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Abstract: Background: Previous studies indicate that running at maximum speed on short or curved
sections is slower than running on straight sections. This study aimed to analyse the external
load symmetry in track running kinematics concerning body location (left vs. right, caudal vs.
cephalic), track segment (straight vs. curved) and distance (150 m vs. 300 m). Methods: Twenty
experienced athletes ran 150 m and 300 m on an official athletic track and were monitored by Magnetic,
Angular Rate and Gravity sensors attached to six different body segments (thorax, lumbar, knees
and malleolus). Player Load was quantified as a valid, effective and representative Accelerometery-
based variable. Results: (1) Principal component analysis explained 62–93% of the total variance
and clustered body locations relevance in curved (knees and malleolus) vs. straight (lumbar, knees,
malleolus) running segments; (2) Player Load statistical differences by track segment (curved vs.
straight) were found in all body locations; and (3) there were no differences in bilateral symmetries
by distance or running segment. Conclusions: Track segment and body location directly impacted
accelerometery-based load. Acceleration in straight segments was lower compared to that in curved
segments in all the body locations (lumbar, knee and ankle), except in the thorax. Strength and
conditioning programs should consider the singularity of curved sprinting (effects of centripetal–
centrifugal force) for performance enhancement and injury prevention and focus on the knees and
malleolus, as shown in the principal component analysis results.

Keywords: accelerometery; inertial measurement units; athletics; speed races; technology

1. Introduction

The performance of maximum-speed running races (e.g., 60 m, 100 m, 200 m) has
aroused particular research interest. In this type of athletic event, there are very low
differences between winning and losing due to its short duration. In this sense, little
changes could greatly affect general performance [1,2].

Previous studies have explored several internal and external variables of the athlete
that can affect and improve the performance of all-out races. To understand the output
in these races, several hypotheses have been proposed. At the physiological level, the
maximum running speeds in efforts lasting from a few seconds to several minutes could
be accurately predicted from the runner’s maximum anaerobic and aerobic speeds [3,4].
On the other hand, other kinematic and kinetic variables influence running economy and
technique such as foot–ground reaction, strike patterns, vertical impulse, effective mass,
gait length, joint angular trajectories and moments [5]. These variables usually explain how

Symmetry 2022, 14, 2332. https://doi.org/10.3390/sym14112332 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112332
https://doi.org/10.3390/sym14112332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7451-4448
https://orcid.org/0000-0002-0717-8827
https://orcid.org/0000-0002-4084-8124
https://orcid.org/0000-0001-6009-4086
https://doi.org/10.3390/sym14112332
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112332?type=check_update&version=1


Symmetry 2022, 14, 2332 2 of 11

the athlete modifies their biomechanics to adapt to track conditions, such as curvilinear
trajectories (e.g., centrifugal force) or speed [6], and they can be analysed to improve the
running technique, adapt injury recovery processes or plan the competition strategy [7].

In addition, between 65 and 80% of runners worldwide suffer injuries due to over-
load [5,8]. This overload can be due to multiple factors, among which are high rates and
magnitudes of loading (e.g., high intensity and volume) [5] or technical deficiencies and
structural-functional alterations of the body such as asymmetries (e.g., gait, joint angular
trajectories) [9,10]. In this sense, the study of body asymmetries has aroused particular
interest in the scientific community due to its importance in sports performance and in-
jury prevention [11,12]. These structural (e.g., joint stability, muscle mass differences) and
functional (e.g., joint mobility, muscle stiffness, power, strength) asymmetries can cause
changes in the running kinematics and the internal (e.g., functional or physiological out-
come of training (heart rate, blood pressure, biochemical release)) and external (e.g., how
the load is prescribed or evaluated (acceleration, speed, distance)) loads suffered by the
athletes [13,14]. Typically, these asymmetries during running are studied under labora-
tory and controlled conditions (e.g., treadmill running, ground reaction force platforms,
jump power meters) [15–18]. Instead, technology allows for an analysis of these running
asymmetries in real conditions [19,20]. Lower limb asymmetries have been studied for
their influence on kinematic (e.g., acceleration, deceleration, vectors direction), kinetic (e.g.,
increase in mediolateral reaction forces) and spatiotemporal (e.g., contact time, flight time,
step length and frequency) modifications [21].

The most used method to analyse sprinting performance has been tracking tech-
nologies that show the time, distance and speed performed during the race second by
second [22]. Thanks to technological advances, data from tracking sensors (e.g., GNSS-GPS)
have been improved with the incorporation of accelerometers, gyroscopes and magnetome-
ters that can evaluate external loads non-invasively and segmentally. These sensors allow
for the analysis of what happens in each part of the body during sports movements (e.g.,
running, jumping, changes in speed and direction) [19,20]. Among these devices are the
Magnetic, Angular Rate and Gravity (MARGs) sensors, which merge the signals from the
sensors to quantify the external load [23–25]. These devices have been used for walking
and running analysis in ambulatory settings and real situations in the field. Furthermore,
these have been used to quantify the external load on multiple body parts [26,27]. For this
purpose, the external load has been quantified by accelerometery-based variables such as
the Player Load, which is currently one of the most relevant variables used in the sports
area [28].

Running kinematics have been extensively studied in controlled settings (e.g., lab,
treadmill), but there is not much evidence when running in other real scenarios (e.g.,
mountain, track, sand). There is a lack of evidence on how asymmetries during running
could be impacted by some contextual variables (e.g., track segment and distance) and
body musculoskeletal structures (e.g., body segments or joints). Nowadays, technological
advances allow for tracking runners in different body locations. The MARG’s sensors are
one of those technologies that facilitate runner monitoring during training and competition
and require minimum disturbance to the athletes. As a consequence, this study aimed to
analyse the external load symmetry in track running kinematics concerning body location
(left vs. right, caudal vs. cephalic), track segment (straight vs. curved) and distance (150
m vs. 300 m). We have hypothesised that there are more asymmetries in the external
load when running faster and in curvilinear trajectories, and the highest external load is
suffered during curved running segments. The outcomes of this study can serve as a basis
for improving approaches in terms of the training and sports physical programming of
amateur runners. This information could allow technical staff to reorient their personalised
plans to the particularities of the running events and the runner’s specific kinematic,
locomotor and kinetic characteristics.
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2. Materials and Methods
2.1. Study Design

This study was conducted under a cross-sectional and comparative design. The
participants ran two distances wearing six Magnetic, Angular Rate and Gravity (MARG)
sensors to assess external load during running. The MARG sensors were attached to the
runner’s body using a special suit to evaluate the changes in external load by body location
and assess potential asymmetries between body segments.

Participants ran all-out 150 m and 300 m tests on the official athletics track shown in
Figure 1. The total distances were divided into six different segments—every 25 m for the
150 m test and every 50 m for the 300 m test, as shown in Figure 1. The 150 m test starts in a
curved 50 m and finishes in a straight 100 m, and the 300 m test starts in a straight 100 m,
followed by a curved 100 m, and finishes in a straight 100 m. All participants ran in the
first lane.
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Figure 1. Representation of the running segments of the 150 m and 300 m all-out tests.

2.2. Participants

A total of 20 male runners (age = 19.9 ± 4.5 years, height = 174.4 ± 6.7 cm, weight =
64.4 ± 9.2 kg, lean mass right leg = 9.3 ± 1.7 kg, lean mass left leg = 9.1 ± 1.6 kg) took part
in the study. Participants were track speed runners recruited from the Badajoz Athletic
Club (Extremadura, Spain) that met the following inclusion criteria: (1) experience (at
least two consecutive competitive years) and (2) training (at least three days/week). The
participants competed at the regional and national levels. All participants were described
as right dominants.

Participants were allowed to get involved if no neuromuscular, metabolic or structural
injuries were reported at least six months before the beginning of the study. Participants
were asked to avoid intense training or competitions before the testing. Additionally, the
supplementation of stimulants was not allowed two weeks before testing.

Each runner gave their written informed consent and assent according to the Declara-
tion of Helsinki guidelines for biomedical research (18th Medical Assembly 1964, revised
in 2013 in Fortaleza). The research protocol was reviewed and approved (reg n◦ 232/2019)
by the institutional review board of the University of Extremadura, Spain. All participants
and their parents, if minors, were informed of the details of the study’s procedures and the
associated risks.
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2.3. Materials and Procedures

Variables were measured using six MARG sensors (WIMU PRO, Real Track Systems,
Almería, Spain). The sensors integrate four three-axis microelectromechanical accelerom-
eters. Two of the accelerometers have the capacity to measure up to ±16 g forces, one
has the capacity to measure up to ±32 g forces and one has the capacity to measure up to
±400 g forces. The sensors also included a gyroscope and magnetometers. These sensors
have been evaluated in terms of their agreement and reliability in assessing external load
in multiple body parts [25,29] in laboratory and field conditions [27]. All calibrations and
settings were performed following previously published guidelines [30].

Six MARG sensors were attached, as shown in Figure 2. The MARG’s sensors were
inserted in the pockets of special spandex suit pants and adjusted using a Velcro system.
This attachment system was used to avoid the device’s unwanted shaking or vibration [31].
The devices were attached considering previous studies in running protocols [26,32]. One
device was located at the second and fourth thoracic vertebrae (~T2–T4). One was located
at the first to third lumbar vertebrae (~L1–L3) level. Two devices were attached to bilateral
vastus lateralis muscle bellies (VLright and VLleft), and two devices were fixed to the bilateral
3 cm cephalic from the malleolus peroneus (MPright and MPleft).
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positioning and (B) Velcro straps adjustment system.

Player Load (PL, a.u./min) was chosen as sports’ preferred accelerometery-based
external workload metric [28,33]. This variable was selected, using objective statistical
methods, as the most representative when assessing running external workload [26,32].
This variable is understood as a vector sum of the changes in acceleration in the anterior-
posterior (forward), mediolateral (side) and vertical (up) planes. PL is the sum and fusion
of the integrated accelerometer’s data points in the X, Y and X axes, expressed in arbitrary
units [28]. The estimation of PL was performed using the following equation:

PL =

√
(Xn − Xn−1)

2 + (Yn − Yn−1)
2 + (Zn − Zn−1)

2

100



Symmetry 2022, 14, 2332 5 of 11

Bilateral asymmetries were considered when differences were lower than 90% [12,14]
of the lateral symmetry index, assessed by the following formula [34]:

Lateral Symetry Index =
higher value (right, le f t)− lower value (right, le f t)

higher value (right, le f t)
∗ 100

Intersegment differences in PL were calculated as the delta’s percentage of change (∆%)
between the MP-VL segments. The intersegmental PL was estimated using the following
formula:

∆% =
(caudal segment − cephalic segment)

caudal segment
∗ 100

2.4. Statistical Analysis

The PL, lateral symmetry index and intersegmental differences were reported using
the mean and the standard deviation. The procedure followed before and after the Prin-
cipal Component Analysis (PCA) was developed according to previous similar papers
in sports [35]. The PCA was applied to each track segment of both distances of 150 m
(each 25 m, curved vs. straight) and 300 m (each 50 m, curved vs. straight) using the PL
of the six MARG sensors. The PL was scaled and centred (Z-Score), PCAs were suitable
considering Kaiser–Meyer–Olkin values (KMO = 0.73–0.92) and the Barlett Sphericity test
was significant in all PCAs (p < 0.01) [36]. After the PCA, eigenvalues greater than one were
included for extraction in the respective principal components (PC) [36]. An orthogonal
rotation using the VariMax method was used to identify respective loadings in each PC;
only loadings greater than 0.6 were retained for interpretation, and the highest loading was
reported when a cross-loading was identified between PCs. The PCA outcomes reported
were sensors data correlation weights, total variance explained and variance explained by
the PC one.

A mixed analysis of variance (MANOVA) was performed to explore the differences
between two distances (300 vs. 150) and two track segments (curved vs. straight). Ad-
ditionally, the symmetries were estimated and compared using a one-way ANOVA by
track segment—every 25 m for 150 m and every 50 m for 300 m. A curved vs. straight
symmetries comparison was performed using a t-test. Considering that the magnitude of
the PL could vary between distances, the data were scaled and centred (Z-Score) before this
analysis. Alpha was defined in p < 0.05. The software Statistical Package for Social Sciences
(v.27.0, IBM, Chicago, IL, USA) was used to perform all analyses.

3. Results
3.1. PCA Analysis of the PL Data of Body Segments by Track Segments

The PCAs of 150 m and 300 m segments explained 62.33–78.15% and 88.22–93.05% of
the total variance of the six MARG sensors. The PC one explained 40.72–61.45% in 150 m
track segments and 83.07–85.96% in 300 m segments. It has to be highlighted that the curved
track segments were represented by VLright, VLleft, MPright and MPleft, whereas VLright
explained the straight track segments, VLleft, MPright, MPleft and L1–L3 (see Figure 3).

3.2. Comparison of PL Data by Distance, Body Location and Track Segment

The results suggest no differences in PL by distance (relative) in any body segments.
Antagonistically, a statistical difference by track segment (curved vs. straight) was found in
all body locations, as represented in Table 1.
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Figure 3. Principal components analysis outcomes (orthogonal rotation) based on player load data,
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MPR = malleolus peroneus right, Var Exp = variance explained.

Table 1. Differences in Player Load by body location, distance and track segment.

Body
Location

Distance
Track Segment

Curved Straight
FTrack segment (p-Value)

T2–T4
150 0.63 ± 0.53 0.69 ± 0.39
300 0.63 ± 0.96 0.69 ± 0.95 0 (1)

FDistance (p-value) 28.88 (<0.01) FInteraction
(p-value) 1.25 (0.27)

L1–L3
150 0.75 ± 0.33 0.68 ± 0.46
300 0.75 ± 0.88 0.68 ± 0.93 0 (1)

FDistance (p-value) 40.19 (<0.01) FInteraction
(p-value) 1.24 (0.27)

VLright
150 0.79 ± 0.30 0.71 ± 0.39
300 0.79 ± 0.80 0.71 ± 0.91 0 (1)

FDistance (p-value) 50.00 (<0.01) FInteraction
(p-value) 2.51 (0.12)

VLleft
150 0.76 ± 0.30 0.73 ± 0.35
300 0.76 ± 0.86 0.73 ± 0.91 0 (1)

FDistance (p-value) 46.23 (<0.01) FInteraction
(p-value) 1.43 (0.24)

MPright
150 0.75 ± 0.36 0.72 ± 0.42
300 0.75 ± 0.85 0.72 ± 0.88 0 (1)

FDistance (p-value) 45.32 (<0.01) FInteraction
(p-value) 0.43 (0.52)

MPleft
150 0.74 ± 0.39 0.71 ± 0.38
300 0.74 ± 0.86 0.71 ± 0.92 0 (1)

FDistance (p-value) 41.84 (<0.01) FInteraction
(p-value) 0.57 (0.46)



Symmetry 2022, 14, 2332 7 of 11

3.3. Symmetries and Intersegmental Differences of PL Data by Distance, Body Location and
Track Segment

The results indicated no difference in the bilateral or intersegmental symmetries by
distance (see Table 2). Additionally, there were no differences in bilateral symmetry between
the curved and straight segments in 150 m (10.16 ± 8.08 vs. 10.00 ± 6.15; t = 0.09, p = 0.93)
or 300 m (7.31 ± 6.86 vs. 7.91 ± 5.05; t = 0.38, p = 0.71). The intersegmental difference
presented no differences in 150 m (24.43 ± 11.17 vs. 25.59 ± 8.21; t = 0.63, p = 0.63) or 300 m
(20.65 ± 8.21 vs. 18.90 ± 8.58; t = 1.25, p = 0.23).

Table 2. Symmetries percentage comparison of Player Load by distance segments.

Symmetry Distance
FInteraction
(p-Value)

150 m speed race 0–25 m 25–50 m 50–75 m 75–100 m 100–125 m 125–150 m
Bilateral symmetry
Malleolus Peroneus 11.92 ± 12.46 11.46 ± 6.99 10.74 ± 8.49 13.05 ± 7.93 11.33 ± 7.83 12.74 ± 8.42 0.21 (0.96)

Vastus Lateralis 11.28 ± 7.11 13.87 ± 20.96 8.91 ± 8.64 11.82 ± 6.68 11.24 ± 8.11 8.92 ± 5.79 0.62 (0.68)
Intersegmental difference

MP–VL 25.51 ± 10.89 26.11 ± 9.94 25.37 ± 10.89 25.34 ± 11.13 27.17 ± 9.09 23.61 ± 8.50 0.50 (0.78)
300 m speed race 0–50 m 50–100 m 100–150 m 150–200 m 200–250 m 250–300 m

Bilateral symmetry
Malleolus Peroneus 8.45 ± 8.57 7.81 ± 5.86 7.67 ± 6.57 8.41 ± 6.91 11.19 ± 6.91 8.34 ± 4.14 0.86 (0.52)

Vastus Lateralis 8.21 ± 6.35 6.11 ± 5.29 7.47 ± 5.69 8.87 ± 7.36 9.64 ± 5.32 7.68 ± 6.91 0.98 (0.44)
Intersegmental difference

MP–VL 20.81 ± 10.53 20.03 ± 9.40 20.00 ± 9.57 20.56 ± 8.79 18.13 ± 8.51 18.08 ± 8.94 0.74 (0.60)

4. Discussion

This study aimed to analyse the acceleration symmetry by body location (left vs. right,
caudal vs. cephalic), track segment (straight vs. curved) and distance (150 m vs. 300 m)
during track running. We have hypothesised that (1) there are more asymmetries in the
external load when running faster and in curved trajectories and (2) the highest external
load is suffered during curved running segments.

The results of the present study indicate differences in the magnitude of the variables
based on accelerometery (PL) during the race in curved segments compared to straight
segments. These differences are evident bilaterally in body locations such as the lumbar,
knees and ankles. Additionally, there are no differences in bilateral or intersegmental
symmetry related to distance or track segments. Therefore, the first two hypotheses are
rejected, and the third is accepted.

In this sense, previous studies indicate that running at maximum speed on short
and curved sections is slower than running on straight sections. This is produced by two
factors that decrease such as step frequency and turning radius [37]. Additionally, this
speed reduction during curved running has been attributed to kinematic (e.g., acceleration,
deceleration, vectors direction), kinetic (e.g., increase in mediolateral reaction forces) and
spatiotemporal (e.g., contact time, flight time, step length and frequency) modifications [21].
In this sense, the speed reduction in curves is caused by an increase in lateral ground
reaction forces leading to a decrease in peak vertical ground reaction [38].

In this study, speed loss differed significantly between runners in curved segments.
This fact indicates, from a biomechanical point of view, that there are good curved runners
and bad curved runners [39]. It is suggested that there are runners that are able to accom-
modate a tighter radius than others [37]. Therefore, even though it is inevitable that the
biomechanics and kinematics of running undergo changes in curved segments, as identified
in this study (usually due to the increased load demand), there are proposals to improve the
technique and minimise these differences. It should be considered that this outcome should
be applied to amateur runners given the spatiotemporal and musculoskeletal differences
with elite runners [40].
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During curved running, the medial-lateral reaction ground forces and impulse increase
compared to straight running. This could result from counteracting the suffered centrifugal
force during curved running [39]. This phenomenon was evident in this study’s outcomes,
which suggest that the accelerometery load was higher during curved running, identified
by the ankles, knees and lumbar body locations.

Evidence suggests that there could be symmetric kinematic modifications such as
a greater peak hip adduction, peak hip internal rotation and peak ankle eversion on
the curved segment compared to the straight segment [21]. The results of the present
study may suggest that the counteract of the centrifugal forces performed during curved
running could result in a similar external load, as found in this study. This statement is
supported by evidence suggesting that, despite asymmetries during running affecting
kinematics, these changes are too small to affect the running economy [41]. Additionally,
some plastic compensations in the musculoskeletal system could mitigate this potential
influence of asymmetry [41]. The decrease in running speed during the curved running
may be necessary to avoid a higher load or a difference between the load segments and
thus avoid injury or reduce the large gravitational forces caused by the centrifugal force
in these running segments. In this sense, evidence supports the idea that running speed
does not influence the lower limb’s kinematics asymmetry among amateurs [42]. This is
why it is recommended that strength and conditioning programming aim to work on the
hips, ankles and feet in the non-sagittal planes (e.g., proprioception, power, strength and
positioning) [21,43].

The outcomes of this study indicate that those body compensations could preserve ac-
celerometery load stability during curved running, although curved running is considered
asymmetrical in nature [44]. It is recommended that, to maintain good performance during
curved paths during the race, it is critical to perform at a similar speed, flight distance
and stride length compared to straight paths [39]. It is necessary to achieve an optimal
technique in curved segments, maintaining similar kinematics and kinetics in the sagittal
plane as on a straight running [37,39].

Additionally, one of the highlights of this study was the use of PCA to cluster the
MARG sensors based on their critical role in both curved and straight running. The results
suggested that PCA explained 62–93% of the total variance and clustered body locations
relevance in curved (knees and malleolus) vs. straight (lumbar, knees, malleolus) running
segments. This outcome implies that the lumbar region may have a critical role during
straight running compared to curved sections; it is particularly sensitive to the body centre
of mass movement [41]. This may be due to the greatest vertical reaction forces provoked
during straight running compared to the mediolateral reaction forces caused during curved
running. In this sense, studies have shown that mean peak vertical and resultant forces
usually decrease during curved running. The left step has the greatest decrease compared
to the right [44]. Additionally, the upper limbs’ static and dynamic asymmetries during
curved vs. straight running required a more in-depth analysis due to the potential influence
of accelerometery load during running [41].

4.1. Limitations

While this study presents some evidence of the external load differences and symme-
tries during running by distance and track segments, these findings must be interpreted
considering some limitations. Due to the sample characteristics (e.g., level of runners), the
outcomes of this study cannot be applied to other populations (e.g., professional athletes)
because there are technical differences that could modify the results obtained.

It is important to note that, due to logistical reasons, it was not possible to experiment
with official World Athletics competition distances (e.g., 400 m, 200 m). Additionally, we
selected the first lane of the track for all assessments, but the results could vary depending
on the lane used. More analysis should be conducted exploring the differences in accelerom-
etery and external load depending on the centripetal forces suffered based on the lane used
(ratio of the track curve). Finally, the sample size and potential heterogeneity can cause
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relatively high standard deviations in the results, which should be improved in future
studies. Additionally, it should be explored more in depth if the asymmetry indices used
in gait analysis and commonly applied to running movement best characterise running
asymmetry [9].

4.2. Practical Applications

The outcomes of this study suggest that the strategies of speed races could vary
according to the distance and the track segment (curve vs. straight). Considering that
the sprint testing ability typically focuses on linear speed, evaluation should be made
using curved running. Additionally, curved segments must be trained from an external
load point of view to withstand loads during high-speed actions such as 150 m and 300 m
races. During training, the optimal biomechanical sprinting angle, body position, step
length and flight distance should be assessed to suffer less external load during running in
curved trajectories [39]. Additionally, the athletics track running lane should be considered
when planning a running strategy due to the potential differences in speed and centrifugal
forces [37,45,46].

The MARGs sensors have proven to be an effective technology for tracking multi-
segmented external load during running in-field testing. Additionally, this method of
evaluation allows for the measurement of different body locations simultaneously, em-
ploying accelerometery with a non-invasive method, and in real situations of competition
or training.

5. Conclusions

The results suggest differences in the accelerometery-based load in running (Player
Load) when comparing the curved and straight segments during running on an athletic
track. It seems that the straight segments present less of an accelerometery-based load
than the curved segments in all the body locations (lumbar, knee and ankle), except for the
thorax. These results confirmed that centrifugal force during curved segments provokes
the athlete to perform a mediolateral ground-reaction force to counteract this force and
stay balanced during running. Additionally, there are no differences in bilateral symmetry
between the magnitude of the devices placed in the malleolus peroneus or vastus lateralis
at any distance (150 m or 300 m).

Principal component analysis suggests that the lumbar region may have a critical role
during straight running compared to curved sections. This may be due to the greatest
vertical reaction forces provoked during straight running compared to the mediolateral
reaction forces caused during curved running.

New technology should be developed to evaluate the ground reaction forces, running
angles and speed in a simple, efficient and effective manner. Future research may focus on
the effect of training strategies to reduce or counteract the centrifugal force. Additionally,
these future studies may use available technology to give real-time feedback to the runner
considering the external load suffered during curved running.
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