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Abstract: Nonorthogonal multiple access (NOMA) is considered a promising technique for improving
energy efficiency (EE) in beyond-5G wireless systems. In this paper, we investigate the maximization
of EE of downlink wireless systems by combining mmWave with NOMA technologies, considering
the asymmetric required data rate of user applications. We propose a genetic algorithm (GA) to
solve the non-convex energy efficiency problem for an imperfect CSI downlink mmWave NOMA
system. The studied mixed-integer optimization problem was converted to an integer optimization
problem and solved using a GA, which determines the best clustering members in mmWave NOMA.
The required population size of the proposed GA was determined to evaluate its effectiveness for a
massive number of users. In addition, the GA’s convergence to the optimal solution for light traffic
and relatively heavy traffic was also analyzed. Our results illustrate that the solution obtained solution
via GA is almost equal to the optimal value and outperforms the conventional orthogonal multiple
access, where the EE is improved by more than 75%. Finally, the impact of the estimation error of CSI
on the system performance was evaluated at different required SINR scenarios. The results show that
EE is degraded in the case of imperfect CSI case but is still close to the optimal solution.

Keywords: energy efficiency; genetic algorithm; imperfect CSI; millimeter wave (mmWave); non-
orthogonal multiple access (NOMA)

1. Introduction

With the growing Internet of Things and cloud-based applications, the demand for new
services and data traffic for wireless communications increases tremendously. Thus, one of
the expectations for 6G is to increase the transmission data rate to achieve a peak value of
1 Tbps to provide a massive number of users with the required service [1]. The accessible
spectrum resources are restricted since they serve tens of thousands of pieces of mobile
communications equipment and therefore more techniques are required to guarantee the
connection quality for each user [2]. NOMA is considered a very promising technique
in beyond 5G and 6G where it provides services to several users simultaneously at the
same subcarrier and at the same time through the use of superposition coding in the power
domain [3]. NOMA has several advantages such as high spectrum efficiency, improved
cell edge data rate, low latency, and good compatibility with other techniques such as
orthogonal multiple access (OMA) [4]. Moreover, considerable improvements in spectrum
efficiency (SE), energy efficiency (EE), and outage probability are achieved in MIMO-
NOMA-based communications compared to MIMO-OMA when an appropriate resource
allocation is implemented [5]. However, the channels in the massive MIMO systems
exhibit a high degree of spatial correlation. In [6], a large-system analysis is applied to
the covariance-aided CSI acquisition strategy in the MIMO system, which exploits the
individual covariance matrices for channel estimation when non-orthogonal pilot sequences
are used. The analysis shows that the training overhead can be reduced when a covariance-
aided strategy is implemented compared to the conventional CSI acquisition, where no
knowledge of the user spatial co-variance matrices is known.
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EE is a significant key when designing future green communication networks [7],
especially with the increasing global attention towards energy conservation [8]. Thus, max-
imizing EE is considered one of the challenges in 6G wireless networks, where enormous
power is consumed to provide a massive number of users with 1000 times the data rate [9].
NOMA is typically integrated with other techniques such as millimeter wave (mmWave) to
improve energy efficiency by degrading the interference and increasing the data rate [10].
The mmWave bands offer a widely available resource compared to the previous systems
that operate on microwave bands, and they also meet the high requirements of data rates
and throughput of the wireless communication’s users.

2. Related Works

The EE optimization and throughput optimization problems in NOMA have been
studied under various constraints such as the total power, interference, and/or minimum
quality of service (QoS) of the users. A code reuse scheme in the downlink MIMO-NOMA
system that separates active users into groups based on their channel quantity and inner
interference is proposed in [11]. The transmitted data correlation matrix is constructed at
the transmitter using only the primary eigenvector and eigenvalue of the corresponding
correlation matrix as the input via feedback, deducted via principal component analysis.
The performance of this scheme is evaluated in terms of code assignment gain and bit
error rate. The results show that employing the successive interference cancellation (SIC)
technique at the receivers can achieve an improvement over the conventional OMA. On the
other hand, the same SINR level is assumed for all users in [12]. Similarly, minimizing the
total power consumption of the whole network under the constraint of all users’ long-term
rate requirements is assumed in [13]. However, applications that require high QoS can drain
network resources [14]. Many applications, such as instant messaging, email reading, video
streaming, online learning, and online gaming, require asymmetric data rates [15] and
therefore more studies should address improving system performance while considering
the different equipment of each user.

Many prior works have studied power allocation in NOMA as the key role to optimize
EE in perfect channel state information (CSI) cases [16–18]. In a real cellular system, it is a
challenge to obtain full CSI at the base station (BS) because of the channel estimation error
and the quantization error [19–21]. However, channel estimation errors in the imperfect CSI
downlink NOMA system could cause user ordering ambiguities [22]. The pilot transmission
design for power-domain NOMA and the influence of the inaccurate channel estimation
on power-domain NOMA were investigated in [23]. Previous studies found that NOMA
technology has better performance than OMA in the imperfect CSI case. The resource
allocation was investigated in [24] for multi-carrier NOMA depending on the available
statistical CSI at the transmitter. Moreover, partial CSI was used in [25–27] to determine
the order of the user equipment, where CSI feedback is mainly considered a potential
improvement to support the BS in sorting user equipment. For example, one-bit feedback
from the user to the transmitter scheme is proposed in [27] to indicate whether the sending
bit is below or above a specific power level.

In [19], the impact of the CSI error levels on the system performance was investigated
and the energy efficiency at various transmission power levels and the channel estimation
error were evaluated. The results show that the system performance was improved com-
pared to OMA. Thus, NOMA is recommended for only two users in the cluster to achieve
the user’s required data rate. The probabilistic problem is converted to a non-probabilistic
version in [20] to maximize EE in imperfect CSI downlink NOMA system under outage
probability constraints. Since outage probability is one of the maximization problem con-
straints in [20], the number of served equipment in the cell has to be evaluated. A simple
suboptimal user device scheduling mechanism is presented to maximize the system EE
and a closed-form formula of the assigned power for two or more users is derived in [21].

Tackling the optimization problem becomes more challenging and complicated espe-
cially when dealing with a massive number of users in the beyond 5G and 6G networks.
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Solving the non-convex EE maximization via traditional approaches suffers from poor
resource utilization, while some advanced techniques that involve fractional programming
and sequential convex optimization or heuristic algorithms for targets are unable to find
effective solutions to large-scale wireless networks because of the complexity of wireless
communication systems [28]. This has motivated the use of artificial intelligence (AI)-based
methods to satisfy these massive wireless connectivity requirements and solve power
allocation and subchannel problems in the mmWave systems. Machine learning techniques
can provide new ideas for intelligent energy-efficient algorithms in wireless networks due
to quickly adapting to environmental changes [29]. The authors in [30] adopted the ma-
chine learning approach to decide the best user association in the mmWave NOMA system
that maximizes EE. To maximize the EE under the constraints of QoS, interference, and
transmission power in [31], the authors propose a machine learning framework to deal with
the user association, subchannel, and power allocation problems in the NOMA mmWave
heterogeneous networks to meet the various requirements of users in different applications.
Deep learning trained with genetic algorithms (GAs) is proposed in [32] to make benefits
of the advantages of deep learning and genetic algorithm where combining GA with deep
learning significantly reduces the computation time of complicated optimization problems
in various scenarios. Moreover, the combined algorithm is advisable to solve complicated
optimization problems and problems with high required timeliness.

Forming clusters for different channel gain users in the mmWave NOMA system is one
of the aspects of achieving a good performance in NOMA. However, an excessive overhead
is required to enable the BS to the users’ state information in order to form the clusters and
allocate the power to each cluster’s member that improves the system performance [33].
In [34], a Stackelberg game-based algorithm is proposed to design the user clustering and
power allocation that maximizes the sum rate of the mmWave-NOMA system where the
CSI of all cluster users is assumed to be perfectly known at the BS. More approaches are
required to optimize the EE of the mmWave-NOMA system with a massive number of
users considering the imperfection in the channel state.

3. Contribution

We focus on user clustering to maximize the EE in the downlink (DL) mmWave NOMA
imperfect CSI system subjected to the asymmetric user data rate requirement using an
artificially intelligent method (genetic algorithm) for light traffic and heavy traffic cases. In
the field of artificial intelligence, GAs have arisen as a powerful tool to solve the non-convex
optimization problem to determine the minimum solutions when the level of quality of
service is constrained and the resources are limited, especially when no full information
about the user states is available. The major contributions of this paper are:

1. Formulating the energy efficiency optimization problem for DL mmWave NOMA
system with user clustering under total power and specific required SINR for each
user depending on the user applications.

2. Investigating the role that power allocation can play to maximize the energy efficiency
in a DL mmWave NOMA system with clustering where the user applications impose
asymmetric SINR requirements. For this purpose, the EE of a two-member cluster
system is evaluated at asymmetric user requirements scenarios where the cell-edge
user and the nearby-BS user require different data rates.

3. Converting the mixed-integer GA problem to an integer GA problem for solving the
EE optimization problem by determining the best clusters.

4. Evaluating the performance of GA and its convergence in the case of light traffic and
heavy traffic.

5. Comparing the performance of the proposed GA with the optimal solution and the
conventional OMA at different user SINR requirement scenarios. The results reveal
that GA can detect close-to-optimal solutions for a various number of users and user
requirements. Additionally, the results show the outperformance of NOMA using the
proposed GA algorithm compared to the conventional OMA.
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6. Evaluating the impact of estimation error in CSI at BS on the system performance
based on the proposed GA and the optimal NOMA. The simulation results show that
the GA solution is close to the optimum. However, the EE of the system degrades in
the presence of the imperfection of CSI.

The rest of this paper is organized as follows: The system model of cellular downlink
NOMA system with imperfect CSI and the EE optimization problem that aims to maximize
the EE of the mmWave DL system subject to the required QoS and limited transmission
power is presented in Section 4. In Section 5, we detail the proposed genetic algorithm
that is used to solve the EE optimization problem with integer unknowns. In Section 6, we
present detailed simulation results for the proposed algorithm, including a comparison
of the optimal EE to the solution of GA to prove its effectiveness in deciding the optimal
sub-channel users in the system and analysis of the impact of imperfection in CSI at the
BS on the system performance. Finally, Section 7 concludes the paper. Table 1 lists the
notations used in this paper.

Table 1. List of parameters.

Notation Parameters

θb
m The beam width of the mmWave BS b to user m

ϕb
m The boresight angle from mmWave BS b to user m

γb
m The spatial angle from user m to mmWave BS b

gb
m

The gain of the directivity between the beam from mmWave BS b to user m and the
beam from device m to mmWave BS b

θu
m The beam width of the user m to mmWave BS b

ϕu
m The boresight angle from device m to mmWave BS b

γu
m The spatial angle from mmWave BS b to user m

gu
m

The gain of the directivity between the beam from user m to mmWave BS b and the
beam from mmWave BS b to user m

gc
m The gain of the channel linked the user m to the mmWave BS b
ε Side lobe

hm The complete representation of the channel between BS b and user m
pm The allocated power to the user m from the mmWave BS b

4. System Model and Problem Formulation

In this study, a single-cell cellular NOMA mmWave system is considered as illustrated
in Figure 1, where the beamforming-based directional links are considered [30,35]. The
central BS is equipped with multiple antennas, whereas each user is equipped with a single
antenna. Without losing generality, the users are assumed to be uniformly allocated [30].
The set of users within the cell boundary isM = {1, 2, 3, . . . , M}. The set of the clusters
is denoted as C = {1, 2, 3, . . . , C} where one subchannel is dedicated for each cluster.
The user association state between every user and BS is represented by the XM×B matrix
as follows:

X =

 x1,1 · · · x1,B
...

. . .
...

xM,1 · · · xM,B

 (1)

where xm,b = 1 when the user m is a member of cluster b, and xm,b = 0 when it is not. Due
to the complexity of SIC decoding, we assumed that each cluster can support two members
simultaneously on one subchannel [36].

The gain of the directivity between the beam from the mmWave BS to user m and the
beam from user m to the mmWave BS is given by

gb
m

(
θb

m, ϕb
m, γb

m

)
=


ε,

i f θb

2 <
∣∣∣ϕb

m − γb
m

∣∣∣
< 2π − θb

2
2π−(2π−θb)ε

θb , otherwise

(2)
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Figure 1. The proposed DL mmWave NOMA system.

Similarly, the gain of the directivity between the beam from user m to the mmWave BS
and the beam from the mmWave BS to user m is given as

gu
m(θm

u, ϕu
m, γu

m) =

 ε,
i f θm

u

2 < |ϕu
m − γu

m|
< 2π − θm

u

2
2π−(2π−θm

u)ε
θmu , otherwise

(3)

The cluster users are supported at the same time and at the same subchannel by
utilizing superposition coding techniques. The channel gain from the BS to every user is

given by gc
m = cmd−

δ
2

m , where cm ∼ CN(0, 1) is a Rayleigh fading factor, dm denotes the
distance from each UE to the transmitter, and δ refers to the path loss exponent [19]. In
practice, it is difficult to attain perfect channel state information due to various reasons
such as channel estimation errors, feedback delays, and quantization errors. Here, we
consider a NOMA system with imperfect CSI in which the channel estimation is given by
gc

m = ĝc
m + ε, where ε ∼ CN(0, σ2

ε ) is the error of the channel estimation with variance σ2
ε ,

and ĝc
m is the estimated channel gain ĝc

m ∼ CN
(

0, σ2
gm

)
which is uncorrelated with ε [19].

Thus, the complete representation of the channel between the BS and user m is given by:

hm = gb
mgu

mgc
m (4)

In the downlink NOMA system, user equipment is ordered according to channel
strength (|hM| ≥ |hM−1| ≥ ... ≥ |h2| ≥ |h1|) [22]. Thereby, the SIC technique could
extract a specific signal from the superposed signals on a single carrier. The strongest
user device is indicated as UEM and the weakest user device is indicated as UE1. The BS
transmits M different messages on the same carrier within the same bandwidth. On the
other side, each user receives a composition of its message with the interferences from the
signals of other users [37]. Figure 2 illustrates the SIC technique in the mmWave-NOMA
system where each cluster consists of two members and is carried on a specific subchannel.
The mmWave BS in the NOMA system utilizes superposition coding techniques to serve
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several users simultaneously. A superposed transmitted signal by the mmWave BS can be
expressed as [19]:

f =
M

∑
m=1

√
αmPtot fm(t) =

M

∑
m=1

√
pm fm (5)

where fm is the individual signal dedicated to the m-th user and E{|fm|2} = 1 before
transmission, M is the number of the UEs supported by the mmWave BS, Ptot is the total
transmitted power of the mmWave BSs, and αm is the power coefficient allocated to the
m-th UE where:

∑
∀m∈M

αm ≤ 1 (6)
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The variation in the power levels of the composed signals plays an important role in
maximizing the cell throughput and EE [38]. The mmWave BS transmits different signals
over the same frequency resource while every user receives its desired signal combined
with the interferences due to the other users’ signals on the same radio signal [37]. Each one
of the downlink NOMA’s users undergoes a different attenuation according to its channel
gain with the mmWave BS. The user with the strongest channel has the capability to decode
the signals of the remaining users before decoding its own signal. On the other hand, the
user with the weakest channel cannot eliminate the signals of the other strong channel UEs.
The received signal at the m-th UE terminal before applying the SIC technique is given
by [19]:

ym = ∑
∀l∈M,b∈B

√
xm,bgb

mgu
mgc

m pl fl + wm (7)

where pl is the allocated power to the l-th user and wm represents the additive white
Gaussian noise (AWGN). In general, the signal after applying SIC technique at the m user
can be expressed as [19]

ym =
√

xm,bgb
mgu

mgc
m pm fm + ∑

∀l∈M

√
xm,bgb

mgu
mgc

m pl fl︸ ︷︷ ︸
l>m

+ ∑
∀l∈M

√
εxl,b pl fl + wm (8)

where in Equation (8), the dedicated signal for the m-th UE is represented by the first term,
while the second term is the inter-channel interference due to decomposed signals on the
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same subchannel of other users and the third term is due to the estimation error of the CSI.
It is worth mentioning that the interference due to the signals of the other clusters will be
eliminated by filtration where other clusters are on different subchannels.

It is assumed that all users utilize the mmWave spectrum resources completely to
achieve full employment of the directional gain of the mmWave system. Thus, the com-
munication link between the mmWave BS and the m-th user is subjected to interference
given by

Im = ∑∀l∈M xm,b pl gb
mgu

mgc
m︸ ︷︷ ︸

l<m

+ σ2
ε ∑M

l=1 xl,b pl (9)

This is considered a commonly used interference model in mmWave power allocation
system [39]. Based on the interference model, the signal-to-interference ratio (SINR) at the
m-th user is given as

SINRm =
xm,b pmgb

mgu
mgc

m
Im + BNo

(10)

where B represents the utilized bandwidth and No represents the power spectrum density
of the AWGN at the user terminal. Thereby, the obtained data rate at the m-th user from
the mmWave BS can be expressed as

Rm = Blog2(1 + SINRm) (11)

The improved throughput is an advantage of the NOMA over the conventional OMA.
For a more specific comparison, conventional frequency division multiple access (FDMA)
will be considered in this paper. For a fair comparison with the NOMA, the bandwidth
dedicated for each cluster is divided equally among its members so that the cluster will
support the same number of users within the same dedicated bandwidth in both systems,
NOMA and OMA. Thus, the data rate of the m-th user from the mmWave BS in OMA
system is determined as

ROMA
m =

B
M

log2

(
1 + ∑n∈N Pmgb

mgu
mgc

m

σ2
ε Pm + B

M No

)
(12)

The advantage of NOMA over OMA in increasing the data rate can be illustrated by
taking an example of a cell with only two users where the first is at the cell edge, which
is far from the BS, while the second is near the BS. Although low power will be allocated
to the nearest user who has the strongest channel, its SINR will be high since no inter-cell
interference significantly affects it.

Due to the system’s resource constraints, the number of served users and their allocated
power should be determined carefully to ensure the QoS of wireless systems. Furthermore,
the difference in the allocated power levels should be verified so that each receiver is able to
perform SIC and extract the desired signal [37]. The sum data rate of the NOMA mmWave
downlink system is expressed as

Rsum = ∑
m∈M

Rm (13)

Based on the given data rate, the energy efficiency of the user association NOMA
mmWave downlink system can be written as [40]

EE =
Rsum

∑m∈M pm + Pc
(14)

where Pc represents the circuit power dissipation for SIC detection at the mmWave BSs
where we assumed that it is fixed for all users. In this work, we aim to maximize the
non-concave EE optimization problem of the NOMA mmWave with clustering. The power
allocated by the mmWave BS to each user depends on the required QoS by that user within
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the limited total BS transmission power. Each cluster is assumed to consist of two members
while each user is supported by one cluster (subchannel). We aim to find the optimal cluster
composition that maximizes the EE of the mmWave system subjected to the required QoS
and limited transmission power. This EE optimization problem can be formulated as

max︸︷︷︸
xm,b ,pm

EE = Rsum
∑m∈M ∑b∈B xm,b pm+Pc

subject to C1 : xm,b ∈ {0, 1}, ∀m ∈ M, ∀b ∈ B,
C2 : ∑

m∈M, b∈B
xm,b = 1, ∀m ∈ M,

C3 : ∑
m∈M, b∈B

xm,b = 2, ∀b ∈ B,

C4 : ∑
m∈M

∑
b∈B

xm,b pm ≤ Ptot,

C5 : SINRm ≥ δm, ∀m ∈ M

(15)

where C1 refers to the association of each user m with a cluster b. C2 states that each user
should be supported by one cluster while C3 defines every cluster as consisting of two
members. The limited transmission power of the mmWave BS is represented in C4 while C5
is to ensure that the minimum QoS requirements for all users in the DL mmWave NOMA
system are satisfied. We will discuss a mechanism to allocate the power to the cluster
members in Section 3.

The difficulties and complexity of finding all xmn and pm that maximize the data rate
in the downlink user association mmWave NOMA system are obvious. In addition, the
relation between the data rate and the transmitted power makes this problem a non-convex
optimization problem that is difficult to solve using classical methods. Therefore, here we
employed the genetic algorithm to solve the subchannel association problem. Based on the
GA scheme, the optimization problem in (15) is a mixed integer nonlinear problem.

5. Power Allocation and GA Scheme
5.1. Power Allocation

To propose a mechanism to allocate the power to cluster members of various required
data rates, first we will investigate the assumption of allocating higher power to the weaker-
channel state user in the cluster as well as the assumption that allocating the lower power to
the stronger-channel state user is required to ensure that higher EE can be achieved [41]. For
simplicity, we consider a simple scenario where the mmWave has complete CSI information
of all users. Thus, for a two-member cluster, the SINR of the strong-channel user (SINR1)
and the SINR of the weak-channel user (SINR2) are given as:

SINR1 =
p1gb

1gu
1 gc

1

p2gb
1gu

1 gc
1 + BNo

(16)

and

SINR2 =
p2gb

2gu
2 gc

2
BNo

(17)

where the SIC technique is used at the UE2 to eliminate the interference due to the weaker-
channel user UE1. Assuming a unity channel gain, h2 = 1, and the required QoS of the UE2
is 2, the allocated power p2 would be 2 regardless of the UE1 requirement. On the other
hand, the allocated power to the weak-channel user UE1 (p1) would be less than (p2) when
its QoS requirement is only at low levels. However, when UE1 requests a higher data rate,
its allocated power should be higher than the allocated power of UE1. Figure 3 illustrates
the allocated power and the EE for a cluster of 2 members with various requirements and
channel states. As can be seen from Figure 3, the weaker channel user requires higher
allocated power to achieve the data rate. Although previous studies have found that
increasing the allocated power to the strong-channel user significantly increases the total
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throughput of the system, this rise of the allocated power decreases the system EE based
on Equation (14).
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Figure 3. The allocated power to the two members of the cluster and the EE vs. the obtained SINR at
the weaker-channel user (h1) when the required SINR of the stronger-channel user (h2) is 2 in (a) and
3 in (b). (a) SINR2 = 2; (b) SINR2 = 3.

The question here is whether increasing the data rate of the strong-channel user (UE2)
in the cluster higher than its requirements will be a benefit to the system EE. To answer
this question, the allocated power to the strong-channel member in the cluster is increased
so that its new SINR is 3, as seen in Figure 3b. This leads to a noticeable increment in the
power allocated to the weaker-channel user to attain its requirement, and eventually the
system EE degrades. Thus, the best scenario to achieve the highest EE to support the cluster
members with the same requirements of data rate is to set the subject C5 in the optimization
problem as SINRm = δm.

In this study, we assumed that the power allocated to every user will satisfy the user’s
QoS (δm). We then studied the possibility of improving the system EE by selecting different
members in the cluster. Assume there are two weak-channel users in the cell. We refer to
the user with h1 = 0.5h2 as UEx and refer to the user with h1 = 0.25h2 as UEy. The general
assumption of selecting either one of them as a second member in the cluster depends on
its channel state; increase in the system EE is not an accurate conclusion when, as seen
in Figure 3a, the required QoS of every user plays an important role in this issue. For
example, choosing UEx leads to higher EE when the required SINR of UEx is δx = 0.5 and
the required SINR of UEy is δy = 0.5, while choosing UEy leads to higher EE when δx = 2
and δy = 0.25.

Although selecting the cluster members with various QoS requirements can be de-
cided easily in this example, the massive number of users in real wireless communication
networks makes the problem more complicated, as there are M!

2!(M−2)! different combinations
of 2 members in a cell of M users [42], and therefore we adopted a GA scheme in this study
to determine the optimal cluster combinations xm,b to maximize the EE of the DL mmWave
NOMA system.

5.2. Genetic Algorithm

Genetic algorithms (GAs) are one of the classical heuristic algorithms that have been
successfully implemented to solve non-convex optimization problems [43]. In this section,
we describe the components of the genetic algorithm to solve the EE optimization problem
in downlink mmWave NOMA with clustering.
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GAs are one of the evolutionary algorithms inspired by the biological selection process,
and they follow similar operators. Goldberg’s genetic algorithm was inspired by Darwin’s
evolution theory, which says that an organism’s survival is determined by the criterion
“the strongest species survive”. Based on Darwin’s theory, an organism’s survival can
be ensured by the processes of reproduction, crossover, and mutation [44]. His principle
of evolution is utilized later in a computational algorithm to solve a problem called an
objective function. The solution found via GA is indicated by a chromosome and a collection
of chromosomes represents a population. A chromosome comprises genes, and the value
of each chromosome can be numerical, binary, or character depending on the nature of the
problem. These chromosomes pass through a series of steps starting with a fitness function
process to evaluate the suitability between the solution provided via GA and the problem.
Through another process called a crossover, new offspring of chromosomes are generated
by mating some chromosomes in the population. The genes carried by the new offspring
are a mixture of their parents [45]. On the other hand, some chromosomes in the generation
will undergo gene mutation. The crossover rate and mutation rate values determine the
number of chromosomes that will undergo crossover and mutation, respectively. According
to Darwin’s rule of evolution, the chromosome with the highest fitness value will have
a larger chance of being selected again in the future generation. The chromosomal value
converges over numerous generations to a specific value that is the optimal solution for the
problem [14].

By utilizing GA to solve the problem in Equation (15), repetitively assigning clus-
ter members and determining their PA process should be performed to determine the
maximum EE. Based on the known CSI of the users at the mmWave NOMA BS, the al-
located power to the weaker-channel user and the allocated power to the strongest user
depend on their inquired QoS to attain C5. To solve the non-convex optimization prob-
lem in Equation (15) using GA, a reformulation was conducted to achieve a minimization
problem, which can be written as

min︸︷︷︸
xm,b

− Rsum
∑m∈M ∑b∈B xm,b pm+Pc

subject to C1 : xm,b ∈ {0, 1}, ∀m ∈ M, ∀b ∈ B,
C2 : ∑

m∈M, b∈B
xm,b = 1, ∀m ∈ M,

C3 : ∑
m∈M, b∈B

xm,b = 2, ∀b ∈ B,

C4 : ∑
m∈M

∑
b∈B

xm,b pm ≤ Ptot,

C5 : SINRm = δm, ∀m ∈ M

(18)

An integer GA was utilized to determine the best cluster combination that maximizes
EE. The GA process to solve the optimization problem in Equation (18) consists of sequential
stages that begin with a determination of the chromosome number, maximum number
of generations, mutation rate, and crossover rate. Initial values of xmb are assumed, then
sequences of selection and mutation are performed. The evolution starts with random
individual elements xm,b of the generation that satisfy C1, C2, and C3. Based on C2, the
sum of each row in the matrix X in Equation (1) should equal 1, which indicates that each
user is supported by only one subchannel via one cluster in the cell. On the other hand,
based on C3, the sum of each column in X should be equal to 2 since each cluster supports
2 members. Because these are integer constraints, the linear equality constraints of the
optimization problem in Equation (18) should be reformulated to inequality constraints.
Generally, the vector form for the linear inequality constraints of a GA problem is given as

AX ≤ b (19)
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For a problem of nc linear inequality constraints and nvars variables, A is a matrix of
size nc-by-nvars and b is a vector of length nc. Thus, C2 and C3 can be reformulated as

C2 :


B
∑

b=1
xm,b ≤ 1

B
∑

b=1
xm,b ≥ 1

, ∀m ∈ M, (20)

and, C3 :


M
∑

m=1
xm,b ≤ 2

M
∑

m=1
xm,b ≥ 2

, ∀b ∈ B (21)

Since each cluster is assumed to support 2 users (B = M
2 ), the number of variables nvars

would be M2

2 and the number of linear inequality constraints nc would be 3M. It is worthy
to mention that the initial population created by GA contains several individuals that lie
within the preset initial range. For the concerned GA problem, all individuals should lie
within the range [0; 1]. Because of the massive number of users in the real wireless system,
the population size will contain thousands of potential solutions and the initial population
will be randomly selected. The population size of the integer GA problem should be higher
than the double GA problem to ensure a feasible solution can be obtained [46].

These generation elements are reproduced iteratively within a maximum number of
generations. Providing lower and upper bounds for all xm,b elements is necessary to find
the best solution to the integer GA problem. Thus, the lower bound Lb and the upper
bound Ub of the problem in Equation (18) are given by:

Lb =
[
0 . . . 0

]
1×nc

(22)

and
Ub =

[
1 . . . 1

]
1×nc

(23)

Some genes of selective individuals in the current population (parents) are passed on
to the next generation (children). Usually, the selected individuals are those who have the
best fitness values. The other individuals pass through crossover and mutation processes
that are illustrated in Figure 4. Thus, the next generation is classified into three types:

• Elite children: Individuals that attain the best fitness values and therefore have a
higher probability to appear in the next generation. In the concerned GA problem, the
elite group is selected as the individual clustering groups xm,b that attain the maximum
EE among the whole population. The percentage of the elite to the total population of
individuals is set to 2% to pass completely to the next generation.

• Crossover children: Individuals that are created by mixing the vectors of a pair
of parents.

• Mutation children: Individuals that are created by applying random changes, or gene
mutations, to individual parents to produce children. The mutation rule applies to the
individual with a lower probability to attain maximum EE.

The flowchart of the proposed GA is illustrated in Figure 5 where the fitness of the
population units is assessed using the objective function value of the optimization problem
in every generation. However, the integer genetic algorithm seeks to minimize a penalty
function instead of the objective function. The penalty function adds a term for solution
infeasibility to the original objective function [47]. The penalty function consists of weighted
penalty parameters to estimate the infraction of the constraints. Thus, the constrained
problem is converted to a series of unconstrained problems where their solutions are
converged to the potential solution of the original problem. The penalty function represents
the fitness function if the candidate solution is feasible. Otherwise, the sum of the constraint
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violations of the (infeasible) point is added to the objective function [48]. Thus, the penalty
function of EE optimization problem in Equation (18) is given as:

min︸︷︷︸
xm,b

− Rsum

∑m∈M ∑b∈B xm,b pm + Pc
+ ρk

2

∑
i=1

gi(x), (24)

where ρk is the penalty factor and the second term in (24) represents the penalty function,
which can be represented as

g1(x) = max

(
1,

B

∑
b=1

xm,b

)
, ∀m ∈ M (25)

and

g2(x) = max

(
2,

M

∑
m=1

xm,b

)
, ∀b ∈ B (26)
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Initially, the penalty factor is set to a small value, and then it is increased in the next
iterations. It is obvious that the penalty function converges to the fitness function when
the penalty function attains the constraints. Eventually, the solutions of the successive
unconstrained problem will meet the solution of the original constrained problem.

6. Simulation Results

In this section, we will first evaluate the performance of the proposed GA scheme
for optimizing the EE in the DL mmWave NOMA system with user clustering. Next, the
validity of the proposed scheme is verified by evaluating the performance of the NOMA
system in terms of EE and comparing it to both optimal NOMA and conventional OMA.

The general scenario for the simulation is a single cell of a 500 m radius. A mmWave
BS with 40 dBm power capability is located at the cell’s center and equipped with multiple
antennas while M users are distributed randomly at distances between 50 m to 500 m
from the mmWave BS within the cell’s boundary. The capacity of each cluster is only
two users. For simplicity, the transmission beams between the mmWave and the users
are assumed to have the same direction, which matches the geographical bore-sight links
between them [30]. The allocated power to each user is determined based on its required
data rate. The minimum level δm is set randomly between 1 and 2. The parameters of the
DL mmWave NOMA simulation are listed in Table 2 [30].

Table 2. Simulation Parameters.

Parameter Value

Operating frequency
Cell radius

24 GHz
500 m

Minimum distance between user and BS 50 m
Required data rate 1–2 b/s/Hz

Total dissipated power at the transmitter 1 Watt
Path loss component 3

BS transmission power 40 dBm
The subchannel bandwidth 1 MHz

AWGN power −173 dB/Hz
Operating beam-width of the mmWave BS 5◦

Operating beam-width of the user 10
Side lobe gain 0.1

Simulation trials 1000
Maximum generations 100

Elite ratio 5% of the population size
Population initial range [0; 1]

Tolerance of objective function 10−12

6.1. Genetic Algorithm Performance

In this section, the performance of the GA to solve the EE optimization problem in
a DL mmWave NOMA system is evaluated. First, diverse population sizes were tested
to determine the most appropriate population for different numbers of users. Starting
from two clusters (four users) up to eight clusters (sixteen users), the population size was
increased until all constraints were satisfied to determine the required population size in
relation to the number of users. The elite ratio was 5% of the overall population and the
crossover fraction was set to be 50% of the chromosome.

Figure 6 illustrates the required GA population size for various traffic cases. The
results illustrated show that the required size of the population in GA is relatively low at
light traffic in the cell. As the number of users increases, the minimum population size that
guarantees the finding of a feasible solution and satisfies the constraints also increases. The
significant increase in the population size indicates a much longer time required to solve
the GA. Thus, for a DL mmWave-NOMA with clusters that consist of a massive number of
users, GAs could be utilized to determine the optimal cluster pairs that maximize the EE;
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however, there is a possibility that this may not satisfy the timeliness requirement. That
being said, since GA execution time is much shorter than the required time to evaluate
the EE of each possible cluster and determine the optimal solution among all possibilities,
the obtained solutions by GA are useful to provide training data for deep learning. The
combination between deep learning and GA can improve the solving process by mixing
the advantages of the two algorithms, which are determining the near-to-optimal solution
(GA) and satisfying the timeliness requirement (deep learning) [32].
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Figure 6. The appropriate population size of the GA with respect to the number of users.

The performance of the GA convergence is evaluated in terms of the relation between
the population size and the number of required iterations (generations) to find the solution.
For this purpose, two cases were selected: the first case considers relatively low traffic
(6 users) while the second case considers relatively heavy traffic (16 users). The results
are illustrated in Figures 7 and 8, which show that generally fewer iterations (generations)
are required for convergence when the population size is larger for M = 6 users and
M = 16 users, respectively. As seen in Figure 7a,b, the convergence to the solution becomes
sharper after nine generations and six generations, where the population size increased
from 120 to 160. Similar trends can be seen in Figure 8a,b when the population size increases
from 1500 to 1800. Moreover, by comparing the results in (a) and (b) for both cases shown
in Figures 7 and 8, it is obvious that the number of repetitions (generations) to find the
solution reduces when the population size increases. The number of generations executed
to solve within the tolerance increases significantly in the case of 16 users as compared to
6 users, and thus this leads to the long execution time of the GA as is shown in Figure 6.

6.2. Impact of the Required SINR

The effect of the users’ asymmetric required SINRs on the EE of the proposed system
was investigated. The simulation settings remain as in the previous section while the total
transmission power is sufficient to provide all users with the required QoS. In the first
scenario, we assume a random requirement of user data for different types of applications
since some of the applications, such as email, require a much lower data rate than online
gaming or video conference. Figure 9a shows the system’s EE based on random required
SINR, ranging between 1b/s/Hz and 2b/s/Hz for a different number of users. Then, we as-



Symmetry 2022, 14, 2345 15 of 19

sume that all users hypothetically have the same requirements, either low SINR (1b/s/Hz)
or high SINR (2b/s/Hz), and the results are shown in Figures 9b and 9c, respectively. It
can be seen from the figures that the GA approach achieves almost the optimal solution in
all cases, which shows its effectiveness for solving complex EE optimization problems. It
is obvious that for all cases, the EE degrades as the number of users increases. However,
as the number of users increases, the EE of the system approaches the same value for
the random SINR requirements and the high SINR cases. Finally, the results show the
outperformance of the combination of NOMA with mmWave to improve the system EE
compared to OMA-mmWave where a 75% increase in EE can be obtained. For example, the
EE rises from about 1b/Joule in mmWave-OMA for 16 users to 2b/Joule in mmWave-OMA
under the same circumstances.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

  

(a) (b)  

Figure 7. The GA convergence to the best penalty value for light traffic case (M = 6). (a) Population 

size = 120. (b) Population size = 160. 

  

(a) (b) 

Figure 8. The GA convergence to the best penalty value for relatively heavy traffic case (M = 16). 

(a) Population size = 1500. (b) Population size = 1800. 

6.2. Impact of the Required SINR 

The effect of the users’ asymmetric required SINRs on the EE of the proposed system 

was investigated. The simulation settings remain as in the previous section while the total 

transmission power is sufficient to provide all users with the required QoS. In the first 

scenario, we assume a random requirement of user data for different types of applications 

since some of the applications, such as email, require a much lower data rate than online 

gaming or video conference. Figure 9a shows the system’s EE based on random required 

SINR, ranging between 1b/s/Hz and 2b/s/Hz for a different number of users. Then, we 

assume that all users hypothetically have the same requirements, either low SINR 

(1b/s/Hz) or high SINR (2b/s/Hz), and the results are shown in Figure 9b and Figure 9c, 

respectively. It can be seen from the figures that the GA approach achieves almost the 

optimal solution in all cases, which shows its effectiveness for solving complex EE opti-

mization problems. It is obvious that for all cases, the EE degrades as the number of users 

increases. However, as the number of users increases, the EE of the system approaches the 

0 10 20 30 40 50 60 70 80 90 100
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6

Generations

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -3.7679 x10
6
    Mean: -3.7679 x10

6

 Best penalty value

 Mean penalty value

10 15 20
-3.768

-3.7679

-3.7679
x 10

6

2 4 6 8
0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6 Best: -3.5848 x10
6
    Mean: -3.5848 x10

6

Generations

P
e
n
a
lt
y
 v

a
lu

e

 

 

 Best penalty value

 Mean penalty value

10 15 20
-3.5848

-3.5848

-3.5848

-3.5848
x 10

6

2 4 6
1

2

3

0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6

Generation

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -2.0949 x10
6
    Mean: -2.0949 x10

6

Best penalty value

Mean penalty value

40 45

0.7
0.8
0.9

50 55
-2.0949

-2.0949

-2.0949
x 10

6

0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

x 10
6

Generation

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -2.3241 x10
6
    Mean: -2.3241 x10

6

Best penalty value

Mean penalty value

30 35

0.6

0.8

1

40455055
-2.3241

-2.3241

-2.3241
x 10

6

Figure 7. The GA convergence to the best penalty value for light traffic case (M = 6). (a) Population
size = 120. (b) Population size = 160.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

  

(a) (b)  

Figure 7. The GA convergence to the best penalty value for light traffic case (M = 6). (a) Population 

size = 120. (b) Population size = 160. 

  

(a) (b) 

Figure 8. The GA convergence to the best penalty value for relatively heavy traffic case (M = 16). 

(a) Population size = 1500. (b) Population size = 1800. 

6.2. Impact of the Required SINR 

The effect of the users’ asymmetric required SINRs on the EE of the proposed system 

was investigated. The simulation settings remain as in the previous section while the total 

transmission power is sufficient to provide all users with the required QoS. In the first 

scenario, we assume a random requirement of user data for different types of applications 

since some of the applications, such as email, require a much lower data rate than online 

gaming or video conference. Figure 9a shows the system’s EE based on random required 

SINR, ranging between 1b/s/Hz and 2b/s/Hz for a different number of users. Then, we 

assume that all users hypothetically have the same requirements, either low SINR 

(1b/s/Hz) or high SINR (2b/s/Hz), and the results are shown in Figure 9b and Figure 9c, 

respectively. It can be seen from the figures that the GA approach achieves almost the 

optimal solution in all cases, which shows its effectiveness for solving complex EE opti-

mization problems. It is obvious that for all cases, the EE degrades as the number of users 

increases. However, as the number of users increases, the EE of the system approaches the 

0 10 20 30 40 50 60 70 80 90 100
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6

Generations

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -3.7679 x10
6
    Mean: -3.7679 x10

6

 Best penalty value

 Mean penalty value

10 15 20
-3.768

-3.7679

-3.7679
x 10

6

2 4 6 8
0

1

2

3

0 10 20 30 40 50 60 70 80 90 100
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6 Best: -3.5848 x10
6
    Mean: -3.5848 x10

6

Generations

P
e
n
a
lt
y
 v

a
lu

e

 

 

 Best penalty value

 Mean penalty value

10 15 20
-3.5848

-3.5848

-3.5848

-3.5848
x 10

6

2 4 6
1

2

3

0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

6

Generation

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -2.0949 x10
6
    Mean: -2.0949 x10

6

Best penalty value

Mean penalty value

40 45

0.7
0.8
0.9

50 55
-2.0949

-2.0949

-2.0949
x 10

6

0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

x 10
6

Generation

P
e
n
a
lt
y
 v

a
lu

e

 

 

Best: -2.3241 x10
6
    Mean: -2.3241 x10

6

Best penalty value

Mean penalty value

30 35

0.6

0.8

1

40455055
-2.3241

-2.3241

-2.3241
x 10

6

Figure 8. The GA convergence to the best penalty value for relatively heavy traffic case (M = 16).
(a) Population size = 1500. (b) Population size = 1800.



Symmetry 2022, 14, 2345 16 of 19

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 20 
 

 

same value for the random SINR requirements and the high SINR cases. Finally, the re-

sults show the outperformance of the combination of NOMA with mmWave to improve 

the system EE compared to OMA-mmWave where a 75% increase in EE can be obtained. 

For example, the EE rises from about 1b/Joule in mmWave-OMA for 16 users to 2b/Joule 

in mmWave-OMA under the same circumstances. 

   

(a) (b) 

 

(c) 

Figure 9. The EE of mmWave-NOMA system versus the number of users at different SINR condi-

tions. (a) Random SINR between 1 and 2. (b) All SINR = 2. (c) All SINR = 1. 

6.3. Imperfect CSI 

Here, we utilized GA to determine the EE of the mmWave-NOMA system in an im-

perfect CSI DL mmWave-NOMA system. The effect of the channel estimation error vari-

ance on EE for various amounts of user equipment is shown in Figure 10. The number of 

users is varied from 4 users to 16 users, and channel estimation error σ2 is set to 0.01. It is 

evident that the maximum EE is obtained at zero error (perfect CSI), and the channel esti-

mation error causes a decrease in EE because of the decrease in the SINR level. A degra-

dation in the system’s performance occurs in the case of imperfect CSI due to the impact 

of additional noise related to the channel estimation error variance. As can be seen from 

Figure 10, the performance of the mmWave-NOMA system is better than the conventional 

OMA system in the imperfect CSI case when GA is employed. 

4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Number of users

E
n
e
rg

y
 E

ff
ic

ie
n
c
y

 Random SINR

 

 

 Optimal

GA

OMA

9.5 10 10.5
2.2

2.3

2.4
x 10

6

4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

6

Number of users

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

 All SINR=2

 

 

 Optimal

GA

OMA

13.8 14 14.2
2.1

2.15

2.2

2.25
x 10

6

4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Number of users

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

 All SINR=1

 

 

 Optimal

GA

OMA

10 12
1.6

1.7

1.8
x 10

6

Figure 9. The EE of mmWave-NOMA system versus the number of users at different SINR conditions.
(a) Random SINR between 1 and 2. (b) All SINR = 2. (c) All SINR = 1.

6.3. Imperfect CSI

Here, we utilized GA to determine the EE of the mmWave-NOMA system in an
imperfect CSI DL mmWave-NOMA system. The effect of the channel estimation error
variance on EE for various amounts of user equipment is shown in Figure 10. The number
of users is varied from 4 users to 16 users, and channel estimation error σ2 is set to 0.01.
It is evident that the maximum EE is obtained at zero error (perfect CSI), and the channel
estimation error causes a decrease in EE because of the decrease in the SINR level. A
degradation in the system’s performance occurs in the case of imperfect CSI due to the
impact of additional noise related to the channel estimation error variance. As can be
seen from Figure 10, the performance of the mmWave-NOMA system is better than the
conventional OMA system in the imperfect CSI case when GA is employed.
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7. Conclusions

In this paper, we present a mixed-integer genetic algorithm (GA) to solve the EE
optimization problem of a DL mmWave NOMA system with clustering subject to the
various users’ required SINRs. Then, we show that power allocation could not play an
effective role in maximizing the proposed system’s EE. The best system performance, in
terms of energy efficiency, occurs when the allocating power satisfies the exact user-required
data rate. Thus, the mixed-integer GA optimization problem is converted to an integer
GA optimization problem to solve the best clustering that achieves the system’s maximum
EE. We determined the suitable minimum population size related to different numbers of
system users: The population size increases dramatically during heavy traffic. In addition,
the convergence of GA to reach the optimal result requires more repetitions (generations),
and therefore the long execution time of GA at heavy traffic makes it more useful to prepare
training data for deep learning algorithms where every cell is light, instead of real-time
systems or dense cells at heavy traffic, because of its long execution time. Our results
also show the outperformance of combining mmWave with NOMA as compared to the
conventional orthogonal multiple access (OMA), where the proposed approach could
improve the EE by more than 75%. The effect of the estimation error of CSI on the system
performance was evaluated, where the results show that EE is degraded in the imperfect
CSI case but the GA is still capable of determining almost the optimal solution under the
same circumstances. The results reveal the ability of GAs to determine almost the optimal
solution for different scenarios of user requirements. Since this study was limited to a
single-cell model, implementing GA in more complex systems such as multiple cells and a
higher number of cluster members will be investigated in future studies.
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