qL(b1, s(b5)s(a2)) f (a3, b6)

= pL(s(b2), s(a1))qL(b1, s(b3)s(a2)) f (a3, b4)

(25)
= f (a, b),

as needed. The proof is completed.

Theorem 3. Let H be a dual quasi-Hopf algebra. Then H
HYD

f d is a braided monoidal rigid category.
For a finite-dimensional left-left Yetter-Drinfeld module M with basis {mi}i and dual basis {mi}i,
the left and right duals M∗ and ∗M are equal to Hom(M, k) as a vector space, with the following
H-action and H-coaction:

(1) For ∗M,

λ∗M (ϕ) =〈ϕ, mi(0)〉s(mi(−1))⊗mi, (32)

h · ϕ = f (s−1(h3), mi(−1))g((s−1(h2) ·mi(0))(−1), s−1(h1))

ϕ((s−1(h2) ·mi(0))(0))m
i. (33)

(2) For M∗,

λM∗ (ϕ′) =〈ϕ′, mi(0)〉s−1(mi(−1))⊗mi, (34)

h · ϕ′ = f (s−1(mi(−1)), h3)g(h1, s−1((s(h2) ·mi(0))(−1)))

ϕ′((s(h2) ·mi(0))(0)))m
i, (35)

for all h ∈ H, ϕ ∈ ∗M, ϕ′ ∈ M∗.

Proof. The left H-coaction on ∗M viewed as an object in H
HYD is the same as the left H-

coaction on ∗M viewed as an object in HM. Now we compute the left H-action using (29).
For all h ∈ H, ϕ ∈ ∗M,

h · ϕ = (id⊗ ε)cH,∗M (h⊗ ϕ)

= σ−1(mi
(−1)1, mi(−1)2, h1s((s−1(h6) ·mi(0))(−1)8)σ(mi(−1)3, h2, s((s−1(h6) ·mi(0))(−1)7)

α(mi(−1)1)q
L(s−1(h8), mi(−1)4h3)σ(s−1(h7), mi(−1)5, h4)pR((s−1(h6) ·mi(0))(−1)1, s−1(h5))

σ−1(h9, (s−1(h6) ·mi(0))(−1)2, s((s−1(h6) ·mi(0))(−1)6))β((s−1(h6) ·mi(0))(−1)4)

σ(mi
(−1)2, h10, (s−1(h6) ·mi(0))(−1)3s((s−1(h6) ·mi(0))(−1)5))ϕ((s−1(h6) ·mi(0))(0))m

i
(0)

(5) (32)
= qL(mi(−1)1, h1s((s−1(h6) ·mi(0))(−1)4))σ(mi(−1)2, h2, s((s−1(h6) ·mi(0))(−1)3))

qL(s−1(h8), mi(−1)3h3)σ(s−1(h7), mi(−1)4, h4)pR((s−1(h6) ·mi(0))(−1)1, s−1(h5))

pR(h9, (s−1(h6) ·mi(0))(−1)2)ϕ((s−1(h6) ·mi(0))(0))m
i

(30)
= qL(mi(−1)1, h1s((s−1(h5) ·mi(0))(−1)4))σ(mi(−1)2, h2, s((s−1(h5) ·mi(0))(−1)3))

qL(s−1(h7), mi(−1)3)σ
−1(h8, s−1(h6)mi(−1)4, h3)pR((s−1(h5) ·mi(0))(−1)1, s−1(h4))
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pR(h9, (s−1(h5) ·mi(0))(−1)2)ϕ((s−1(h5) ·mi(0))(0))m
i

(20)
= qL(mi(−1)1, h1s((s−1(h6) ·mi(0))(−1)5))σ(mi(−1)2, h2, s((s−1(h6) ·mi(0))(−1)4))

qL(s−1(h7), mi(−1)3)σ
−1(h8, (s−1(h6) ·mi(0))(−1)1s−1(h5), h3)pR((s−1(h6) ·mi(0))(−1)2, s−1(h4))

pR(h9, (s−1(h6) ·mi(0))(−1)3)ϕ((s−1(h6) ·mi(0))(0))m
i

(30)
= qL(mi(−1)1, h1s((s−1(h5) ·mi(0))(−1)5))σ(mi(−1)2, h2, s((s−1(h5) ·mi(0))(−1)4))

qL(s−1(h6), mi(−1)3)σ(h7, (s−1(h5) ·mi(0))(−1)1, s−1(h4))pR(h8(s−1(h5) ·mi(0))(−1)2, s−1(h3))

pR(h9, (s−1(h5) ·mi(0))(−1)3)ϕ((s−1(h5) ·mi(0))(0))m
i

(27)
= qL(mi(−1)1, h1s((s−1(h7) ·mi(0))(−1)6))σ(mi(−1)2, h2, s((s−1(h7) ·mi(0))(−1)5))

qL(s−1(h8), mi(−1)3)σ
−1(h9((s−1(h7) ·mi(0))(−1)1s−1(h6)), h3, s((s−1(h7) ·mi(0))(−1)4))

pR(h10, (s−1(h7) ·mi(0))(−1)2s−1(h5))g((s−1(h7) ·mi(0))(−1)3, s−1(h4))ϕ((s−1(h7) ·mi(0))(0))m
i

(21)
= qL(mi(−1)1, h1s((s−1(h5) ·mi(0))(−1)4))σ(mi(−1)2, h2, s((s−1(h5) ·mi(0))(−1)3))

qL(s−1(h8), mi(−1)3)σ
−1(h9(s−1(h7)mi(−1)4), h3, s((s−1(h5) ·mi(0))(−1)2))

pR(h10, (s−1(h6)mi(−1)5))g((s−1(h5) ·mi(0))(−1)1, s−1(h4))ϕ((s−1(h5) ·mi(0))(0))m
i

(23)
= qL(mi(−1)1, h1s((s−1(h5) ·mi(0))(−1)4))σ(mi(−1)2, h2, s((s−1(h5) ·mi(0))(−1)3))

qL(s−1(h7), mi(−1)4)σ
−1(mi(−1)3, h3, s((s−1(h5) ·mi(0))(−1)2))

pR(h8, (s−1(h6)mi(−1)5))g((s−1(h5) ·mi(0))(−1)1, s−1(h4))ϕ((s−1(h5) ·mi(0))(0))m
i

(10)
= qL(mi(−1)1, s(s−1(h3)mi(−1)4)g((s−1(h2) ·mi(0))(−1), s−1(h1))

qL(s−1(h5), mi(−1)2)pR(h6, s−1(h4)mi(−1)3)ϕ((s−1(h2) ·mi(0))(0))m
i

(31)
= f (s−1(h3), mi(−1))g((s−1(h2) ·mi(0))(−1), s−1(h1))ϕ((s−1(h2) ·mi(0))(0))m

i,

as claimed. The structure on M∗ can be computed similarly. The proof is completed.

5. The Canonical Isomorphisms in H
HYD f d

If C is a rigid braided monoidal category, then for any objects M, N ∈ C, there exist
two canonical isomorphisms in C

M ∼= M∗∗, (M⊗ N)∗ ∼= M∗ ⊗ N∗.

In this section, we aim to give the explicit forms of the above isomorphisms in the particular
case C =H

HYD
f d.

Let C be a rigid monoidal category and objects M, N ∈ C and ν : M → N is a
morphism in C. Following [13] we can define the transposes of ν as the compositions:

ν∗ : N∗ id⊗coev−−−−→ N∗ ⊗ (M⊗M∗) id⊗ν⊗id−−−−→ N∗ ⊗ (N ⊗M∗)

a−1
N∗ ,N,M∗−−−−−→ (N∗ ⊗ N)⊗M∗ ev⊗id−−−→ M∗,

∗ν : ∗N coev⊗id−−−−→ (∗M⊗M)⊗∗N id⊗ν⊗id−−−−→ (∗M⊗ N)⊗∗N
a∗M,N,∗N−−−−→ ∗M⊗ (N ⊗∗N)

id⊗ev−−−→ ∗M.

From [4] we have two isomorphisms θM : M ∼= ∗(M∗) and θ′M : M ∼= (∗M)∗. Both
isomorphisms are natural in M. θM and its inverse could be described explicitly as follows:

θM : M id⊗coev−−−−→ M⊗ (∗M⊗ (∗M)∗)
a−1
−−→ (M⊗∗M)⊗(∗M)∗

ev⊗id−−−→ (∗M)∗;
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θ−1
M :(∗M)∗

id⊗coev′−−−−→ (∗M)∗ ⊗ (∗M⊗M)
a−1
−−→ ((∗M)∗ ⊗∗M)⊗M ev−→ M.

We also have a natural isomorphism ΘM : M∗ → ∗M, which can be described as follows,
see [14] for details.

ΘM :M∗ id⊗coev′−−−−→ M∗ ⊗ (∗M⊗M)
a−1
−−→ (M∗ ⊗∗M)⊗M

cM∗ ,∗M⊗id
−−−−−−→ (∗M⊗M∗)⊗M a−→ ∗M⊗ (M∗ ⊗M)

id⊗ev−−−→ ∗M;

Θ−1
M :∗M coev⊗id−−−−→ (M⊗M∗)⊗∗M a−→ M⊗ (M∗ ⊗∗M)

id⊗c−1
M∗ ,∗M−−−−−−→ M⊗ (∗M⊗M∗) a−1

−−→ (M⊗∗M)⊗M∗ ev′⊗id−−−→ M∗.

Thus the functors (−)∗ and ∗(−) are naturally isomorphic, and we conclude that

M∗∗ = (M∗)∗ ∼= ∗(M∗) ∼= M ∼= (∗M)∗ ∼= ∗(∗M) = ∗∗M.

Now we will apply these results to the particular case when C =H
HYD

f d.
(1) For all n∗ ∈ N∗,

ν∗(n∗) =∑
i

σ(n∗(−1), mi(−1)2, mi
(−1))n

∗
(0)(ν(mi(0)))α(s

−1(mi(−1)1))β(s−1(mi(−1)3))m
i
(0)

(34)
= ∑

i
σ(s−1(mi(−1)5), mi(−1)3, s−1(mi(−1)1))α(s

−1(mi(−1)2))β(s−1(mi(−1)4))

n∗(ν(mi(0)))m
i

=∑
i

n∗(ν(mi))mi = n∗ ◦ ν,

where {mi} is a basis of M and {mi} its dual basis. By a similar computation, we have

∗ν(∗n) = ∗n ◦ ν.

(2) For θM we have

θM(m) = σ(m(−1), fi(−1)2, f i
(−1))α(s

−1( fi(−1)1))β(m(0)(−1)) fi(0)(m(0)(0)) f i
(0)

= σ(m(−1)1, s(mj(−1))2, f i
(−1))α(s

−1(s(mj(−1))1)β(m(−1)2)m
j(m(0)) fi(mj(0)) f i

(0)

= σ(m(−1)1, s(m(−1)3), f i
(−1))α(m(−1)4)β(m(−1)2) fi(m(0)) f i

(0)

= σ(m(−1)1, s(m(−1)3), s−1(mk
(−1)))α(m(−1)4)β(m(−1)2)m

k
(0)(m(0))m

k∗

= σ(m(−1)1, s(m(−1)3), m(−1)5))α(m(−1)4)β(m(−1)2)m
k(m(0))m

k∗

= mk(m)mk∗,

where { fi} is a basis of M with dual basis { f i} in M∗, and {mk} are bases of ∗M, and mk∗

is the image of mk under the canonical map M → M∗∗. Moreover the morphism θ′M is
defined by the same formula as θM. The maps θ−1

M is given by

θ−1
M ((∗m)∗) = 〈(∗m)∗, mi〉mi.

Moreover the morphisms θ′M and θ′−1
M are defined the same as θM and θ−1

M , respectively.
(2) As to ΘM, for all m∗ ∈ M∗, we have

ΘM(m∗) = σ(m∗(−1)1, mi
(−1), mi(−1)2)σ

−1((m∗(−1)2 ·m
i
(0))(−1), m∗(−1)3, mi(−1)3)

α(mi(−1)1)β(s−1(mi(−1)4)〈m∗(0), mi(0)〉(m∗(−1)2 ·m
i
(0))(0)
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= σ(s−1(mi(−1)7), mi
(−1), mi(−1)2)σ

−1(s−1(mi(−1)6) ·mi
(0))(−1), s−1(mi(−1)5), mi(−1)3)

α(mi(−1)1)β(s−1(mi(−1)4)〈m∗, mi(0)〉((s−1(mi(−1)6) ·mi
(0))(0)

= σ(s−1(mi(−1)5), mi
(−1), mi(−1)2)pR((s−1(mi(−1)4) ·mi

(0))(−1), s−1(mi(−1)3))

α(mi(−1)1)〈m∗, mi(0)〉((s−1(mi(−1)4) ·mi
(0))(0)

= σ(s−1(mi(−1)5), s(mj(−1)), mi(−1)2)pR((s−1(mi(−1)4) ·mj)(−1), s−1(mi(−1)3))

α(mi(−1)1)〈m∗, mi(0)〉〈mi, mj(0)〉((s−1(mi(−1)4) ·mj)(0)

= σ(s−1(mj(−1)6), s(mj(−1)1), mj(−1)3)pR((s−1(mj(−1)5) ·mj)(−1), s−1(mj(−1)4))

α(mj(−1)2)〈m∗, mj(0)〉((s−1(mj(−1)5) ·mj)(0)

= qR(s−1(mj(−1)4), s(mj(−1)1))pR((s−1(mj(−1)3) ·mj)(−1), s−1(mj(−1)2))

〈m∗, mj(0)〉((s−1(mj(−1)5) ·mj)(0)

= qR(s−1(mj(−1)6), s(mj(−1)1))pR(mi
(−1), s−1(mj(−1)2)) f (s−2(mj(−1)3), mi(−1))

〈m∗, mj(0)〉g((s−2(mj(−1)4) ·mi(0))(−1), s−2(mj(−1)5))〈mj, (s−2(mj(−1)4) ·mi(0))(0)〉mi
(0)

= qR(s−1(mj(−1)6), s(mj(−1)1))pR(s(mk(−1)), s−1(mj(−1)2)) f (s−2(mj(−1)3), mi(−1))

〈m∗, mj(0)〉g((s−2(mj(−1)4) ·mi(0))(−1), s−2(mj(−1)5))〈mj, s−2(mj(−1)4) ·mi(0))(0)〉〈mi, mk(0)〉mk

= qR(s−1(mj(−1)6), s(mj(−1)1))pR(s(mi(−1)1), s−1(mj(−1)2)) f (s−2(mj(−1)3), mi(−1)2)

〈m∗, mj(0)〉g((s−2(mj(−1)4) ·mi(0))(−1), s−2(mj(−1)5))〈mj, (s−2(mj(−1)4) ·mi(0))(0)〉mi.

By a similar computation, the inverse map Θ−1
M : ∗M→ M∗ is given by

Θ−1
M (∗m) = V(mi(−1), s(mj(−1)3))β(mj(−1)1)〈∗m, mj(0)〉〈mj, s(mj(−1)2) ·mi(0)〉mi,

where V = (pR ∗ f ) ◦ (s−1 ⊗ s−1). Thus we obtain the following result.

Proposition 10. Let H be a dual quasi-Hopf algebra and M, N ∈ H
HYD

f d. Then rΓM = θ′−1
M ◦

ΘM∗ : M∗∗ → M is an isomorphism of Yetter-Drinfeld modules. Explicitly, rΓM is given by

rΓM(m∗∗) =qR(s−2(mi(−1)1), mi(−1)4)pR((s−2(mi(−1)2) ·mi(0))(−1), s−2(mi(−1)3))

〈m∗∗, mi〉(s−2(mi(−1)2) ·mi(0))(0),

for all m∗∗ ∈ M∗∗. The inverse of rΓM is given by rΓ−1
M = Θ−1

M∗ ◦ θ′M, that is,

rΓ−1
M (m) =V(s−1((s(m(−1)3) ·m(0))(−1)2), m(−1)1)α(m(−1)4)

g(m(−1)2, s−1((s(m(−1)3) ·m(0))(−1)1))〈mi, (s(m(−1)3) ·m(0))(0)〉mi∗.

Similarly lΓM = θ−1
M ◦Θ−1

∗M : ∗∗M→ M is an isomorphism of Yetter-Drinfeld modules. Explicitly
we have

lΓM(∗∗m) =α(mi(−1)3)pR((s(mi(−1)2) ·mi(0))(−1), s(mi(−1)1))

〈∗∗m, mi〉(s(mi(−1)2) ·mi(0))(0),

for all ∗∗m ∈ ∗∗M. The inverse of lΓM is given by

lΓ−1
M (m) =qR(m(−1)1, s2(m(−1)6))pR(s2((s−2(m(−1)3) ·m(0))(−1)2)), m(−1)5)

F−1((s−2(m(−1)3) ·m(0))(−1)1, s−2(m(−1)4))F (m(−1)7, s−2(m(−1)2))

〈mi, (s−2(m(−1)3) ·m(0))(0)〉mi∗,
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for all m ∈ M, where F (a, b) = g(s(b1), s(a1)) f (a2, b2).

Proof. For all m∗∗ ∈ M∗∗,

rΓM(m∗∗)

= qR(s−1(mj
(−1)6), s(mj

(−1)1))pR(s(mi
(−1)1), s−1(mj

(−1)2)) f (s−2(mj
(−1)3), mi

(−1)2)

〈m∗∗, mj
(0)〉g((s

−2(mj
(−1)4) ·m

i
(0))(−1), s−2(mj

(−1)5))〈(s
−2(mj

(−1)4) ·m
i
(0))(0), mj〉mi

= qR(s−2(ml(−1)1), ml(−1)8)pR(mk(−1)2, s−2(ml(−1)7)) f (s−3(ml(−1)6), s−1(mk(−1)1))

〈m∗∗, ml〉g(s−1(ml(−1)9), s−3(ml(−1)2))〈mi, ml(0)〉〈mk, (s−2(ml(−1)4) ·mi(0))(0))〉

f (s−1(mi(−1)), s−3(ml(−1)3))g(s−3(ml(−1)5), s−1(s−2(ml(−1)4) ·mi(0))(−1)))mk(0)

= qR(s−2(ml(−1)1), ml(−1)8)pR(mk(−1)2, s−2(ml(−1)7)) f (s−3(ml(−1)6), s−1(mk(−1)1))

〈m∗∗, ml〉g(s−1(ml(−1)9), s−3(ml(−1)2))〈mk, (s−2(ml(−1)4) ·ml(0))(0))〉

f (s−1(ml(−1)10), s−3(ml(−1)3))g(s−3(ml(−1)5), s−1(s−2(ml(−1)4) ·ml(0))(−1)))mk(0)

= qR(s−2(ml(−1)1), ml(−1)8)pR((s−2(ml(−1)4) ·ml(0))(−1)3, s−2(ml(−1)7))

f (s−3(ml(−1)6), s−1((s−2(ml(−1)4) ·ml(0))(−1)2))〈m∗∗, ml〉g(s−1(ml(−1)9), s−3(ml(−1)2))

f (s−1(ml(−1)10), s−3(ml(−1)3))g(s−3(ml(−1)5), s−1(s−2(ml(−1)4) ·ml(0))(−1)1))

(s−2(ml(−1)4) ·ml(0))(0)

= qR(s−2(ml(−1)1), ml(−1)4)pR((s−2(ml(−1)2) ·ml(0))(−1), s−2(ml(−1)3))

〈m∗∗, ml〉(s−2(ml(−1)2) ·ml(0))(0).

And

rΓ−1
M (m) = V(mi

(−1), s(mj
(−1)3))β(mj

(−1)1)〈m
k∗, mj

(0)〉〈m
j∗, s(mj

(−1)2) ·m
i
(0)〉m

k(m)mi∗

= V(s−1(ml(−1)), mp(−1)1)β(s−1(mp(−1)3))〈mk∗, mp〉〈mj, mp(0)〉

〈mj∗, mp(−1)2 ·ml〉〈mk, m〉〈mi, ml(0)〉mi∗

= V(s−1(ml(−1)), m(−1)1)β(s−1(m(−1)3))〈m(−1)2 ·ml , m(0)〉〈mi, ml(0)〉mi∗

= V(s−1(ml(−1)), m(−1)1)β(s−1(m(−1)5))〈mi, ml(0)〉 f (s−1(m(−1)6), m(−1)4)

g(m(−1)2, s−1(s(m(−1)3) ·m(0))(−1))〈ml , (s(m(−1)3) ·m(0))(0)〉mi∗

= V(s−1((s(m(−1)3) ·m(0))(−1)2), m(−1)1)β(s−1(m(−1)5))〈mi, (s(m(−1)3) ·m(0))(0)〉

f (s−1(m(−1)6), m(−1)4)g(m(−1)2, s−1((s(m(−1)3) ·m(0))(−1)1))m
i∗

= V(s−1((s(m(−1)3) ·m(0))(−1)2), m(−1)1)α(m(−1)4)〈mi, (s(m(−1)3) ·m(0))(0)〉

g(m(−1)2, s−1((s(m(−1)3) ·m(0))(−1)1))m
i∗.

Similarly, we could obtain lγM and lγ−1
M and the details are left to the reader. The

proof is completed.

Let C be a rigid monoidal category. For any objects M, N ∈ C, there exists two
isomorphisms

∗φN,M : ∗N ⊗∗M→ ∗(M⊗ N),

φ∗N,M : N∗ ⊗M∗ → (M⊗ N)∗.
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where ∗φN,M is the composition

∗N ⊗∗M
coev′M⊗N⊗id∗N⊗∗M−−−−−−−−−−−→ [∗(M⊗ N)⊗ (M⊗ N)]⊗ (∗N ⊗∗M)
a∗(M⊗N),M⊗N,∗N⊗∗M−−−−−−−−−−−→ ∗(M⊗ N)⊗ [(M⊗ N)⊗ (∗N ⊗∗M)]

id∗(M⊗N)⊗a−1
M⊗N,∗N,∗M−−−−−−−−−−−−−→ ∗(M⊗ N)⊗ [((M⊗ N)⊗∗N)⊗∗M]

id∗(M⊗N)⊗aM,N,∗N⊗id∗M−−−−−−−−−−−−−−→ ∗(M⊗ N)⊗ [(M⊗ (N ⊗∗N))⊗∗M]

id∗(M⊗N)⊗idM⊗ev′N⊗id∗M−−−−−−−−−−−−−−−→ ∗(M⊗ N)⊗ [M⊗∗M]

id∗(M⊗N)⊗ev′M−−−−−−−−→ ∗(M⊗ N),

with the inverse ∗φ−1
N,M given by the composition

∗(M⊗ N)
coev′N⊗d∗(M⊗N)−−−−−−−−−→ (∗N ⊗ N)⊗∗(M⊗ N)
a∗N,N,∗(M⊗N)−−−−−−−→ ∗N ⊗ [N ⊗∗(M⊗ N)]

id∗N⊗coev′M⊗idN⊗id∗(M⊗N)−−−−−−−−−−−−−−−−→ ∗N ⊗ [((∗M⊗M)⊗ N)⊗∗(M⊗ N)]

id∗N⊗a∗M,M,N⊗id∗(M⊗N)−−−−−−−−−−−−−−→ ∗N ⊗ [(∗M⊗ (M⊗ N))⊗∗(M⊗ N)]

id∗N⊗a∗M,M⊗N,∗(M⊗N)−−−−−−−−−−−−−→ ∗N ⊗ [∗M⊗ ((M⊗ N)⊗∗(M⊗ N))]

id∗N⊗id∗M⊗ev′M⊗N−−−−−−−−−−−→ ∗N ⊗∗M.

Moreover if C is braided, then we have the following isomorphism

∗σM,N = ∗φN,M ◦ c−1
∗N,∗M : ∗M⊗∗N → ∗(M⊗ N).

Before proceeding we need the following Lemma.

Lemma 3. Let H be a dual quasi-Hopf algebra. The following relations hold:

(1) σ(s(b4), s2(b2), s(a1)) f (a2, s(b1))β(s(b3)) = qR(a1, s(b2))g(a2s(b1), b3), (36)

(2) σ(s−2(b1), s−1(b3), s−1(a1)) f (s−1(b4), s−1(a2))β(s−2(b2))

= qR(a1, b2)g(s−1(b1), s−1(a2b3)), (37)

(3) f (s(a1), a4b3)pR(s(b1), s(a2)) f (a3, b2) = qL(a, b), (38)

(4) f (a1, b1) f (a2b2, s(b4))pR(a3, b3) = qL(s(b), s(a)), (39)

(5) qR(a1, s(b5))g(a2s(b4), b6)qL(s(b8), s(a4s(b2))s(c2))σ(s(b7), s(a3s(b3)), s(c1))

= f (c1, a1) f (c2a2, s(b3))σ
−1(c3, a3, s(b2))g(c4, a4s(b1)), (40)

(6) qR(a1, s(b4))g(s−1(b5), s−1(a2s(b3)))σ(s−1(b6), s−1(a3s(b2)), s(c1))

qL(s−1(b7), s−1(a4s(b1))s(c2))

= f (b3, s−1(a1)s(c1))σ
−1(s2(c3), a3, s(b2)) f (s−1(a2), s(c2))g(s−1(a4s(b1)), s(c3)). (41)

Proof. We only prove (36), (38) and (40), and the rest can be proved similarly.
(1) By the relations (9) and (14), for all a, b, c ∈ H,

β(b1) f (b2, c1) f (a1, b3c2)σ(a2, b4, c3)g(a3b5, c4) = β(b1)σ(s(c), s(b2), s(a)) f (a2, b3).
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Hence

β(s(b5)) f (s(b4), b6) f (a1, s(b3)b7)σ(a2, s(b2), b8)g(a3s(b1), b9)

= β(s(b3))σ(s(b4), s2(b2), s(a1)) f (a2, s(b1)).

Using the relation (12), we have

β(s(b3))σ(s(b4), s2(b2), s(a1)) f (a2, s(b1)) = qR(a1, s(b2))g(a2s(b1), b3).

(2) Similarly we could obtain the relation (38).
(3) For all a, b, c ∈ H,

qR(a1, s(b5))g(a2s(b4), b6)qL(s(b8), s(a4s(b2))s(c2))

σ(s(b7), s(a3s(b3)), s(c1)) f (c3, a5s(b1))

(36)
= β(s(b6))σ(s(b7), s2(b5), s(a1)) f (a2, s(b4))qL(s(b9), s(a4s(b2))s(c2))

σ(s(b8), s(a3s(b3)), s(c1)) f (c3, a5s(b1))

(10)
= β(s(b6))σ(s(b7), s2(b5), s(a1)) f (a3, s(b3))qL(s(b9), s(a4s(b2))s(c2))

σ(s(b8), s2(b4)s(a2), s(c1)) f (c3, a5s(b1))

(3) (5)
= β(s(b6))σ

−1(s2(b4), s(a2), s(c2)) f (a3, s(b3))σ(s(b7), s2(b5), s(a1)s(c1))

f (c4, a5s(b1))qL(s(b8), s(a4s(b2))s(c3))

= pL(s2(b5), s(a1)s(c1))σ
−1(s2(b3), s(a3), s(c3)) f (a4, s(b2))

f (c4, a5s(b1))qL(s(b6), s2(b4)(s(a2)s(c2)))

(25)
= σ−1(s2(b3), s(a1), s(c1)) f (a2, s(b2)) f (c2, a3s(b1))

(9) (14)
= f (c1, a1) f (c2a2, s(b2))σ

−1(c3, a3, s(b1)).

That is

qR(a1, s(b5))g(a2s(b4), b6)qL(s(b8), s(a4s(b2))s(c2))σ(s(b7), s(a3s(b3)), s(c1))

= f (c1, a1) f (c2a2, s(b3))σ
−1(c3, a3, s(b2))g(c4, a4s(b1)).

The proof is completed.

Proposition 11. Let H be a dual quasi-Hopf algebra and M, N ∈H
HYD

f d. Denote {mi}s
i=1 and

{mi}s
i=1 the dual bases in M and ∗M, and {nj}t

j=1 and {nj}t
j=1 dual bases in N and ∗N. Define

the map ∗σN,M : ∗M⊗∗N → ∗(M⊗ N) by

∗σN,M(∗m⊗∗n)(m⊗ n)

= pR(s(m(−1)1n(−1)1), n(−1)8)σ(s
−1(n(−1)6), m(−1)3, n(−1)3)

f (s−1(n(−1)7), m(−1)2n(−1)2)pR((s−1(n(−1)5) ·m(0))(−1), s−1(n(−1)4)) (42)

〈∗n, n(0)〉〈∗m, (s−1(n(−1)5) ·m(0))(0)〉.

Then ∗σN,M is an isomorphism in H
HYD. The inverse of ∗σN,M is given by

∗σ−1
N,M(µ)(m⊗ n) = f (m(−1)1, n(−1))〈µ, n(−1)2 ·m(0) ⊗ n(0)〉. (43)

In a similar way, the isomorphism σ∗M,N : M∗ ⊗ N∗ → (M⊗ N)∗ is given by

σ∗M,N(m
∗ ⊗ n∗)(m⊗ n) = (φ∗N,M ◦ c−1

N∗ ,M∗)(m
∗ ⊗ n∗)(m⊗ n)
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= pR(s−1(m(−1)1n(−1)1), s−2(n(−1)8))σ(s
−1(n(−1)6), m(−1)3, n(−1)3) (44)

f (s−1(m(−1)2n(−1)2), s−2(n(−1)7))pR((s−1(n(−1)5) ·m(0))(−1), s−1(n(−1)4))

〈n∗, n(0)〉〈m∗, s−1(n(−1)5) ·m(0))(0)〉,

with its inverse

σ∗−1
N,M(µ)(m⊗ n) = f (s−1(m(−1)), s−1(n(−1)1))〈µ, n(−1)2 ·m(0) ⊗ n(0)〉. (45)

Proof. For all ∗m ∈ ∗M,∗n ∈N∗ and m ∈ M, n ∈ N,

∗φN,M(∗n⊗∗m)(m⊗ n)

= α(m(−1)2n(−1)2)σ
−1(s(m(−1)1n(−1)1), m(−1)3n(−1)3, s(n(−1)9)s(m(−1)8))

σ(m(−1)4n(−1)4, s(n(−1)8), s(m(−1)7))σ
−1(m(−1)5, n(−1)5, s(n(−1)7))β(n(−1)6)β(m(−1)6)

〈∗n, n(0)〉〈∗m, m(0)〉

= α(m(−1)2n(−1)2)σ
−1(s(m(−1)1n(−1)1), m(−1)3n(−1)3, s(n(−1)5)s(m(−1)5))

χ(m(−1)4, n(−1)4)〈∗n, n(0)〉〈∗m, m(0)〉
(10)
= qL(m(−1)1n(−1)1, s(m(−1)4n(−1)4))

g(m(−1)5, n(−1)5) f (m(−1)3, n(−1)3)χ(m(−1)2, n(−1)2)〈∗n, n(0)〉〈∗m, m(0)〉

= qL(m(−1)1n(−1)1, s(m(−1)3n(−1)3))

g(m(−1)4, n(−1)4)β(m(−1)2n(−1)2)〈∗n, n(0)〉〈∗m, m(0)〉
(6)
= g(m(−1), n(−1))〈∗n, n(0)〉〈∗m, m(0)〉.

Similarly we obtain

∗φ−1
N,M(µ)(n⊗m) = f (m(−1), n(−1))〈µ, m(0) ⊗ n(0)〉,

for all µ ∈ ∗(M⊗ N). Denote ∗φ−1
N,M(µ) = ϕk ⊗ ψk ∈ ∗N ⊗∗M, then

〈ϕk, n〉〈ψk, m〉 = f (m(−1), n(−1))〈µ, m(0) ⊗ n(0)〉. (46)

For all ∗m ∈ ∗M,∗n ∈N∗ and m ∈ M, n ∈ N, we compute

∗σN,M(∗m⊗∗n)(m⊗ n) = (∗φN,M ◦ c−1
∗N,∗M)(∗m⊗∗n)(m⊗ n)

= qL(n(−1)2, s((s−1(n(−1)5) ·m(0))(−1)3)s(n(−1)9))

pR(s(m(−1)2), n(−1)7)σ(n(−1)3, s((s−1(n(−1)5) ·m(0))(−1)2), s(n(−1)8))

f (s−1(n(−1)6), m(−1)3)g((s−1(n(−1)5) ·m(0))(−1)1, s−1(n(−1)4))g(m(−1)1, n(−1)1)

〈∗n, n(0)〉〈∗m, (s−1(n(−1)5) ·m(0))(0)〉
(28)
= qR((s−1(n(−1)14)m(−1)4, n(−1)5)g((s−1(n(−1)13)m(−1)5)n(−1)6, s−1(n(−1)4))

qL(n(−1)2, s(((s−1(n(−1)11)m(−1)7)n(−1)8))s(n(−1)18))

σ(n(−1)3, s(((s−1(n(−1)12)m(−1)6)n(−1)7)), s(n(−1)17)) f (s−1(n(−1)15), m(−1)3)

g(m(−1)1, n(−1)1)pR((s−1(n(−1)10) ·m(0))(−1), s−1(n(−1)9))pR(s(m(−1)2), n(−1)16)

〈∗n, n(0)〉〈∗m, (s−1(n(−1)10) ·m(0))(0)〉
(40)
= f (n(−1)13, s−1(n(−1)10)m(−1)4) f (n(−1)14(s

−1(n(−1)9)m(−1)5), n(−1)2)

σ−1(n(−1)15, s−1(n(−1)8)m(−1)6, n(−1)3)g(n(−1)16, (s−1(n(−1)7)m(−1)7)n(−1)4)
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g(m(−1)1, n(−1)1)pR((s−1(n(−1)6) ·m(0))(−1), s−1(n(−1)5))pR(s(m(−1)2), n(−1)12)

f (s−1(n(−1)11), m(−1)3)〈∗n, n(0)〉〈∗m, (s−1(n(−1)6) ·m(0))(0)〉
(38)
= qL(s−1(n(−1)10), m(−1)2) f (n(−1)11(s

−1(n(−1)9)m(−1)3), n(−1)2)

σ−1(n(−1)12, s−1(n(−1)8)m(−1)4, n(−1)3)g(n(−1)13, (s−1(n(−1)7)m(−1)5)n(−1)4)

g(m(−1)1, n(−1)1)pR((s−1(n(−1)6) ·m(0))(−1), s−1(n(−1)5))

〈∗n, n(0)〉〈∗m, (s−1(n(−1)6) ·m(0))(0)〉
(23)
= qL(s−1(n(−1)7), m(−1)1)σ

−1(n(−1)8, s−1(n(−1)6)m(−1)2, n(−1)1)

g(n(−1)9, (s−1(n(−1)5)m(−1)3)n(−1)2)pR((s−1(n(−1)4) ·m(0))(−1), s−1(n(−1)3))

〈∗n, n(0)〉〈∗m, (s−1(n(−1)4) ·m(0))(0)〉

= qL(s−1(n(−1)8), m(−1)1n(−1)1)σ(s
−1(n(−1)6), m(−1)3, n(−1)3)

g(n(−1)9, s−1(n(−1)7)(m(−1)2n(−1)2))pR((s−1(n(−1)5) ·m(0))(−1), s−1(n(−1)4))

〈∗n, n(0)〉〈∗m, (s−1(n(−1)5) ·m(0))(0)〉
(38)
= pR(s(m(−1)1n(−1)1), n(−1)8)σ(s

−1(n(−1)6), m(−1)3, n(−1)3)

f (s−1(n(−1)7), m(−1)2n(−1)2)pR((s−1(n(−1)5) ·m(0))(−1), s−1(n(−1)4))

〈∗n, n(0)〉〈∗m, (s−1(n(−1)5) ·m(0))(0)〉.

Obviously the inverse of ∗σ−1
N,M is ∗σ−1

N,M = c∗N,∗M ◦∗φ−1
N,M. For all µ ∈ ∗(M ⊗ N),

m ∈ M, n ∈ N, we compute

∗σ−1
N,M(µ)(m⊗ n)

= (c∗N,∗M ◦∗φ−1
N,M)(µ)(m⊗ n)

= f (m(−1)1, n(−1))g((n(−1)2 ·m(0))(−1), n(−1)3)〈ψk, (n(−1)2 ·m(0))(0)〉〈ϕk, n(0)〉
(46)
= f (n(−1)1, m(−1))〈µ, n(−1)2 ·m(0) ⊗ n(0)〉.

By similar computations, we could obtain the identities (44) and (45). The proof is com-
pleted.

6. Application

Let (H, ϕ) be a coquasitriangular dual quasi-Hopf algebra. Just as shown in Example 1,
any left H-comodule is a left Yetter-Drinfeld module. In this section, we will rewrite the
canonical isomorphisms.

As an immediate consequence of Proposition 10, we have

Proposition 12. Let (H, ϕ) be a coquasitriangular dual quasi-Hopf algebra and M a finite-
dimensional left H-comodule. Then M ∼= M∗∗ and M ∼= ∗∗M as left H-comodules.

Proof. We have seen that M is an object in H
HYD, so M ∼= M∗∗ and M ∼= ∗∗M as left

Yetter-Drinfeld modules. Thus M ∼= M∗∗ and M ∼= ∗∗M as left H-comodules. By a direct
computation, we have that rΓM : M∗∗ → M is given by

rΓM(m∗∗) = u−1(mi(−1))〈m∗∗, mi〉mi(0),

with the inverse

rΓ−1
M (m) =V(s−1(m(−1)7), m(−1)1)ϕ(m(−1)5, s(m(−1)3))α(m(−1)4)
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g(m(−1)2, s−1(m(−1)6))〈mi, m(0)〉mi∗

=pR(s−2(m(−1)9), s−1(m(−1)1)) f (s−2(m(−1)8), s−1(m(−1)2))

ϕ(m(−1)6, s(m(−1)4))α(m(−1)5)g(m(−1)3, s−1(m(−1)7))〈mi, m(0)〉mi∗

(17) (13)
= pR(s−2(m(−1)7), s−1(m(−1)1)) f (s−2(m(−1)6), s−1(m(−1)2))

ϕ(s−1(m(−1)5), m(−1)3)β(s−1(m(−1)4))〈mi, m(0)〉mi∗

(17) (12)
= pR(s−2(m(−1)5), s−1(m(−1)1))ϕ(s−2(m(−1)4), s−1(m(−1)2))

α(s−2(m(−1)3))〈mi, m(0)〉mi∗

(15) (16)
= pR(m(−1)3, s−1(m(−1)1))α(s

−1(m(−1)2))u(s
−2(m(−1)4))〈mi, m(0)〉mi∗

=u(m(−1))〈mi, m(0)〉mi∗.

After similar computations, we obtain that lΓM : ∗∗M→ M is given by

lΓM(∗∗m) = u(mi(−1))〈∗∗m, mi〉mi(0),

with its inverse
lΓ−1

M (m) = u−1(m(−1))〈mi, m(0)〉mi∗.

Proposition 13. Let (H, ϕ) be a coquasitriangular dual quasi-Hopf algebra and M, N two finite-
dimensional left H-comodules. Then M∗ ⊗ N∗ ∼= (M⊗ N)∗ and ∗M⊗∗N ∼= ∗(M⊗ N) as left
H-comodules.

Proof. The result is a direct consequence of Proposition 11. Now we will give these
isomorphisms explicitly.

∗σ−1
N,M(µ)(m⊗ n) = f (m(−1)1, n(−1)1)ϕ(m(−1)2, n(−1)2)〈µ, m(0) ⊗ n(0)〉,

and

∗σN,M(∗m⊗∗n)(m⊗ n) = ϕ−1(m(−1)1, n(−1)1)g(m(−1)2, n(−1)2)〈∗m, m(0)〉〈∗n, n(0)〉.

Similarly we have

σ∗−1
N,M(µ)(m⊗ n) = f (s−1(m(−1)1), s−1(n(−1)1))ϕ(m(−1)2, n(−1)2)〈µ, m(0) ⊗ n(0)〉
(17)
= ϕ(s−1(m(−1)1), s−1(n(−1)1)) f (s−1(n(−1)2), s−1(m(−1)2))〈µ, m(0) ⊗ n(0)〉,

and

σ∗N,M(m∗ ⊗ n∗)(m⊗ n)

= ϕ−1(s−1(m(−1)2), s−1(n(−1)2))g(s−1(n(−1)1), s−1(m(−1)1))〈m∗, m(0)〉〈n∗, n(0)〉.

The proof is completed.

7. Conclusions

Yang-Baxter equation (or star-triangle relation) is a consistency equation that was first
introduced in the field of statistical mechanics, and it takes its name from the independent
work of C. N. Yang from 1968, and R. J. Baxter from 1971. In mathematical physics, one
of the most classic problems is to find the solutions to the Yang-Baxter equation. Braided
monoidal categories have been playing an essential role since they could supply such
solutions. Hence the attention of mathematicians was naturally drawn to the construction
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of braided monoidal categories. V. Drinfeld developed an elegant theory that the category of
Yetter-Drifeld modules over any Hopf algebra turns out to be a braided monoidal category,
thus supplying solutions to the Yang-Baxter equation. Since then, the idea was extended to
a more general Hopf algebra structure. In this paper, we mainly focus on the properties of
the Yetter-Drifeld category over dual quasi-Hopf algebras. Concretely, we firstly describe
explicitly the braided monoidal structures of three kinds of Yetter-Drifeld categories; then
prove that the subcategory H

HYD
f d of finite dimensional Yetter-modules is rigid, and for

any object, M, give the Yetter-Drinfeld module structures on M∗ and ∗M; finally, compute
the canonical isomorphisms in H

HYD
f d, and present an application in coquasitriangular

dual quasi-Hopf algebras case.
The results obtained in our paper indeed enrich the theory of the Yetter-Drinfeld

category and could lay the foundation for further research on dual quasi-Hopf algebras, for
example, the constructions of the category of Yetter-Drinfeld-Long bimodules and Drinfeld
double of dual quasi-Hopf algebra. Moreover, The results could also be applied to the
research on the theory of category, especially to the monoidal category, braided category,
fusion category, and even to the construction of more complicated crossed group category.
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