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Abstract: This paper provides a general formularization of the nonlocal Euler–Bernoulli nanobeam
model for a bending examination of the symmetric and asymmetric cross-sectional area of a nanobeam
resting over two linear elastic foundations under the effects of different forces, such as axial and
shear forces, by considering various boundary conditions’ effects. The governing formulations are
determined numerically by the Generalized Differential Quadrature Method (GDQM). A deep search
is used to analyze parameters—such as the nonlocal (scaling effect) parameter, nonuniformity of area,
the presence of two linear elastic foundations (Winkler–Pasternak elastic foundations), axial force,
and the distributed load on the nanobeam’s deflection—with three different types of supports. The
significant deductions can be abbreviated as follows: It was found that the nondimensional deflection
of the nanobeam was fine while decreasing the scaling effect parameter of the nanobeams. Moreover,
when the nanobeam is not resting on any elastic foundations, the nondimensional deflection increases
when increasing the scaling effect parameter. Conversely, when the nanobeam is resting on an elastic
foundation, the nondimensional deflection of the nanobeam decreases as the scaling effect parameter
is increased. In addition, when the cross-sectional area of the nanobeam varies parabolically, the
nondimensional deflection of the nonuniform nanobeam decreases in comparison to when the
cross-sectional area varies linearly.

Keywords: deflection; nonlocal Euler–Bernoulli nanobeam; symmetric and asymmetric thickness;
elastic foundation; GDQM

1. Introduction

Structural analysis is an overall computation of the load applied to the structure to
emphasize that the distortions due to the load on a structure will be satisfying and reach the
minimal permissible limits, and to ensure that structure failure will never occur. Analytical
results are employed to confirm the structure’s strength for use. So, structural analysis
is a basic part of structural engineering. A bending study is useful for some engineering
applications such as some types of sensors and bows and arrows. The purpose of structural
analysis from its solidity standpoint is the determination of the bending at particular points
of a structure in accordance with the external forces, since bending considers the most
common reason for structural failures in bridges, blades, and shafts too. Any system needs
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a careful analysis of bending properties for design and validation processes. So, the bending
that occurs should always be controlled and monitored. Studying the reasons and factors
affecting deflection helps us to adequately control the system. Therefore, it is necessary to
compare the occurrence of deflection with the critical deflection of the system, or failures
will occur. This dilemma has attracted many members of the scientific community to
studying the characteristics of structural bending for extremely varied cases such as beams,
plates, rings, shells, wires, and any other possible shapes.

The invention of carbon nanotubes [1] attracted researchers and manufacturers to the
use of this substance in highly accurate studies and industries. A new revolution has begun
in all the fields of the industry due to the properties of new nanomaterials. Studying these
properties in labs is highly expensive and complicated because of the strict conditions of
the purity of the material, air, tools, and everything related to this process. Consequently,
a new role in mathematics was initiated, concerning the study of such properties with
low costs.

Mathematical researchers started to use different theories to describe beams. Beams have
been studied in accordance with the Euler–Bernoulli [2–6], Timoshenko [7–9], Reddy [8,10],
and Levinson beam theories [10].

The fourth-order ordinary differential equations in the Euler–Bernoulli theorem, which
is not normally combined with linear analysis, are now conjugated and must be overcome
to obtain an acceptable mathematical solution of the axial deformation and the transverse
rotation of thin beams. The axial force that can be produced inside the beam tries to firm
up the beam when it deforms.

In old-fashioned classical continuum mechanics studying beams, the stress at a point
depends on the strains for the same point. Poor results have appeared after applying those
methods to nanobeams because of the attraction forces between molecules and crystals. This
phenomenon is called the size effect. The mathematical process of analyzing nanostructures
is divided into three main types. The first of them is atomistic modeling [11]. The second
and most used method is that of modern continuum mechanics. Finally, the last one is a
mixture of atomistic and continuum mechanics. The highly accurate results of continuum
models can be found in improved elasticity theories such as Eringen’s nonlocal elasticity
theory. Refs. [12,13] are the most common examples in this field. Ref. [12] assumed that a
point’s stress depends on deformations of the whole continuum.

One of the important factors affecting the deformation properties of beams is the
foundation on which the beam rests or the medium around the beam. The density of the
medium causes a buoyant force that affects the beam’s upward characteristics. Foundations
are used also to control and change the deformation of the loaded beam depending on
the application in which the beam is being used. Several types of elastic and viscoelastic
foundation theories have been derived, such as the Winkler model, the Filonenko–Borodich
Foundation, the Hetenyi Foundation, the Pasternak Foundation, the Vlasov Foundation,
the Reissner Foundation, and Boussinesq’s type foundation [14]. Winkler’s foundation is
described as a single parameter model similar to a liquid base or a net of equally-spaced
equivalent springs, but Pasternak’s foundation is a double-parameter model which adds
the effect of shear interactions inside every spring. The applications of elastic founda-
tions supporting beams are several, including geotechnical systems, roads, railroads, and
biomechanical systems.

The applications of microbeams and nanobeams are always complex and require
high accuracy. This can be obviously noted in [15], which deduced the vibration and
post-buckling of bi-directional functionally graded microbeams; Ref. [16], which stud-
ied nano composites; Ref. [17], which showed the effect of temperature on nanobeams;
Ref. [18], which studied piezomagnetic nanobeams with porosities; Ref. [19], which studied
flexoelectric nanobeams’ dynamics; Ref. [17], which focused on the thermal effects on
nanobeam properties; and [20], which analyzed layered nanobeams. The complexity of the
equations covering several factors prompted many researchers to use some semi-analytical
and numerical methods instead of strictly analytical solutions—such as the Finite Element
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Method (FEM), Finite Difference Method (FDM), Transfer Matrix Method, Rayleigh–Ritz
Method, Galerkin Procedure, Differential Transform Method, and Differential Quadrature
Method (DQM)—to resolve these types of models. When the analytical solution of irregular
beams or plates requires solving differential equations with inconstant coefficients, hard
work necessarily follows. Most numerical methods need an enormous number of mesh
points to supply highly delicate results such as the classical techniques (FEM and FDM).
Unfortunately, in some realistic models, the numeral solutions for governing equations
are needed at a few specific points in the naturalistic scope. In searching for an alterna-
tive numerical technique utilizing a few mesh points to reach acceptable accuracy results,
the DQM was inserted as the efficacy technique by [21]; then, it was improved by [22].
The DQM was created to overcome the challenge of the long solution times required by
computers to solve this type of equation via FEM with the same accuracy.

At first, the DQM was used to solve second-order differential equations such as
nonlinear diffusion equations [23,24]. Refs. [25–28] widened the method to solve transport
processes, the Poisson equation, multidimensional problems, the Thomas–Fermi equation,
the pool boiling process in cavities, and the integrodifferential equation. The DQM was
used for mechanical structures by Jang et al. [29], Wang et al. [2], and Bert et al. [30] to
determine the deflection and buckling of different types of beams, plates, and columns.
One of the greatest modifications of the DQM is the GDQM developed by Quan and Chang
in two consecutive papers [31,32]. In these studies, the GDQM solved various initial-
value equations. The GDQM was qualified for solving fourth-order partial differential
equations with higher accuracy and was widened to several fields such as fluids [33–35],
thermal energy storage [36], and structures [37–42]. New competitive fields in which
the GDQM could be introduced to cover are microelectromechanical systems [43] and
nanostructures [44–46]. The GDQM has been used successfully in our team’s work for
solutions of a variety of applications such as in fluid mechanics [47,48] and structural
analysis [40–42]. So, the GDQM has shown high efficiency in competitive fields.

Out of all the previously mentioned research directions, we were motivated to gen-
eralize a formulation studying the effect of influencing factors—as many as possible—on
nanobeam bending with the intention for this research to be followed by further studies
covering nanobeams, nanoplates, nanoshells, and nanosystems. The intention is to provide
accurate formulations and equations regarding every part needed in nanomachines and
nanorobots statically and dynamically.

This study aims to present three targets. The first target is to derive the general
formularization of a nonlocal Euler–Bernoulli nonuniform loaded nanobeam via transverse
and axial loads resting on two linear elastic foundations (Winkler and Pasternak models),
and without neglecting the elastic effect of the deformation between the rings of each
spring by considering three different types of boundary conditions. Euler–Bernoulli beam
theory is utilized to describe the nanobeam with the size effect assumption of the nonlocal
elasticity theory developed by Eringen. The next target is to use the GDQ technique to find
the expected bending of uniform and nonuniform nanobeams as a result of the effective
loads. In addition, the last target is to study and demonstrate the effectiveness of the
varying cross-sectional area on the bending in different cases of elastic foundations and
sets of boundary conditions.

2. Problem Formulation and Mathematical Formularization
2.1. Problem Formulation
2.1.1. Nonlocal Elasticity Theory

According to nonlocal elasticity theory, the nonlocal stress tensor σ at a point x is
expressed as [49]

σ(x) =
∫

v
K(
∣∣x′ − x

∣∣.α)τdV
(
x′
)
, (1)

where
τ—the classical stress tensor at a point x′;
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K(|x′ − x|.α)—the nonlocal modulus (Kernel function);
|x′ − x|—Euclidean distance;
α—a material constant that depends on both internal and external characteristic lengths

(scaling effect parameter).
Using Hooke’s law:

τ(x) = C(x) : ε(x), (2)

where
C—is the 4th order elasticity tensor;
ε—the classical strain tensor;
(:)—expresses the double dot product.
Equation (1) is a constitutive integration that is complicated to solve. An alternative

differential relation is written as [49](
1− α2L2∇2

)
σ = τ, α =

e0a
L

, (3)

where
∇2—Laplace operator;
eo—a constant measured by experiments and depends on the material;
a—lattice parameter;
L—the external characteristic length;
eoa—the nonlocal parameter that expresses the size effect.

2.1.2. Euler–Bernoulli Beam Theory and Its Formulation

The (x, y, z) coordinates are considered in the direction of the main three dimensions
of the beam. In all beam theories, the geometry is such that the displacements (u1, u2, u3)
along with the (x, y, z) coordinates are only functions of x and z coordinates and time t.
Time functions are ignored in the case of calculating the maximum deflection. An Euler–
Bernoulli beam has three main assumptions for its design. First of all, the plane sections are
perpendicular to the neutral axis before deformation and stay planar and perpendicular to
the neutral axis after deformation. Secondly, the deformations must be in a small range
to ensure that they are under the elastic limit of the material without exceeding the yield
stress of the material. Third, the cross-sectional area of the beam is assumed to be rigid as a
result of ignoring Poisson’s ratio’s effects.

In [50], the displacement fields are described as:

u1 = −z
∂w
∂x

,

u2 = 0,

u3 = w(x, t),

where
u1—the displacement along the direction of length x;
u2—the displacement along the direction of width y;
u3—the displacement along the direction of thickness z;
w—the transverse displacement of the point (x, 0) on the mid-plane (z = 0);
t—time.
The relation between normal strain and displacement is described as: εxx = −z d2wo

dx2 .
In Figure 1, the equation of transverse forces in the y-direction can be derived as:

∑ Fy = 0, (4)

−V(x) + (V(x) + dV(x)) + f0(x).dx− fk(x).dx = 0, (5)

−dV(x)
dx

− fo(x) + fk(x) = 0, (6)
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where
V—the shear force;
fo—the transverse distributed load affecting the beam;
fk—the different types of forces caused by the elastic foundation.
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In Figure 1, the equation of the bending moment ∑ M = 0 can be derived as:

− (V + dV)dx + (M + dM)−M− p.dw− fo.dx.
dx
2

+ fk.dx.
dx
2

= 0, (7)

−Vdx + dM− p.dw = 0, (8)

V =
dM
dx
− p

dw
dx

. (9)

From Equations (6) and (9). This equation can be derived as:

d2M(x)
dx2 = p

d2w(x)
dx2 − fo(x) + fk(x). (10)

From [10], the nonlocal constitutive relation is derived from the Euler–Bernoulli beam
theory with Eringen’s nonlocal elasticity theory:

M− µ
d2M
dx2 = −EI

d2w
dx2 , (11)

where
µ = eoa—the nonlocal parameter that expresses the size effect;
E—Young’s modulus;
I—the second moment of inertia as a function of x.

2.1.3. Elastic Foundation and Its Forces

In [14], Winkler’s foundation is described as a single parameter model neglecting the
effect of shear interactions inside every spring, but Pasternak’s foundation is a double-
parameter model that adds the effect of shear interactions inside every spring, and its
formulation was derived as:

fk = k1w− k2∇2w, (12)

∇2—The Laplace operator in x and y directions;
k1—The linear Winkler foundation parameter;
k2—The linear Pasternak foundation parameter.

2.1.4. Symmetrical and Asymmetrical Cross-Sectional Area of the Beam

In this study, to guarantee the coverage of more applications, a function describing
the symmetric and asymmetric cross-sectional area is chosen because of the vital role of
the variable cross-sectional area of beams in structural applications. The general formu-
lation of this function is s(x) = (1 + c1x)c2 , which yields a symmetrical nanobeam when
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c1 = 0, c2 = 1 or c2 = 0, and yields an asymmetrical nanobeam for any other values of c1
and c2.

I = Ios(x), (13)

where
I0—the second moment of inertia of beam.

2.2. Mathematical Formularization
2.2.1. The Governing Equation

Consider a nonuniform nanobeam of a finite length L and width b with flexural rigidity
EI, as shown in Figure 2. The nanobeam rests on two linear elastic foundations: the linear
Winkler elastic foundation k1 and the linear Pasternak shear stiffnesses k2 continuously
restrained along its length subjected to axial load p(x, t) and transverse load F(x, t). The
cross-section is assumed to vary continuously along the axial direction.
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axial and transverse loads.

From Equations (10)–(13), the following equation can be derived:

M = −EIos(x)
d2w
dx2 + (eoa)2

(
k1w− k2

d2w
dx2 + p

d2w
dx2 − fo

)
. (14)

After differentiating Equation (14) twice to x:

d2 M
dx2 = −EIo

(
s(x) d4w

dx4 + 2 ds
dx

d3w
dx3 + d2s

dx2
d2w
dx2

)
−(e0a)2

(
−k1

d2w
dx2 + k2

d4w
dx4 − p d4w

dx4 + d2 fo
dx2

)
.

(15)

From Equations (10) and (15), this equation can be derived:(
s(x) + (eoa)2(k2−p)

EIo

)
d4w
dx4 + 2

(
ds
dx

)
d3w
dx3 +

(
d2s
dx2 −

(e0a)2k1
EIo

− k2
EI0

+ p
EIo

)
d2w
dx2 +

(
k1

EIo

)
w

+

(
(e0a)2

EIo

d2 fo
dx2 −

fo
EIo

)
= 0.

(16)

Equation (16) is a fourth order ordinary differential equation with a variable cross-
sectional area of its nanobeam. Subsequently, we provide an overview of the method of its
solution (GDQ).

2.2.2. Boundary Conditions

Aiming to cover a wide range of applications, various boundary conditions are used
in this article. A simple-simple (SS) supported, a clamped-simple (CS) supported, and a
clamped–clamped (CC) supported nanobeams are considered individually in the present
research. The following boundary conditions of a nanobeam along the x = 0 and L edges
are as follows:

• For the simple-simple supported (SS);
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at x = 0

W(0) =
d2W(0)

dx2 = 0, (17)

at x = L

W(L) =
d2W(L)

dx2 = 0. (18)

• For the clamped-simple supported beam (CS);

at x = 0

W(0) =
dW(0)

dx
= 0, (19)

at x = L

W(L) =
d2W(L)

dx2 = 0. (20)

• For the clamped–clamped supported nanobeam (CC).

at x = 0

W(0) =
dW(0)

dx
= 0, (21)

at x = L

W(L) =
dW(L)

dx
= 0. (22)

3. Numerical Mathematical Solution
3.1. Non-Dimensional Analysis

The following non-dimensional terms are applied to transform the governing Equa-
tion (16) into a non-dimensional equation.

X =
x
L

, W =
w
L

, K1 =
k1L4

EIo
, K2 =

k2L2

EIo
, Fo =

foL3

EIo
, P =

pL2

EI0

α =
eoa
L

= scaling effect parameter.

Then, the non-dimensional form of the governing differential equation is given below:(
s(X) + α2(K2 − P)

)d4W
dX4 + 2

(
ds
dX

)
d3W
dX3 +

(
d2s
dX2 − α2K1 − K2 + P

)
d2W
dX2 + (K1)W = F(X), (23)

where F(X) = −α2 d2Fo(X)
dX2 + Fo(X).

3.2. Solution Methodology (Generalized Differential Quadrature Method Review)

In this task, the DQM [37,51–58] is utilized to subedit the governing differential Equa-
tion (23), in a discrete style. The essential feature of the DQM is its ability to approximate
the diverse derivatives at a specified point employing a weighted linear sum of functional
values at all discrete points in that domain. So, with respect to the DQM, the kth-order
derivatives of displacement function W(X) at a specified discrete point i in one dimension
are determined using the DQ rule [10,56]:

W(k)
x (xi) =

N

∑
i=1

C(k)
i,j w

(
xj
)
, f or i = 1, 2, 3, . . . , N, (24)

where N is the overall number of sampling mesh points in the entire area and C(k)
i,j are

the weighting coefficients. It is known that the weighting coefficients C(k)
i,j are various at

various locations of xi.
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The determination of the weighting coefficient has a vital effect on the accuracy of
the results to a greater degree than the formulation of grid points. It took years and huge
efforts by scientists to derive more methods to improve the results of applications. Several
new branches were birthed from the DQM because of the different methods of determining
the weighting coefficient. The method improved by [32], who created the GDQM, was
derived and created based on the idea of Bellman’s second approach method [22] with
the help of the multiplication approach mentioned in [27]. These formulations present
high accuracy and competitiveness in the field of structural systems. From [31], matrix
A = (Ai,j) is derived as:

The weighting coefficients of the first derivatives can be obtained from:
for i 6= j

Ai,j =
1

Xj − Xi

N

∏
k 6=i
k 6=j
k=1

Xi − Xk
Xj − Xk

, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (25)

for i = j

Ai,i =
N

∑
k 6=i
k=1

1
Xi − Xk

, i = 1, 2, . . . , N. (26)

The higher-order weighting coefficients can be easily derived from Ai,j with the matrix
multiplication approach [56], as follows:

Bi,j =
N

∑
k=1

Ai,k Ak,j, (27)

Ci,j =
N

∑
k=1

Ai,kBk,j, (28)

Di,j =
N

∑
k=1

Bi,kBk,j =
N

∑
k=1

Ai,kCk,j. (29)

From Equations (25)–(29), the precision solution of the DQM is influenced by the
selection of the number of spatial grid points, N. The beam is divided into several sep-
arate (N − 1) non-equal intervals along the beam in the x-direction. Different assump-
tions of the grid points have been assumed and tested in this field. Some of them are
Legendre-sampling grid points, Radau-sampling grid points, Chebyshev-sampling grid points,
Chebyshev–Gauss–Lobatto sampling grid points, and equally spaced-sampling grid points
mentioned in detail in [59]. The Chebyshev–Gauss–Lobatto sampling grid points demon-
strated high accuracy with equations like our example, so it is used here. From [31], the
formulation of the Chebyshev–Gauss–Lobatto sampling grid points is as follows:

X(i) =
1
2

[
1− cos

(
i− 1
N − 1

)
π

]
, i = 1, 2, 3, . . . , N, (30)

The distances among the points are not equal, but these points are condensed at both
ends and are quite spaced in the middle.

3.2.1. The Governing Equation

The GDQ method stated above will be utilized to convert the governing Equation (23)
into a system of algebraic equations that accordingly follow
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(
s(X)− α2(K2 − P)

)( N
∑

j=1
Di.jWj

)
+ 2
(

ds
dX

)( N
∑

j=1
Ci.jWj

)

+
(

d2s
dX2 − α2K1 − K2 + P

)( N
∑

j=1
Bi.jWj

)
+ K1 Wi = F(Xi),

i = 1, 2, . . . , N,

(31)

where Wi is the value of the function at the grid Xi, and Bij, Cij, and Dij are the weighting
coefficient matrix of the second, third, and fourth-order derivatives.

3.2.2. Implementation of Boundary Conditions

Some of the boundary conditions can be immediately implemented by employing the
substitutions of the boundary conditions into the governing equations (SBCGE) technique.
The idea behind the SBCGE method is that the Dirichlet term is carried out at the border
points, whilst the derivative term is handled using the GDQ technique; for more details on
the SBCGE technique, see references [37,57,58].

Simple-Simple Supported (SS)

For the simple-simple supported nanobeam, the boundary conditions given by the
two Equations (17) and (18) can be discretized by the GDQ technique. The given boundary
conditions can be written as:

W1 = 0, (32)

N

∑
k=1

B1 kWk = 0, (33)

WN = 0, (34)

N

∑
k=1

BN k Wk = 0. (35)

Equations (32) and (34) can be readily replaced in the governing equation, whilst
combining the two Equations (33) and (35) yields the following equations

W2 =
1

µs−s

(
J=N−2

∑
J=3

BN,N−1 B1,jWj −
J=N−2

∑
J=3

B1,N−1 BN,jWj

)
, (36)

WN−1 =
1

µs−s

(
J=N−2

∑
J=3

B1,2 BN,jWj −
J=N−2

∑
J=3

BN,2 B1,jWj

)
, (37)

where µs−s = B1,N−1 BN,2 − B1,2 BN,N−1.

Clamped-Simple Supported (CS)

By the same method used in the previous case, the boundary conditions given by the
two Equations (19) and (20) can be discretized by the GDQ technique. The given boundary
conditions can be written as:

W1 = 0, (38)

N

∑
k=1

A1 kWk = 0, (39)

WN = 0, (40)

N

∑
k=1

BN k Wk = 0. (41)
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In addition, as in the previous case, Equations (38) and (40) can be readily replaced
in the governing equation, while combining the two Equations (39) and (41) yields the
following equations

W2 =
1

µc−s

(
J=N−2

∑
J=3

A1,jBN,N−1Wj −
J=N−2

∑
J=3

A1,N−1 BN,jWj

)
, (42)

WN−1 =
1

µc−s

(
J=N−2

∑
J=3

A1,2 BN,jWj −
J=N−2

∑
J=3

A1,jBN,2 Wj

)
, (43)

where µc−s = A1,N−1 BN,2 −A1,2 BN,N−1.

Clamped–Clamped Supported (C–S)

Finally, by the same method used in the two previous cases, the boundary conditions
given by the two Equations (21) and (22) can be discretized by the GDQ technique. The
given boundary conditions can be written as:

W1 = 0, (44)

N

∑
k=1

A1 kWk = 0, (45)

WN = 0, (46)

N

∑
k=1

AN k Wk = 0, (47)

Additionally, Equations (44) and (46) can be readily replaced in the governing equation,
while combining the two Equations (45) and (47) yields the following equations

W2 =
1

µc−c

(
J=N−2

∑
J=3

A1,j AN,N−1Wj −
J=N−2

∑
J=3

A1,N−1 AN,jWj

)
, (48)

WN−1 =
1

µc−c

(
J=N−2

∑
J=3

A1,2 AN,jWj −
J=N−2

∑
J=3

A1,j AN,2Wj

)
, (49)

where µc−c = A1,N−1 AN,2 −A1,2 AN,N−1.
Depending on the type of boundary conditions, Equations (36) and (37), Equations

(42) and (43), or Equations (48) and (49) for W2 and WN−1 will be readily replaced in the
governing Equation (31) for the interior points 2 ≤ i ≤ N − 2. To lock the system, the
detached governing Equation (31) must be used at (N − 4) grid points. The dimensions of
the equation system utilizing this path are (N − 4)× (N − 4).

[
s(X)− α2(K2 − P)

](N−2
∑

j=3
Di.jWj

)
+ 2
(

ds
dX

)(N−2
∑

j=3
Ci.jWj

)

+
(

d2s
dX2 − α2K1 − K2 + P

)(N−2
∑

j=3
Bi.jWj

)
+ K1 Wi = F(Xi),

i = 3, 4, . . . , N − 2,

(50)

It is well known that the Governing Equation (50) has (N − 4) equations for (N − 4)
unknowns, which will be set up in matrix shape accordingly.

In all of the examples, a tapered nano wire is subjected to sinusoidally mechanical
loading, defined as follows

q = q0 sin
(πx

L

)
.
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where q0 is a constant parameter.

4. Numerical Results and Discussion

In this paper, the term (W) describes the deflection in Equation (50) and is calculated
by our constructed numerical codes on MATLAB software. The midpoint deflection is
studied under the effect of the distributed transverse loads, axial load, double linear elastic
foundations, variable cross-sectional area, and the nano-size of the beam. In addition, the
midpoint deflection has been reported for different types of boundary conditions, viz.,
Simple-Simple Supported (SS), Clamped-Simple Supported (CS), and Clamped–Clamped
(CC) beams. The different parameters needed for these calculations are as follows:

E = 1000 Gpa, L = 10 nm.

4.1. Technique Validations

The midpoint deflection for a uniform nanobeam under a distributed load without resting
on any elastic foundation or axial forces is compared with the exact analytical results [60].
The results are clarified in Table 1 for simple-simple supported beam (SS) and in Table 2 for
the clamped-simple supported beam (CS). Nonuniform grid points (N = 15) are used in
Tables 1 and 2. The relative error calculated in Tables 1 and 2 is defined as follows:

Relative Error =
∣∣∣∣Present− Exact

Exact
∗ 100

∣∣∣∣,
Table 1. Comparison of the middle section deflection for (SS) supported beam with various scaling
parameters (α) between the present numerical results and the integral results obtained by Tuna and Kirca.

Scaling Effect Parameters (α)
Middle Section Deflection

Present [60] (Exact Solution) Relative Error

α = 0 0.0130208 0.0130208 0.00%

α = 0.1 0.0130337 0.0130333 0.003%

α = 0.3 0.0131365 0.0131333 0.02%

α = 0.5 0.0133421 0.0133333 0.07%

Table 2. Comparison of the middle section deflection for (CS) supported beam with various scaling
parameters (α) between the present differential numerical results and the integral results by Tuna
and Kirca.

Scaling Effect Parameters (α)
Middle Section Deflection

Present [60] (Exact Solution) Relative Error

α = 0 0.0052083 0.0052083 0.0000%

α = 0.1 0.0052135 0.0054506 4%

α = 0.3 0.0052546 0.0059836 12%

α = 0.5 0.0053368 0.0065839 18%

The high accuracy of the GDQM is observed by comparing the calculated results with
the Laplace Transform (LT) method solution [60] of the simple-simple supported beam,
shown in Table 1. The calculated results of Table 1 are illustrated graphically in Figure 3 for
the midsection deflection of the nanobeam. The calculated results are in close agreement
with the model predictions. One may observe that a close agreement of the calculated results
is achieved. However, Table 2 demonstrates the clamped-simple supported nanobeam and
gives an 18% error, which is very high! This is the displacement obtained using both integral
and differential nonlocal Eringen models. We used the differential model, but [60] used
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the integral model. These models are identical in symmetric supports such as fixed–fixed
supports and simple–simple supports, but they differ in asymmetrical supports such as
cantilevers and fixed–simple supports. This paradox is well explained and proved in [61].
By examining Figures 3 and 4 in our present work and comparing them with the same
cases in [61] and comparing them with, it is evident that there is a perfect match between
the figures, which proves the correctness of our solution.
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Figure 4. Comparison between the present numerical results and the exact analytical results [60] for
clamped-simple supported beam.

4.2. Results and Discussion

In this section, our calculation results are provided for the mid-section deflection of the
possible different cases for a symmetrical and asymmetrical nanobeam under the influence
of an axial force (P) and a transverse distributed force (F), resting on a two-layered elastic
foundation and Winkler and Pasternak elastic foundations, under three types of boundary
condition- (SS, CS, and CC) supported beams. The effect of the different geometric proper-
ties of the nanobeam is given according to the polynomial of s(x) = (1 + C1x)C2 by taking
two general cases of the varying cross-sectional area of the nanobeam: the first case is that
the cross-sectional area changes linearly; the second case is that the cross-sectional area
changes parabolically.

The first case entails that the cross-sectional area of the nanobeam changes linearly
according to the polynomial s(X) = (1 + m X), where (C2 = 1) and (C1 = m) are the steep-
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ness of the linear polynomial. In this case, we examined the leverage of the steepness of
the linear polynomial on the mid-section deflection of the nanobeam by taking four specific
situations of the linear nonuniformity distributions according to the steepness of the linear
polynomial: the first situation

[
m = 1.0

(
θ = 45

◦)]
, i.e., [s(X) = (1+ X)]; the second situation[

m = 0.5
(
θ = 26.565

◦)]
, i.e., [s(X) = (1+ 0.5X)]; the third situation

[
m = 0.25

(
θ = 14.04

◦)]
,

i.e., [s(X) = (1+ 0.25X)]; and the fourth situation
[
m = 0.0

(
θ = 0

◦)]
, i.e., the uniform beam

[s(X) = 1], as shown in Figure 5.
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Figure 5. Different symmetrical and asymmetrical nanobeams change linearly according to the
polynomial s(X) = (1 + C1 X).

The non-dimensional coefficient of the Winkler elastic foundation (K1), the non-
dimensional coefficient of the Pasternak elastic foundation (K2), the non-dimensional
distributed force (F), and the non-dimensional axial force (P) are added one by one for
beams with different values of the scaling effect parameter (α) in the next subsections to
show how every parameter affects the midpoint deflection and the final results after adding
all of them together, under three sets of boundary conditions, shown in Tables 3–14.

To provide quick conclusions from Tables 3–14, the following can be noted. First,
the nondimensional midpoint deflection of the non-uniform nanobeam decreases in com-
parison with the uniform nanobeam. Second, the steepness (m) of the linear polynomial
s(X) = (1 + m X) has a devastating effect on nondimensional midpoint deflection, i.e.,
the nondimensional midpoint deflection of the non-uniform nanobeam decreases with the
increasing steepness (m) of the linear polynomial. Third, the nondimensional midpoint
deflection of the nanobeam decreases in the presence of a Winkler elastic foundation under
the beam. This decrease in deflection increases by adding the Pasternak elastic founda-
tion under the beam. Fourth, the nondimensional midpoint deflection of the nanobeam
increases in the presence of the axial compressive force. Fifth, in the case where the beam is
not resting on any foundations, the midpoint deflection of the nanobeam increases with the
increasing scaling effect parameter (α). Conversely, when the beam is resting on a Winkler
elastic foundation, the midpoint deflection of the beam decreases with the increasing scal-
ing effect parameter (α). In addition, when the Pasternak elastic foundation is added under
the beam, the midpoint deflection is further decreased with the increase in the scaling effect
parameter (α).

• Simple-Simple supported:
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Table 3. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0088005 0.0072758 0.0026753 0.0027331
0.1 0.0088092 0.0071602 0.0025083 0.0025639
0.2 0.0088352 0.0068357 0.0021133 0.0021631
0.3 0.0088787 0.0063590 0.0016762 0.0017183
0.4 0.0089395 0.0057992 0.0013031 0.0013376
0.5 0.0090176 0.0052174 0.0010166 0.0010446

Table 4. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + 0.5X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0104673 0.0083809 0.0028135 0.0028775
0.1 0.0104776 0.0082272 0.0026301 0.0026913
0.2 0.0105086 0.0077995 0.0021998 0.0022538
0.3 0.0105603 0.0071818 0.0017304 0.0017753
0.4 0.0106326 0.0064721 0.0013356 0.0013719
0.5 0.0107256 0.0057518 0.0010362 0.0010653

Table 5. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + 0.25X).

Scaling Effect
Parameters (α) Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0115913 0.0090872 0.0028891 0.0029566
0.1 0.0116027 0.0089062 0.0026964 0.0027607
0.2 0.0116370 0.0084056 0.0022463 0.0023026
0.3 0.0116942 0.0076904 0.0017591 0.0018055
0.4 0.0117743 0.0068797 0.0013525 0.0013897
0.5 0.0118773 0.0060690 0.0010463 0.0010759

Table 6. The midpoint deflection for the uniform nanobeam S(X) = 1, with various scaling parame-
ters (α).

Scaling Effect
Parameters (α) Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0130208 0.0099433 0.0029695 0.0030410
0.1 0.0130337 0.0097261 0.0027667 0.0028344
0.2 0.0130722 0.0091300 0.0022951 0.0023539
0.3 0.0131365 0.0082892 0.0017888 0.0018369
0.4 0.0132265 0.0073516 0.0013700 0.0014082
0.5 0.0133421 0.0064298 0.0010566 0.0010869
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• Clamped-Simple supported:

Table 7. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0037978 0.0034813 0.0018206 0.0018498
0.1 0.0038015 0.0034530 0.0016346 0.0016638
0.2 0.0038127 0.0033711 0.0012577 0.0012846
0.3 0.0038315 0.0032440 0.0009141 0.0009365
0.4 0.0038577 0.0030834 0.0006645 0.0006824
0.5 0.0038915 0.0029018 0.0004942 0.0005083

Table 8. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + 0.5X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0043704 0.0039543 0.0019298 0.0019630
0.1 0.0043747 0.0039166 0.0017247 0.0017574
0.2 0.0043877 0.0038082 0.0013131 0.0013424
0.3 0.0044092 0.0036418 0.0009441 0.0009680
0.4 0.0044394 0.0034345 0.0006806 0.0006992
0.5 0.0044783 0.0032042 0.0005031 0.0005176

Table 9. The midpoint deflection for the non-uniform nanobeam with various scaling parameters (α)
and the nonuniformity distribution S(X) = (1 + 0.25X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0047446 0.0042562 0.0019906 0.0020261
0.1 0.0047493 0.0042117 0.0017745 0.0018092
0.2 0.0047633 0.0040842 0.0013431 0.0013738
0.3 0.0047867 0.0038899 0.0009600 0.0009847
0.4 0.0048195 0.0036502 0.0006889 0.0007081
0.5 0.0048617 0.0033869 0.0005077 0.0005225

Table 10. The midpoint deflection for the uniform nanobeam S(X) = 1, with various scaling
parameters (α).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0052083 0.0046225 0.0020561 0.0020943
0.1 0.0052135 0.0045688 0.0018279 0.0018649
0.2 0.0052289 0.0044158 0.0013749 0.0014071
0.3 0.0052546 0.0041847 0.0009766 0.0010022
0.4 0.0052906 0.0039030 0.0006976 0.0007172
0.5 0.0053368 0.0035977 0.0005124 0.0005275
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• Clamped–Clamped supported:

Table 11. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0017769 0.0017059 0.0011447 0.0011573
0.1 0.0017786 0.0016992 0.0010071 0.0010209
0.2 0.0017839 0.0016795 0.0007426 0.0007566
0.3 0.0017926 0.0016479 0.0005187 0.0005308
0.4 0.0018049 0.0016061 0.0003663 0.0003759
0.5 0.0018207 0.0015563 0.0002671 0.0002746

Table 12. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.5X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0021003 0.0020022 0.0012722 0.0012877
0.1 0.0021024 0.0019926 0.0011059 0.0011225
0.2 0.0021086 0.0019647 0.0007963 0.0008123
0.3 0.0021190 0.0019201 0.0005447 0.0005580
0.4 0.0021335 0.0018618 0.0003791 0.0003895
0.5 0.0021521 0.0017930 0.0002738 0.0002818

Table 13. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.25X).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0023206 0.0022015 0.0013504 0.0013679
0.1 0.0023229 0.0021897 0.0011651 0.0011835
0.2 0.0023297 0.0021554 0.0008269 0.0008442
0.3 0.0023412 0.0021010 0.0005589 0.0005729
0.4 0.0023572 0.0020302 0.0003860 0.0003967
0.5 0.0023778 0.0019472 0.0002773 0.0002855

Table 14. The midpoint deflection for the uniform nanobeam S(X) = 1, with various scaling
parameters (α).

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0026042 0.0024552 0.0014421 0.0014624
0.1 0.0026067 0.0024403 0.0012331 0.0012537
0.2 0.0026144 0.0023970 0.0008606 0.0008794
0.3 0.0026273 0.0023287 0.0005741 0.0005889
0.4 0.0026453 0.0022405 0.0003931 0.0004042
0.5 0.0026684 0.0021381 0.0002810 0.0002894
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The second case in this study is that the cross-sectional area of the nanobeam changes
parabolically according to the polynomial s(X) = (1 + C1 X)C2 .

In this case, we examined the leverage of the polynomial equation of a second de-
gree on the deflection of the nanobeam by taking three specific situations of the asym-
metricity distributions; the first situation [C1 = 1.0 , C2 = 2], i.e.,

[
s(X) = (1 + X)2

]
; the

second situation [C1 = 0.5 , C2 = 2], i.e.,
[
s(X) = (1 + 0.5X)2

]
; and the third situation

[C1 = 0.25 , C2 = 2], i.e.,
[
s(X) = (1 + 0.25X)2

]
, as shown in Figure 6.
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Figure 6. Different cross-sectional areas of the symmetric and asymmetric nanobeams change
parabolically according to the polynomial s(X) = (1 + C1 X)C2 .

For quick conclusions from Tables 15–23, the following can be noted. First, the con-
stant (C1) of the polynomial s(X) = (1 + C1 X)C2 has a devastating effect on nondimen-
sional midpoint deflection, i.e., the nondimensional midpoint deflection of the asymmetric
nanobeam decreases with the increasing constant (C1) of the polynomial. Second, the
nondimensional midpoint deflection of nanobeam decreases in the presence of a Winkler
elastic foundation under the beam. This decrease in deflection increases by adding the
Pasternak elastic foundation under the beam. Third, the nondimensional midpoint deflec-
tion of the nanobeam increases in the presence of an axial compressive force. Fourth, in
the case where the beam is not resting on any foundations, the midpoint deflection of the
nanobeam increases when increasing the scaling effect parameter (α); conversely, when
the beam is resting on a Winkler elastic foundation, the midpoint deflection of the beam
decreases when increasing the scaling effect parameter (α). Fifth, when the Pasternak
elastic foundation is added under the beam, the midpoint deflection is further decreased
with the increase in the scaling effect parameter (α).

• Simple-Simple supported:

Table 15. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0060328 0.0052717 0.0023373 0.0023814
0.1 0.0060387 0.0052114 0.0022065 0.0022496
0.2 0.0060566 0.0050391 0.0018915 0.0019315
0.3 0.0060863 0.0047780 0.0015317 0.0015670
0.4 0.0061280 0.0044584 0.0012135 0.0012434
0.5 0.0061816 0.0041105 0.0009611 0.0009862
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Table 16. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.5X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0084559 0.0070382 0.0026414 0.0026977
0.1 0.0084642 0.0069300 0.0024781 0.0025324
0.2 0.0084893 0.0066258 0.0020914 0.0021401
0.3 0.0085310 0.0061773 0.0016621 0.0017036
0.4 0.0085894 0.0056481 0.0012945 0.0013286
0.5 0.0086645 0.0050953 0.0010114 0.0010391

Table 17. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.25X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0103341 0.0082953 0.0028038 0.0028673
0.1 0.0103443 0.0081447 0.0026215 0.0026822
0.2 0.0103749 0.0077254 0.0021937 0.0022473
0.3 0.0104259 0.0071192 0.0017266 0.0017713
0.4 0.0104973 0.0064214 0.0013333 0.0013694
0.5 0.0105891 0.0057121 0.0010348 0.0010638

• Clamped-Simple supported:

Table 18. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0027714 0.0026007 0.0015625 0.0015835
0.1 0.0027741 0.0025860 0.0014172 0.0014389
0.2 0.0027824 0.0025432 0.0011174 0.0011386
0.3 0.0027960 0.0024755 0.0008340 0.0008527
0.4 0.0028152 0.0023875 0.0006199 0.0006354
0.5 0.0028398 0.0022848 0.0004687 0.0004813

Table 19. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.5X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0036685 0.0033731 0.0017939 0.0018222
0.1 0.0036721 0.0033467 0.0016122 0.0016405
0.2 0.0036830 0.0032705 0.0012433 0.0012696
0.3 0.0037011 0.0031518 0.0009060 0.0009280
0.4 0.0037264 0.0030013 0.0006601 0.0006777
0.5 0.0037590 0.0028305 0.0004917 0.0005056
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Table 20. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.25X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0043226 0.0039155 0.0019220 0.0019548
0.1 0.0043269 0.0038787 0.0017182 0.0017506
0.2 0.0043397 0.0037727 0.0013090 0.0013381
0.3 0.0043610 0.0036097 0.0009418 0.0009656
0.4 0.0043909 0.0034066 0.0006794 0.0006980
0.5 0.0044293 0.0031806 0.0005025 0.0005169

• Clamped–Clamped supported:

Table 21. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0012030 0.0011696 0.0008711 0.0008785
0.1 0.0012042 0.0011667 0.0007851 0.0007936
0.2 0.0012077 0.0011582 0.0006100 0.0006196
0.3 0.0012137 0.0011445 0.0004484 0.0004575
0.4 0.0012220 0.0011260 0.0003291 0.0003370
0.5 0.0012327 0.0011034 0.0002466 0.0002531

Table 22. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.5X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0016894 0.0016250 0.0011062 0.0011181
0.1 0.0016910 0.0016190 0.0009766 0.0009896
0.2 0.0016960 0.0016012 0.0007253 0.0007387
0.3 0.0017044 0.0015726 0.0005100 0.0005217
0.4 0.0017161 0.0015348 0.0003619 0.0003713
0.5 0.0017311 0.0014895 0.0002647 0.0002721

Table 23. The midpoint deflection for the non-uniform nanobeam with various scaling parameters
(α) and the nonuniformity distribution S(X) = (1 + 0.25X)2.

Scaling Effect
Parameters (α)

Middle Section Deflection

F K1 K2 P F K1 K2 P F K1 K2 P F K1 K2 P

1 0 0 0 1 30 0 0 1 30 30 0 1 30 30 1

0 0.0020661 0.0019711 0.0012590 0.0012743
0.1 0.0020682 0.0019618 0.0010959 0.0011122
0.2 0.0020743 0.0019348 0.0007910 0.0008068
0.3 0.0020845 0.0018916 0.0005422 0.0005554
0.4 0.0020988 0.0018351 0.0003779 0.0003882
0.5 0.0021171 0.0017683 0.0002732 0.0002811
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The following Figures 7–12 show the influence of the varying cross-sectional area of
the nanobeam, with three different types of supports (Figures 7–9 for the first case of the
inertia ratio and Figures 10–12 for the second case of the inertia ratio).
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Figure 7. The influence of the varying cross-sectional area of the simple-simple supported nanobeam
linearly according to the polynomial [S(X) = (1 + m X)] on the midpoint deflection.
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Figure 8. The influence of the varying cross-sectional area of the clamped-simple supported
nanobeam linearly according to the polynomial [S(X) = (1 + m X)] on the midpoint deflection.



Symmetry 2022, 14, 2342 21 of 28

Symmetry 2022, 14, x FOR PEER REVIEW 21 of 29 
 

 

 
Figure 8. The influence of the varying cross-sectional area of the clamped-simple supported nano-
beam linearly according to the polynomial 𝑆(𝑋) = (1 + 𝑚 𝑋)  on the midpoint deflection. 

 
Figure 9. The influence of the varying cross-sectional area of the clamped–clamped nanobeam line-
arly according to the polynomial 𝑆(𝑋) = (1 + 𝑚 𝑋)  on the midpoint deflection. 

0.0005

0.0007

0.0009

0.0011

0.0013

0.0015

0.0017

0.0019

0.0021

0.0023

0 0.1 0.2 0.3 0.4 0.5

M
id

po
in

t d
ef

le
ct

io
n

Scaling effect parameter  (α)

S(X)=1   Uniform Beam S(X)=1+0.25X

S(X)=1+0.5X S(X)=1+X

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 0.1 0.2 0.3 0.4 0.5

M
id

po
in

t d
ef

le
ct

io
n

Scaling effect parameter  (α)

S(X)=1  Unifom Beam S(X)=1+0.25X

S(X)=1+0.5X S(X)=1+X

Figure 9. The influence of the varying cross-sectional area of the clamped–clamped nanobeam linearly
according to the polynomial [S(X) = (1 + m X)] on the midpoint deflection.
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Figure 10. The influence of the varying cross-sectional area of the simple-simple supported nanobeam

parabolically according to the polynomial
[
S(X) = (1 + C1 X)C2

]
on the midpoint deflection.
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Figure 11. The influence of the varying cross-sectional area of the clamped-simple supported nanobeam

parabolically according to the polynomial
[
S(X) = (1 + C1 X)C2

]
on the midpoint deflection.
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Figure 12. The influence of the varying cross-sectional area of the clamped–clamped supported nanobeam

parabolically according to the polynomial
[
S(X) = (1 + C1 X)C2

]
on the midpoint deflection.

The general form of the beam equation is S(X) = (1 + C1X)C2 ; this means that the
values of C1 and C2 control the deflection of the beam.

Tables 24 and 25, show the effect of the values of C1 and C2 on the deflection of the
nonuniform nanobeam, whose cross-sectional area changes linearly and parabolically for
the three sets of boundary conditions. It is assumed for the nanobeam that, at foundation
parameters (K1 = 30, K2 = 30), the non-dimensional distributed force (F = 1), the non-
dimensional axial force (P = 1), and the scaling effect parameter (α = 0.3).
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Table 24. The effect of the nonuniformity parameter [C1] of the nanobeam changed linearly according

to the polynomial
[
S(X) = (1 + C1X)C2

]
on the midpoint deflection.

Middle Section Deflection
[F=1, P=1, K1=30, K2=30, α=0.3]

Uniform Nanobeam
Non-Uniform Nanobeam S(X)=(1+C1X)C2

C2=1.0

S(X)=1.0 (1+0.25X) (1+0.5X) (1+X)

S-S supported 0.0018369 0.0018055 0.0017753 0.0017183
C-S supported 0.0010022 0.0009847 0.0009680 0.0009365
C-C supported 0.0005889 0.0005729 0.0005580 0.0005308

Table 25. The effect of the nonuniformity parameters [C1] and [C2] of the nanobeam changed

parabolically according to the polynomial
[
S(X) = (1 + C1X)C2

]
on the midpoint deflection.

Middle Section Deflection
[F=1, P=1, K1=30, K2=30, α=0.3]

Non-Uniform Nanobeam S(X)=(1+C1X)C2

C1=0.25 C1=0.5 C1=1.0

C2=1.0 C2=2.0 C2=1.0 C2=2.0 C2=1.0 C2=2.0

(1+0.25X) (1+0.25X)2 (1+0.5X) (1+0.5X)2 (1+X) (1+X)2

S-S supported 0.0018055 0.0017713 0.0017753 0.0017036 0.0017183 0.0015670
C-S supported 0.0009847 0.0009656 0.0009680 0.0009280 0.0009365 0.0008527
C-C supported 0.0005729 0.0005554 0.0005580 0.0005217 0.0005308 0.0004575

Table 24 describes the first case, where the cross-sectional area of the nanobeam
changes linearly according to the polynomial S(X) = (1 + C1X), where C2 = 1.0. This
means that, in this case, we are studying the influence of changing the nonuniformity
parameter [C1] on the deflection of the beam. In addition, Table 24 presents a comparison
of the deflection of the beam between the uniform and nonuniform changes linearly for the
three sets of boundary conditions.

Table 25 describes the second case, where the cross-sectional area of the nanobeam
changes parabolically according to the polynomial S(X) = (1 + C1X)C2 . This means that
we are studying the effect of changing the nonuniformity parameters [C1] and [C2] on the
deflection of the beam. In addition, Table 25 presents a comparison of the deflection of
the nonuniform beam changes linearly and parabolically, for the three sets of boundary
conditions.

Tables 24 and 25 briefly show the effect of changing the nonuniformity parameters
[C1] and [C2] of the nanobeam on midpoint deflection.

From Tables 24 and 25, the midpoint deflection decreases with the increase in C1 or
the increase in C2.

Figures 12–14 present a comparison between the uniform and nonuniform parameters
(whose cross-sectional area changes linearly and parabolically) of the nanobeam on the
midpoint deflection for the three sets of boundary conditions.

From Figures 13–15, the following can be noted. First, the midpoint deflection of the
non-uniform nanobeam decreases in comparison with the uniform nanobeam. Second, the
midpoint deflection decreases with the increase in C1 or the increase in C2.
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Figure 13. The effect of the nonuniformity parameters [C1] and [C2] of simple-simple supported

nanobeam according to the polynomial
[
S(X) = (1 + C1X)C2

]
on the midpoint deflection.
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5. Conclusions

The high accuracy of the GDQM can be observed by comparing the calculated results
with the analytical solution [60]. This article focused on investigating the effects of many
different parameters. The first investigation (the main investigation) studied the effect
of the nonlocal (scaling effect) parameter on the deflection of uniform and nonuniform
nanobeams, whose cross-sectional area changes linearly and parabolically, in accordance
with a polynomial of the form S(X) = (1 + C1X)C2 , resting on two types of linear elastic
foundations, and under three sets of boundary conditions. The second investigation
studied the effect of nonuniformity (the varying cross-sectional area) on the deflection of the
nanobeam, in accordance with the polynomial of the form S(X) = (1 + C1X)C2 , for various
values of the scaling effect parameter, and under three sets of boundary conditions. Finally,
the third investigation studied the effect of the presence of two linear elastic foundations
(the Winkler elastic foundation and Pasternak elastic foundation) on the deflection of a
nanobeam whose cross-sectional area changes linearly and parabolically, in accordance
with a polynomial of the form S(X) = (1 + C1X)C2 , for various values of scaling effect
parameters and under the three sets of boundary conditions.

The number of influencing factors used yielded many cases that can be studied and
analyzed according to these influences, which need pages and pages of study, analysis,
and comparisons. For all these results, as well as the relationships that exist between
the influencing factors used in the research, their maximum and minimum values can be
deduced through the process of optimization according to the type of application in which
these variables will be used.

Regarding the use of the suggested technicality of the GDQM to evaluate the nondi-
mensional deflection of the nanobeam, this study’s quick conclusions can be summarized
as follows:

• The nondimensional deflection of the nonuniform nanobeam decreases in comparison
with the uniform nanobeam.

• It was found that the nondimensional deflection of the nanobeam is reduced with the
decrease in the scaling effect parameter of the nanobeams.

• When the nanobeam is not resting on any elastic foundations, the nondimensional
deflection increases when increasing the scaling effect parameter. Conversely, when
the nanobeam is resting on an elastic foundation, the nondimensional deflection of the
nanobeam decreases when increasing the scaling effect parameter.

• When the cross-sectional area of the nanobeam varies linearly, the nondimensional deflection
of the nanobeam decreases when increasing the steepness of the linear polynomial.

• When the cross-sectional area of the nanobeam varies parabolically, the non-dimensional
deflection of the non-uniform nanobeam decreases compared to when the cross-
sectional area varies linearly.

• When the nanobeam is resting on an elastic foundation, the nondimensional deflection
of the nanobeam decreases.

• The minimum degree of nondimensional deflection can be found from a clamped–
clamped-supported beam, followed by the clamped-simple supported beam, while
the maximum degree of nondimensional deflection can be found from a simple-simple
supported beam.

For future work, this paper can provide several directions regarding research and
applications. For example:

• It can be converted into a computer program that calculates the deflection of any point
in beams with any cross sections resting on linear foundations. Different types of
linear and non-linear foundations and surrounding mediums can also be added to
widen the applications used.

• A dynamic study of the same applications can be undertaken to intitiate a series of
static and dynamic studies that covers beams, plates, shells, connecting rods, and
nanosystems to improve the field of nanomachines and nanorobots.
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