
Citation: Ang, K.M.; El-kenawy,

E.-S.M.; Abdelhamid, A.A.; Ibrahim,

A.; Alharbi, A.H.; Khafaga, D.S.;

Tiang, S.S.; Lim, W.H. Optimal

Design of Convolutional Neural

Network Architectures Using

Teaching–Learning-Based

Optimization for Image

Classification. Symmetry 2022, 14,

2323. https://doi.org/

10.3390/sym14112323

Academic Editor: Juan L. G. Guirao

Received: 18 October 2022

Accepted: 1 November 2022

Published: 5 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Optimal Design of Convolutional Neural Network
Architectures Using Teaching–Learning-Based
Optimization for Image Classification
Koon Meng Ang 1 , El-Sayed M. El-kenawy 2,* , Abdelaziz A. Abdelhamid 3 , Abdelhameed Ibrahim 4 ,
Amal H. Alharbi 5, Doaa Sami Khafaga 5 , Sew Sun Tiang 1,* and Wei Hong Lim 1,*

1 Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia
2 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology,

Mansoura 35111, Egypt
3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University,

Cairo 11566, Egypt
4 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University,

Mansoura 35516, Egypt
5 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
* Correspondence: skenawy@ieee.org (E.-S.M.E.-k.); tiangss@ucsiuniversity.edu.my (S.S.T.);

limwh@ucsiuniversity.edu.my (W.H.L.)

Abstract: Convolutional neural networks (CNNs) have exhibited significant performance gains over
conventional machine learning techniques in solving various real-life problems in computational
intelligence fields, such as image classification. However, most existing CNN architectures were
handcrafted from scratch and required significant amounts of problem domain knowledge from
designers. A novel deep learning method abbreviated as TLBOCNN is proposed in this paper
by leveraging the excellent global search ability of teaching–learning-based optimization (TLBO)
to obtain an optimal design of network architecture for a CNN based on the given dataset with
symmetrical distribution of each class of data samples. A variable-length encoding scheme is first
introduced in TLBOCNN to represent each learner as a potential CNN architecture with different
layer parameters. During the teacher phase, a new mainstream architecture computation scheme is
designed to compute the mean parameter values of CNN architectures by considering the information
encoded into the existing population members with variable lengths. The new mechanisms of
determining the differences between two learners with variable lengths and updating their positions
are also devised in both the teacher and learner phases to obtain new learners. Extensive simulation
studies report that the proposed TLBOCNN achieves symmetrical performance in classifying the
majority of MNIST-variant datasets, displays the highest accuracy, and produces CNN models
with the lowest complexity levels compared to other state-of-the-art methods due to its promising
search ability.

Keywords: convolutional neural networks; deep learning; image classification; optimal design of
network architecture; teaching–learning-based optimization

1. Introduction

Various machine learning and deep learning models, such as feedforward neural
networks (FNNs) [1], convolutional neural networks (CNNs) [2,3], and recurrent neural
networks (RNNs) [4,5], were introduced in order to tackle different real-world tasks, such
as object recognition [6–8], speech emotion recognition [9], fault detection [10–15], classifi-
cation [16–18], and estimation problems [19]. In recent years, deep learning models, such as
CNNs, have gained overwhelmed popularity due to their superiority over human experts
in tackling certain tasks [20]. CNNs consist of two major components, known as feature

Symmetry 2022, 14, 2323. https://doi.org/10.3390/sym14112323 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112323
https://doi.org/10.3390/sym14112323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5240-4512
https://orcid.org/0000-0002-9221-7658
https://orcid.org/0000-0001-7080-1979
https://orcid.org/0000-0002-8352-6731
https://orcid.org/0000-0002-9843-6392
https://orcid.org/0000-0001-8433-8663
https://orcid.org/0000-0003-1673-8088
https://doi.org/10.3390/sym14112323
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112323?type=check_update&version=1

Symmetry 2022, 14, 2323 2 of 35

extractor and classifier, that enable them to complete assigned tasks effectively without
requiring manual pre-processing of raw data. With proper training of a CNN network,
the convolution and pooling layers incorporated into feature extractor can automatically
extract meaningful features from the raw input data and then feed into the fully connected
layers of the classifier to perform the designated tasks with promising performance.

Optimal design of network architecture is one of the fundamental cornerstones that
govern the network performance of CNN. Despite having promising performances, the
network architectures of most existing CNN models, such as GoogleNet [21], AlexNet [22],
InceptionNet [21], VGG [23], DenseNet [24] and ResNet [25], are handcrafted by designers
with extensive knowledge of problem domains [26]. These manual processes of designing
CNN architecture are not only time consuming but also computationally expensive due to
their trial-and-error natures. These manually designed network architectures might also
have limited flexibility in handling different datasets with unique data distributions and
hence, their performance may be compromised. Ideally, the optimal design of CNN network
architectures should be automatically guided by the characteristics of given problems
without requiring significant intervention from human experts to provide insights about
specific problem domains. It is also notable that the majority of the manually handcrafted
CNN models consist of redundant trainable parameters that lead to complex, network-
heavy computational efforts. Hence, an efficient algorithm with symmetrical performance
in achieving good classification accuracy and constructing CNN architectures with low
complexity levels is worthy of investigation.

To alleviate the drawbacks of trial-and-error design, different strategies were de-
vised to systematically determine the optimal network architectures of a CNN. These
network architecture design methods are divided into three categories: (a) reinforcement-
learning-based methods [27], (b) gradient-based methods [28], and (c) metaheuristic-search-
based methods [29]. Baker et al. [30] proposed a reinforcement-learning-based method
known as MetaQNN that utilized ten graphical processing units (GPUs) running on a
CIFAR-10 dataset for ten days. For the reinforcement-learning-based method proposed by
Zoph and Le [31], 800 GPUs were used to train the optimal CNN network architecture with
CIFAR-10 for 28 days. Although reinforcement-learning-based methods can deliver promis-
ing performances, they are not feasible for researchers with limited computational resources.
Gradient-based methods, such as those proposed by Liu, Simonyan, and Yang [28] are more
efficient than reinforcement-learning-based methods, but the former methods did not have
strong theoretical supports, and the CNN network architectures obtained were unstable.
The construction of optimal CNN network architectures using gradient-based methods
was also computationally expensive and required significant involvement from experts
with rich domain knowledge. Finally, metaheuristic-search-based methods can design the
optimal CNN network architectures by employing metaheuristic search algorithms (MSAs)
without requiring any insights about specific problem domains. MSAs are population-
based algorithms in which the search operators inspired by different natural phenomena are
used to locate the global optimum iteratively and are used to solve optimization problems.
Some notable MSAs include the genetic algorithm (GA) [32], particle swarm optimiza-
tion (PSO) [33], differential evolution (DE) [34], and teaching learning-based optimization
(TLBO) [35]. Given their appealing features, such as simple implementation, gradient-free
characteristics, and strong global search ability, these MSAs are widely utilized to solve
different real-world optimization problems [36–46].

Although the benefits of MSAs enable them to be naturally employed to optimize
CNN network architectures, this optimization remains as a challenging task because of
some newly arisen issues. For instance, the optimal CNN network architecture required
to solve a particular dataset is unknown prior to the task. It is crucial to design a proper
solution-encoding strategy that can facilitate the searching of CNNs with different network
architectures (i.e., in terms of depths, layer types, etc.) when handling different problems.
Appropriate constraints must also be defined to avoid the construction of invalid CNN
network architectures in solution spaces without compromising the ability of MSAs to find

Symmetry 2022, 14, 2323 3 of 35

novel architectures. Existing MSAs are originally designed to solve global optimization
problems with specified dimensional size in a continuous search space. The optimization
of CNN network architecture is more challenging than typical global optimization because
it involves searching for solutions with different dimensional sizes (i.e., CNNs with dif-
ferent depths and combinations of layers) within the same solution space. Referring to
the adopted solution encoding strategy, appropriate modifications must be made to the
original search operators of MSAs to accommodate the searching of CNNs with flexible
types of network architectures in solution space. When using population-based MSAs
to optimize CNN network architectures, another concern is the time and computational
resources required to evaluate the fitness value of each candidate solution. A computa-
tionally efficient fitness evaluation process is needed to ensure the practicability of MSAs
in designing optimal CNN network architectures. Finally, it is notable that only classical
MSAs (e.g., GA, PSO, and DE) are employed in optimizing the network architectures of
CNNs despite the emergence of new MSAs inspired by different natural phenomena due
to the “No Free Lunch Theorem” [47]. While these new MSAs can deliver promising
optimization performances when solving standard benchmark functions, it is essential to
further investigate their potentials and feasibilities for handling increasingly challenging
real-world problems, such as the optimization of CNN network architectures.

This paper aims to propose an effective and efficient network architecture design
method to achieve symmetrical tradeoff between classification accuracy and network com-
plexity. In particular, a relatively new MSA known as TLBO is employed to automatically
search for the optimal network architecture of a CNN based on a given dataset without
requiring human intervention. An appropriate solution-encoding strategy and design
constraints are first defined for TLBOCNN, enabling it to search for the valid CNN net-
work architectures with flexible sizes in the solution space. To ensure the practicability of
TLBOCNN, a computationally efficient fitness evaluation process is employed to measure
performance differences between the CNN network architectures represented by different
TLBOCNN learners. Appropriate modifications are also proposed for the search operators
of TLBOCNN during the teacher and learner phases, enabling the computation of popula-
tion mean and new solutions from existing TLBOCNN learners with different lengths.

The remaining sections of this paper are organized as follows. Related works and
research contributions of the current work are presented in Section 2. The overall search
mechanisms of the proposed TLBOCNN are described in Section 3. Extensive simulation
studies conducted for the performance evaluation of the proposed TLBOCNN are reported
in Section 4. Finally, the conclusion and future works are summarized in Section 5.

2. Related Works
2.1. Teaching–Learning-Based Optimization (TLBO)

TLBO is inspired by the teaching and learning processes of an actual classroom [35].
At the initialization stage, all learners are randomly generated with a population size of N
in the search space. Each nth learner is considered as a candidate solution for solving the
given problem and defined as Xn = [Xn,1, . . . , Xn,d, . . . , Xn,D], where n ∈ [1, N] refers to the
population index d ∈ [1, D] and D refer to the dimension index and the total dimensional
size of the problem, respectively. Meanwhile, the quality or fitness level of each nth learner
is denoted as f (Xn).

During the teaching phase, the new solution of each nth learner can be obtained by
learning from the difference between the best learner (i.e., teacher) and the population mean
(i.e., mainstream knowledge of classroom), represented as Xteacher and Xmean, respectively.
The mainstream knowledge of classroom Xmean is first expressed as:

Xmean =
1
N

N

∑
n=1

Xn (1)

Symmetry 2022, 14, 2323 4 of 35

Given Xmean, the new solution of each nth learner, denoted as Xnew
n , is calculated as:

Xnew
n = Xn + r1

(
Xteacher − Tf Xmean

)
(2)

where r1 ∈ [0, 1] is a random number generated from uniform distribution; Tf ∈ {1, 2} is a
teaching factor that determines the importance of Xmean in updating each learner.

For the learner phase of TLBO, a peer interaction mechanism is simulated to update
each nth learner. Define p ∈ [1, N] as the index of a randomly selected peer learner to be
compared with each nth learner, where p 6= n. Let f (Xn) and f

(
Xp
)

be the fitness values
of learners Xn and Xp, respectively. For minimization problems, the new solution of nth
learner Xnew

n can be obtained from the learner phase as:

Xnew
n =

{
Xn + r2

(
Xp − Xn

)
, if f

(
Xp
)
< f (Xz)

Xn + r2
(
Xn − Xp

)
, otherwise

(3)

where r2 ∈ [0, 1] is a random number generated from uniform distribution. At the end
of both the teacher and learner phases, the fitness value of Xnew

n for each nth learner is
evaluated as f (Xnew

n) and compared to f (X). If f (Xnew
n) is better than f (Xn), the current

Xn is replaced by new Xnew
n . Otherwise, Xnew

n is discarded. The knowledge enhancement of
each TLBO learner through both teacher and learner phases is repeated until the termination
criteria are satisfied. The teacher solution Xteacher is then obtained as the best solution found
for a given problem.

2.2. Convolutional Neural Networks (CNNs)

CNNs [48] are introduced as the combination of a feature-learning module with a
trainable classifier, where the latter consists of at least one fully connected layer. Feature-
learning modules aim to replace manual feature-extracting processes used in conventional
machine learning methods to minimize the error due to data pre-processing. Contrary
to FNNs, CNNs are applied directly to the raw data. After learning meaningful features
from raw data, these features are then fed into the subsequent layer of trainable classifiers.
The architecture of a sequential CNN is illustrated in Figure 1, where the feature learning
module consists of two convolutional layers and two pooling layers, whereas the trainable
classifier has three fully connected layers.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 37

mean (i.e., mainstream knowledge of classroom), represented as 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟and 𝑋𝑚𝑒𝑎𝑛 , re-

spectively. The mainstream knowledge of classroom 𝑋𝑚𝑒𝑎𝑛 is first expressed as:

𝑋𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋𝑛

𝑁

𝑛=1

 (1)

Given 𝑋𝑚𝑒𝑎𝑛, the new solution of each nth learner, denoted as 𝑋𝑛
𝑛𝑒𝑤, is calculated as:

𝑋𝑛
𝑛𝑒𝑤 = 𝑋𝑛 + 𝑟1(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝑓𝑋𝑚𝑒𝑎𝑛) (2)

where 𝑟1 ∈ [0,1] is a random number generated from uniform distribution; 𝑇𝑓 ∈ {1,2} is

a teaching factor that determines the importance of 𝑋𝑚𝑒𝑎𝑛 in updating each learner.

For the learner phase of TLBO, a peer interaction mechanism is simulated to update

each nth learner. Define 𝑝 ∈ [1, 𝑁] as the index of a randomly selected peer learner to be

compared with each nth learner, where 𝑝 ≠ 𝑛. Let 𝑓(𝑋𝑛) and 𝑓(𝑋𝑝) be the fitness values

of learners 𝑋𝑛 and 𝑋𝑝, respectively. For minimization problems, the new solution of nth

learner 𝑋𝑛
𝑛𝑒𝑤 can be obtained from the learner phase as:

𝑋𝑛
𝑛𝑒𝑤 = {

𝑋𝑛 + 𝑟2(𝑋𝑝 − 𝑋𝑛), if 𝑓(𝑋𝑝) < 𝑓(𝑋𝑧)

𝑋𝑛 + 𝑟2(𝑋𝑛 − 𝑋𝑝), otherwise
 (3)

where 𝑟2 ∈ [0,1] is a random number generated from uniform distribution. At the end of

both the teacher and learner phases, the fitness value of 𝑋𝑛
𝑛𝑒𝑤 for each nth learner is eval-

uated as 𝑓(𝑋𝑛
𝑛𝑒𝑤) and compared to 𝑓(𝑋). If 𝑓(𝑋𝑛

𝑛𝑒𝑤) is better than 𝑓(𝑋𝑛), the current 𝑋𝑛

is replaced by new 𝑋𝑛
𝑛𝑒𝑤. Otherwise, 𝑋𝑛

𝑛𝑒𝑤is discarded. The knowledge enhancement of

each TLBO learner through both teacher and learner phases is repeated until the termina-

tion criteria are satisfied. The teacher solution 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is then obtained as the best solu-

tion found for a given problem.

2.2. Convolutional Neural Networks (CNNs)

CNNs [48] are introduced as the combination of a feature-learning module with a

trainable classifier, where the latter consists of at least one fully connected layer. Feature-

learning modules aim to replace manual feature-extracting processes used in conventional

machine learning methods to minimize the error due to data pre-processing. Contrary to

FNNs, CNNs are applied directly to the raw data. After learning meaningful features from

raw data, these features are then fed into the subsequent layer of trainable classifiers. The

architecture of a sequential CNN is illustrated in Figure 1, where the feature learning mod-

ule consists of two convolutional layers and two pooling layers, whereas the trainable

classifier has three fully connected layers.

Figure 1. Typical network architecture of a sequential CNN. Figure 1. Typical network architecture of a sequential CNN.

For each convolution layer, the filters with predefined filter width and filter height are
first initialized. Then, the convolutional process is applied to the input images to generate
feature maps. Each filter is first slid from the leftmost to the rightmost side of the input
image with a step size defined as stride width. The filter is then moved downward with a
step size known as stride height and slid through the input image from left to right again.
This sliding process is repeated until the filter reaches the bottom-right of the input images

Symmetry 2022, 14, 2323 5 of 35

and produces a complete feature map in which each feature map element is obtained as
the sum of products for elements of filter and the corresponding elements of input images
that overlap with filter. The number of filters required to produce a feature map is equal to
number of channels defined in the input images. The connection weights in the filter are
the learnable parameters in the convolution layer, whereas the hyperparameters considered
during convolutional process include the width and height of filters, the number of filters,
the number of feature maps, the width and height of stride, and the type of convolution.

The pooling layer is used for downsampling the feature maps produced by convolution
process to achieve local translation invariance. During the pooling process, a kernel is
first initialized with the predefined kernel width, kernel height, and types of pooling.
Two popular operations used in the pooling layers are maximum pooling and average
pooling. For maximum pooling, the maximum values of elements in patches of feature
maps overlapped with the kernels are identified. Meanwhile, the average pooling is used
to calculate the average values of elements observed in the patches of feature maps that
overlap the kernel. The sliding process of the kernel is performed from the top-left to the
bottom-right of input images based on the predefined stride width and stride height to
obtain the downsampled feature maps. Contrary to the convolution layer, the pooling layer
does not contain any learnable parameters. The hyperparameters involved in the pooling
process include the kernel width and kernel height, the stride width and stride height, and
the pooling type (i.e., maximum or average pooling).

The training of the CNN aims to minimize the errors between the predicted outputs of
the network and the actual outputs stored in datasets. The trainable parameters of the CNN
are optimized with gradient descent and backpropagation by minimizing cross-entropy
loss. A simple CNN, such as that illustrated in Figure 1, may consist of a few hundred
thousand to millions of trainable parameters. Depending on the network architectures of
the CNN, the training process could consume up to several weeks even with the use of
high-performance graphical processing units (GPUs). Given the time-consuming process
of evaluating multiple CNNs, it is not feasible to design the network architecture of CNN
using a trial-and-error approach. It is crucial to develop efficient network architecture
design methods that can automatically determine the optimal CNN network architectures
based on given datasets without requiring rich expert domain knowledge.

2.3. Existing Metaheuristic-Search-Based Methods in Optimizing Neural Networks

Given the gradient-free characteristics, MSAs are envisioned as competitive solutions
for solving challenging black-box optimization problems, such as the optimal design of
neural network architectures. The idea of neuroevolution was incepted two decades ago
when MSAs were used to evolve the weights or architectures of small- or medium-sized
artificial neural networks (ANNs). Due to the drawbacks of the backpropagation method,
such as its high tendency of becoming trapped in local optima, MSA was initially used to
update the weights of ANN with fixed network architectures [49]. Despite having greater
exploration strength to address local optima issues, MSAs require longer durations to train
the weights of ANN than backpropagation does [50]. Sophisticated neuroevolution algo-
rithms known as topology- and weight-evolving artificial neural networks (TWEANNs)
were introduced to optimize the weights and architectures of ANNs simultaneously. Some
popular TWEANNs include the Neuroevolution of Augmenting Topologies (NEAT) [51],
Evolutionary Acquisition of Neural Topologies (EANT) [52], and Hypercube-Based Neu-
roevolution of Augmenting Topologies (HyperNEAT) [53]. A natural evolution concept of
GA was adopted by NEAT [51] to evolve ANNs from simpler to more complicated architec-
tures by increasing connection weights. Speciation was also incorporated to preserve the
population diversity of NEAT while searching for more complex networks. It is infeasible
to represent complex network architectures with high dimensional sizes using the direct
encoding scheme of NEAT due to the excessive computational efforts required. EANT [52],
with inner and outer layers, was also designed to evolve ANNs from simpler to more com-
plex structures. The inner layer was used to govern the exploitation behavior of EANT by

Symmetry 2022, 14, 2323 6 of 35

using evolution strategy to determine the optimal weight parameters of the network. The
outer layer of EANT was more explorative because a mutation strategy was incorporated
to evolve the network architectures. HyperNeat [53] used an indirect encoding strategy
known as a connective compositional pattern producing network (CPNN) to represent the
complex network architectures more efficiently by considering the given problem geometry.
HyperNeat has worse performance than humans in solving classification problems, and it
was recommended as a feature extractor for other machine learning algorithms instead [54].

There are growing trends of applying MSAs to optimize the network architectures of
complex deep neural networks (e.g., CNN). PSO [33], inspired by the swarm behavior of
animals in food searching, is a popular MSA used to find the optimal network architectures
of CNNs. A PSO-based CNN (CNNPSO) was proposed in [3] to optimize the weights
of a CNN for solving handwriting recognition problems with better accuracy. Although
CNNPSO was able to solve the MNIST dataset [55] with a classification accuracy of 95%
within four epochs, the processing time incurred was longer than that of a conventional
CNN. A hybrid of PSO and stochastic gradient descent (PSO-SGD) was proposed in [56] to
optimize the weights of a CNN by leveraging the explorative and exploitative behaviors
of PSO and SGD, respectively. The connectivity weights of CNN were initialized using
PSO, and then, a weight-training process was performed by SDG for a small number of
iterations. The performance of PSO-SGD was evaluated using image datasets known as
MNIST [55], CIFAR-10 [57], and SVHN [58]. Despite outperforming most contemporary
approaches in terms of classification accuracy, the computational efforts required by PSO-
SGD to solve these datasets remain unknown, and the network architecture of PSO-SGD
was not optimized. In [59], an indirect encoding strategy inspired by internet protocol (IP)
was used by IPPSO to represent each particle as a potential network architecture. Each
IPPSO particle can search for the optimal CNN network architecture within the predefined
boundary limits while preserving its population diversity. The CNN architectures obtained
by IPPSO have limited preset maximum lengths and are only used to solve three-image
datasets. The IP-based encoding strategy of IPPSO also required frequent conversion of
parameters between binary and decimal values. Thus, the particles encoded as CNNs
with deeper architectures tend to require longer computational time. In [60], psoCNN
was designed to automatically search for deep neural network architectures to solve given
classification problems. A direct encoding strategy and novel velocity update operator were
designed for psoCNN to search for the optimal CNN architectures with rapid convergence
speed. Similarly, a PSO-based architecture optimization (PSOAO) algorithm was proposed
in [61] to evolve the flexible convolutional auto-encoder (FCAE). An x-reference method
was used by PSOAO to determine the differences of particles with variable lengths before
updating the velocity and position of particles.

Genetic algorithm (GA) [32] and genetic programming (GP) [62] are two popular
MSAs inspired by Darwin’s theory of evolution and are widely used for CNN optimization.
A CNN was proposed in [63] to solve the detection problems. To address the premature
convergence issues of the backpropagation method, the potential weights of CNNs were
encoded into the chromosomes and a standard GA was then used to train these connection
weights. Despite producing a 92% success rate, the results obtained by this approach did not
significantly outperform the backpropagation method. In [64], a human action recognition
technique using GA and CNN was proposed. The initial weights of the CNN classifier
were optimized with GA by minimizing classification error. A gradient descent algorithm
was applied to further train the CNN classifier during the fitness evaluation of GA. Despite
having a good accuracy of 99.98% when classifying UCF50 dataset [65], this approach only
focused on the weight-updating process without optimizing the network architecture of
the CNN. A multi-node evolutionary neural network for deep learning (MENNDL) was
proposed in [66] by using GA to optimize the hyperparameters of CNN. MENNDL can
identify the visited regions of hyperparameter space based on the results obtained from
previous generation when solving the CIFAR-10 dataset [57]. A neural architecture design
method known as evolving deep convolutional neural network (EvoCNN) was proposed

Symmetry 2022, 14, 2323 7 of 35

in [67] to solve image classification problems. A variable-length gene encoding strategy
was adopted by EvoCNN to represent CNNs with different depths. The connection weights
of EvoCNN were also encoded with a novel representation scheme to prevent premature
convergence. A self-adaptive mutation neural architecture search algorithm (SaMuNet) was
designed in [68] to automatically design the optimal CNN architecture for a given problem
without requiring expert knowledge. Three types of mutation strategies (i.e., adding,
removing, and replacing) were introduced and selected adaptively by SaMuNet to evolve
CNN architectures with better exploration strengths. A selection scheme based on semi-
complete binary competition was introduced for SaMuNet to preserve the elite solutions
during optimization. A GP approach was proposed in [69] to automatically construct
CNN architectures and solve image classification problems with better accuracy. A direct
encoding scheme inspired by the Cartesian genetic program (CGP) [70–72] was employed
to represent the network structure and connectivity weights of CNN with better flexibility.
Although the GP approach has better performance than its compared methods in solving
CIFAR-10 datasets [57], excessive computational efforts were required.

Differential evolution (DE) is another popular MSA used to optimize the weights
or architectures of deep neural networks. A DE-based CNN (DECNN) for searching for
optimal CNN architectures with a refined version of the IP encoding strategy for was
proposed in [73]. The refined IP encoding strategy of DECNN has eliminated the constraint
of maximum network depth by representing a layer and its corresponding parameter
with a single 2-byte IP address. Meanwhile, the overall information of CNN model was
stored in the position vector of DE constructed by multiple two-byte IP address. Although
DECNN can produce significantly better classification accuracy than IPPSO when solving
six MNIS-variants datasets, both methods incurred high computational times due to the
indirect encoding strategy used for network architecture representation. Another DE-
based CNN (DE-CNN) was proposed in [74] for performing sentiment analysis in Arabic.
Each parameter to be optimized (i.e., filter sizes, number of neurons, number of filters
per convolutional filter sizes, initialization mode, and dropout rate) was stored in every
dimensional component of the individual DE-CNN solution. Although DE-CNN has better
performance than its peers in terms of classification accuracy and computational time, it
has limited flexibility in terms of the construction of network architectures. An improved
DE-based CNN (IDECNN) was proposed in [75] by incorporating a variable-length direct
encoding strategy to represent network information with better flexibility. Each solution of
IDECNN was stored with its unique parameters that represented the length of network,
parameters of each layer, and sequence of layers. A new refined strategy was also used by
IDECNN to effectively compute the differences between two encoded network structures
during optimization. IDECNN exhibited better performance than 20 peer algorithms in
terms of classification accuracy when solving eight image datasets.

2.4. Technical Contributions of Current Works

The research contributions of this paper can be summarized as follows:

• A new network architecture design method known as TLBOCNN is proposed to
automatically discover the optimal network architecture of CNNs (i.e., number of
layers, type of layers, kernel sizes, number of filters, and number of neurons) for image
classification without requiring rich expert domain knowledge. To the best of the
authors’ knowledge, no existing studies or only limited works have employed TLBO
for the optimization of CNN network architectures.

• TLBOCNN can accommodate the searching of CNN network architectures with flex-
ible size by incorporating the appropriate solution-encoding strategy and design
constraints for TLBO learners with variable lengths. These modifications not only
prevent the construction of CNNs with invalid network architectures but also preserve
the ability of TLBOCNN in discovering novel network architectures. A computation-
ally efficient fitness evaluation process is also incorporated into TLBOCNN to ensure
the practicability of the proposed network architecture design method.

Symmetry 2022, 14, 2323 8 of 35

• A new mainstream architecture computation scheme is introduced in the teacher phase
of TLBOCNN to determine the population mean by referring to all TLBO learners
encoded as CNNs with different network architectures. In order to maintain the
simplicity of TLBO, a new difference operator is first introduced in both the teacher
phase and the learner phase to compare the differences between existing learners
with unique network architectures, followed by the design of a new position update
operator used to search for the new TLBO learners.

• Extensive simulation studies are conducted to evaluate the feasibility of proposed
TLBOCNN in discovering the optimal network architectures of CNN automatically
for nine popular datasets. The optimal CNN network architectures constructed by
TLBOCNN are proven to have better classification performances than state-of-the-art
works when solving majority datasets.

3. Details of Proposed TLBOCNN
3.1. Functional Blocks Encoding Scheme

Generally, the optimal network architecture of CNN (in terms of network depth, layer
types, kernel size, number of filters, number of neuron, etc.) required to solve a particular
dataset is unknown beforehand because search for the best CNN network architecture
should be guided based on the problem characteristics. The incorporation of an effective
and efficient solution encoding scheme into TLBOCNN is therefore crucial to enable each
learner to have better flexibility in searching for novel network architectures of CNNs that
can solve different types of problems with desired performances.

A variable-length direct-solution encoding scheme known as the function blocks
encoding scheme is incorporated into the proposed TLBOCNN. The position vector of the
TLBOCNN learner is defined as a variable-length array to represent the potential CNN
with unique network architecture, where each of its dimensional component is encoded as
a CNN functional block along with its hyperparameters. Referring to Figure 1, three typical
CNN functional blocks known as convolutional layer, pooling layer, and fully connected
layer are considered when TLBOCNN is employed to automatically search for the optimal
network architecture of the CNN. A functional block with the layer type of convolutional
layer consists of hyperparameters, such as number of output filters and kernel sizes. For
both average and maximum pooling layers, the hyperparameters are strides and pooling
size. The number of neurons is included into the functional block assigned as a fully
connected layer. Figure 2 shows a CNN network architecture represented by a TLBOCNN
learner encoded with a list of functional blocks that consists of three convolutional layers,
two pooling layers, and two fully connected layers. During the fitness evaluation process,
the details of the functional block contained in each dimension of the TLBOCNN learner
are decoded and compiled into the corresponding CNN network architecture for training
and testing.

Depending on the types of functional block stored in each dimensional component
of TLBOCNN learners, the feasible search ranges of their hyperparameters are defined to
facilitate the search process of TLBOCNN within solution space. For convolutional (CV)
layer, the number of output filters (numF) and kernel sizes (KS) are bounded in the search
ranges of

[
numFminmax

]
and

[
KSminmax

]
, respectively. For both maximum pooling (MP) and

average pooling (AP) layers, the pooling size (i.e., kernel width × kernel height) and stride
size (i.e., stride width × stride height) are fixed at 3× 3 and 2× 2, respectively. For the fully
connected (FC) layer, the number of hidden neurons (numNeu) is defined in the search
range of

[
numNeumin, numNeumax]. Furthermore, the number of functional blocks (numB)

assigned to each TLBOCNN learner can vary between
[
numBmin, numBmax] to facilitate the

searching for CNNs with different network architectures (i.e., in terms of depths, types of
layers, etc.) when handling different problems. The feasible search ranges of all parameters
and hyperparameters considered by TLBOCNN for searching for the optimal network
architecture of a CNN are summarized in Table 1.

Symmetry 2022, 14, 2323 9 of 35

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 37

ranges of [𝑛𝑢𝑚𝐹𝑚𝑖𝑛𝑚𝑎𝑥
] and [𝐾𝑆𝑚𝑖𝑛𝑚𝑎𝑥

], respectively. For both maximum pooling (MP)

and average pooling (AP) layers, the pooling size (i.e., kernel width × kernel height) and

stride size (i.e., stride width × stride height) are fixed at 3 × 3 and 2 × 2, respectively.

For the fully connected (FC) layer, the number of hidden neurons (𝑛𝑢𝑚𝑁𝑒𝑢) is defined in

the search range of [𝑛𝑢𝑚𝑁𝑒𝑢𝑚𝑖𝑛 , 𝑛𝑢𝑚𝑁𝑒𝑢𝑚𝑎𝑥]. Furthermore, the number of functional

blocks (𝑛𝑢𝑚𝐵) assigned to each TLBOCNN learner can vary between
[𝑛𝑢𝑚𝐵𝑚𝑖𝑛 , 𝑛𝑢𝑚𝐵𝑚𝑎𝑥] to facilitate the searching for CNNs with different network archi-

tectures (i.e., in terms of depths, types of layers, etc.) when handling different problems.

The feasible search ranges of all parameters and hyperparameters considered by

TLBOCNN for searching for the optimal network architecture of a CNN are summarized

in Table 1.

Figure 2. Representation of a potential CNN network architecture by a TLBOCNN learner.

Table 1. Feasible search ranges of parameters and hyperparameters.

Type of Functional Block Hyperparameters Values

TLBOCNN learner Minimum number of functional blocks, 𝑛𝑢𝑚𝐵𝑚𝑖𝑛 3

 Maximum number of blocks, 𝑛𝑢𝑚𝐵𝑚𝑎𝑥 20

Convolutional (CV) Minimum number of filters, 𝑛𝑢𝑚𝐹𝑚𝑖𝑛 3

 Maximum number of filters, 𝑛𝑢𝑚𝐹𝑚𝑎𝑥 256

 Minimum kernel size, 𝐾𝑆𝑚𝑖𝑛 3 × 3

 Maximum kernel size, 𝐾𝑆𝑚𝑎𝑥 7 × 7

Maximum Pooling (MP) Pool size (i.e., kernel width × kernel height) 3 × 3

 Stride size (i.e., stride width × stride height) 2 × 2

Average Pooling (AP) Pool size (i.e., kernel width × kernel height) 3 × 3

 Stride size (i.e., stride width × stride height) 2 × 2

Fully Connected (FC) Minimum number of neurons, 𝑛𝑢𝑚𝑁𝑒𝑢𝑚𝑖𝑛 1

 Maximum number of neurons, 𝑛𝑢𝑚𝑁𝑒𝑢𝑚𝑎𝑥 300

Apart from the boundary constraints in Table 1, appropriate design constraints are

also introduced for TLBOCNN to prevent the construction of invalid CNN network ar-

chitectures without compromising its ability to discover the novel network architectures

for different datasets. These design constraints include: (a) The first functional block as-

signed to each learner must be a convolutional layer; (b) the last functional block must be

a fully connected layer, and the number of output neurons must equal to the number of

output classes; (c) the maximum number of pooling layers assigned to each learner is re-

stricted by sizes of input dataset. For instance, a maximum of three pooling layers is per-

missible for a CNN network architecture to handle input datasets with sizes of 28 × 28;

(d) a fully connected layer cannot be inserted between the feature extraction modules (i.e.,

convolutional and pooling layers) because it can cause an overfitting issue due to the tre-

mendous increase in trainable parameters in the CNN network architecture. If a fully con-

nected layer is generated between the convolutional or pooling layers, all functional

Figure 2. Representation of a potential CNN network architecture by a TLBOCNN learner.

Table 1. Feasible search ranges of parameters and hyperparameters.

Type of Functional Block Hyperparameters Values

TLBOCNN learner Minimum number of functional blocks, numBmin 3
Maximum number of blocks, numBmax 20

Convolutional (CV) Minimum number of filters, numFmin 3
Maximum number of filters, numFmax 256

Minimum kernel size, KSmin 3× 3
Maximum kernel size, KSmax 7× 7

Maximum Pooling (MP) Pool size (i.e., kernel width × kernel height) 3× 3
Stride size (i.e., stride width × stride height) 2× 2

Average Pooling (AP) Pool size (i.e., kernel width × kernel height) 3× 3
Stride size (i.e., stride width × stride height) 2× 2

Fully Connected (FC) Minimum number of neurons, numNeumin 1
Maximum number of neurons, numNeumax 300

Apart from the boundary constraints in Table 1, appropriate design constraints are also
introduced for TLBOCNN to prevent the construction of invalid CNN network architectures
without compromising its ability to discover the novel network architectures for different
datasets. These design constraints include: (a) The first functional block assigned to each
learner must be a convolutional layer; (b) the last functional block must be a fully connected
layer, and the number of output neurons must equal to the number of output classes;
(c) the maximum number of pooling layers assigned to each learner is restricted by sizes of
input dataset. For instance, a maximum of three pooling layers is permissible for a CNN
network architecture to handle input datasets with sizes of 28 × 28; (d) a fully connected
layer cannot be inserted between the feature extraction modules (i.e., convolutional and
pooling layers) because it can cause an overfitting issue due to the tremendous increase
in trainable parameters in the CNN network architecture. If a fully connected layer is
generated between the convolutional or pooling layers, all functional blocks after the
fully connected layer are converted into fully connected blocks with different numbers of
hidden neurons.

3.2. Population Initialization of TLBOCNN

An initial population with N learners that represents different CNN architectures
(in terms of network depth, layer types, kernel size, number of filters, number of neurons,
etc.) are randomly generated at beginning stage of TLBOCNN based on the function
block encoding scheme, boundary constraints, and design constraints. Define numBn
as the network depth of CNN corresponding to each nth learner that can be randomly
generated between

[
numBmin, numBmax] during the initialization process. A list variable

denoted as blocks_list with the size of numBn is also initialized as an empty list to record
the type of functional block assigned to each jth dimension of the TLBOCNN learner,

Symmetry 2022, 14, 2323 10 of 35

where j ∈ [1, numBn]. The first dimension (j = 1) and last dimension (j = numBn) of
blocks_list are assigned with the convolutional and fully connected blocks, respectively, to
ensure a valid CNN architecture is generated. Assume that mn is the dimension index of
blocks_list when a fully connected layer is first assigned, where mn ∈ [2, numBmax]. Once
a fully connected block is recorded in the j-th dimension of blocks_list where j = mn, the
subsequent dimensions of blocks_list with the indices of j ∈ [mn + 1, numBn − 1] are also
assigned as fully connected blocks to satisfy the design constraints.

The remaining dimensions of blocks_list with the indices of j ∈ [2, mn − 1] can be
randomly assigned with a convolutional block or pooling block. Let block_type ∈ [0, 1]
be a value that is randomly generated with uniform distribution. If block_type ≤ 0.5, a
convolutional block is assigned to the jth dimension of blocks_list. Otherwise, a pooling
block is assigned when block_type > 0.5. Notably, a rectified linear unit (ReLU) is used as
the activation function for all selected layers. Depending on the types of functional blocks
selected for each jth dimension of blocks_list, their corresponding hyperparameters are
also randomly generated during the initialization process. For a convolutional block, the
number of filters (numF) is randomly generated between numFmin and numFmax, whereas
its kernel size (KS) is randomly selected in the range of 3× 3 to 7× 7. For any jth dimension
of blocks_list assigned as a pooling block, a parameter of pooling_type ∈ [0, 1] is randomly
generated with uniform distribution to select the pooling type. An average pooling block
is chosen if pooling_type ≤ 0.5, whereas a maximum pooling block is considered when
pooling_type > 0.5. For fully connected blocks assigned in the blocks_list with indices
of j ∈ [mn, numBn − 1], their numbers of hidden neurons are randomly generated as
numNeu ∈

[
numNeumin, numNeumax]. Finally, the number of output neurons for the fully

connected block assigned in the last dimension of blocks_list is set equal to the numbers of
output classes of the dataset, denoted as numOut.

Algorithm 1 presents the population initialization process of TLBOCNN. For each
nth TLBOCNN learner, the functional block information of blocks_list will be stored in the
position vector of Xn.Blocks after completing the initialization process. The fitness of each
nth TLBOCNN learner (i.e., Xn.Blocks) is measured as classification accuracy, denoted as
Xn.Acc based on the fitness evaluation process that will be thoroughly explained later. The
teacher solution of TLBOCNN, i.e., Xteacher, is obtained by identifying the initial population
member with the best fitness value (i.e., highest classification accuracy).

3.3. Fitness Evaluation of TLBOCNN

Fitness evaluation is essential for MSAs to measure the quality of a candidate solution
when solving an optimization problem. For the proposed TLBOCNN that aims to search
for an optimal design of CNN architecture, the fitness value of each learner is measured
as the accuracy level of its corresponding CNN architecture when classifying the given
image datasets. The learners that can produce CNN architectures with higher classification
accuracies are more superior, and it will replace those with lower classification accuracies.
Algorithm 2 presents the pseudocodes used to perform fitness evaluation on the new
learners generated via the initialization, teacher phase, and learner phase of TLBOCNN.
The fitness evaluation of each nth TLBOCNN learner is divided into two major steps:
(a) training of the CNN model using training datasets and (b) evaluation of the trained
CNN model using validation datasets. Detailed mechanisms of these two major steps are
explained herein.

Define Datatrain as a training dataset used to train the CNN model represented by each
TLBOCNN learner; it has a size of |Datatrain|. The training process of CNN is performed
in multiple steps, Steptrain, by dividing |Datatrain| by a batch size number of batch_size
as follow:

Steptrain =
|Datatrain|
batch_size

(4)

Symmetry 2022, 14, 2323 11 of 35

Algorithm 1: Population Initialization

Input: N, numBmin, numBmax, numFmin, numFmax, KS, numNeumin, numNeumax, numOut
01: Initialize Xteacher.Blocks = ∅ and Xteacher.Acc = −In f ;
02: for n = 1 to N do
03: Randomly generate numBn ∈

[
numBmin, numBmax

]
and mn ∈ [2, numBmax − 1] for n-th learner;

04: Reset the blocks_list = ∅;
05: for j = 1 to numBn do
06: if j = 1 then
07: Assign blocks_list[j] with a convolutional block (CV). Randomly initialize numF between numFmin and

numFmax, as well as KS between 3× 3 to 7× 7;
08: else if j = numBn then
09: Assign blocks_list[j] with a fully− connected block (FC) and set numNeu as numOut;
10: else if m ≤ j ≤ numBn − 1 then
11: Assign blocks_list[j] with a fully− connected block (FC) and randomly initialize numNeu between

numNeumin and numNeumax;
12: else
13: Randomly generate block_type ∈ [0, 1];
14: if block_type ≤ 0.5 then
15: Assign blocks_list[j] with a convolutional block (CV). Randomly initialize numF

between numFmin and numFmax, as well as KS between 3× 3 to 7× 7;
16: else if block_type > 0.5 then
17: Randomly generate the pooling_type ∈ [0, 1];
18: if pooling_type ≤ 0.5 then
19: Assign blocks_list[j] with an average pooling block (AP), where the pool size and stride size are set as

3× 3 and 2× 2, respectively;
20: else
21: Assign blocks_list[j] with a maximum pooling block (MP), where the pool size and stride size are set

as 3× 3 and 2× 2, respectively.
22: end if
23: end if
24: end if
25: end for
26: Xn.Blocks← blocks_list ;
27: Perform fitness evaluation on Xn.Blocks to obtain Xn.Acc with Algorithm 2;
28: if Xn.Acc is better than Xteacher.Acc then /* Compare the accuracy of n-th learner and teacher */
29: Xteacher.Blocks← Xn.Blocks , Xteacher.Acc← Xn.Acc ; /* Update teacher */
30: end if
31: end for
Output: P = {X1, . . . , Xn, . . . , XN}

Algorithm 2: Fitness Evaluation

Input: Xn.Blocks, Datatrain, Datavalid, batch_size, etrain, `
01: Compile Xn.Blocks to a full-fledged CNN;
02: Calculate Steptrain and Stepvalid using Equations (4) and (6), respectively;
03: Initialize weights Θ = {θ1, θ2, . . .} of complied CNN model with He Normal initializer;
04: for e = 1 to etrain do /* Train the compiled CNN model for etrain epoch*/
05: for k = 1 to Steptrain do
06: Compute the f

(
θ, Datatrain,k

)
of CNN model based on its current Θ and Datatrain,k;

07: Update the new weights Θnew based on using Equation (5);
08: end for
09: end for
10: Initialize acc_list← ∅ with the size of Stepvalid;
11: for k = 1 to Stepvalid do /* Evaluate the compiled CNN model using validation dataset */
12: Perform classification on Datavalid,k with the compiled CNN model represented by Xn.Blocks;
13: Store the classification accuracy of complied CNN model on the Datavalid,k into acc_list[k];
14: end for
15: Calculate Xn.Acc of compiled CNN model represented by Xn.Blocks using Equation (7);
Output: Xn.Acc

Symmetry 2022, 14, 2323 12 of 35

To measure the fitness of each nth TLBOCNN learner, the functional block information
stored in position vector Xn.Blocks is decoded and compiled into a full-fledged CNN
model. The trainable weights contained in all convolutional layers and fully connected
layers of this CNN model are initialized using the He Normal weight initializer [20] and
stored into a set variable of Θ = {θ1, θ2, . . .}. The CNN model represented by each nth
learner is trained using the Adam optimizer [76] in a predefined epoch, etrain, based on
Steptrain batches of data from Datatrain. In each kth training step of the CNN model where
k = 1, . . . , Steptrain, the corresponding cross-entropy loss is calculated as f (Θ, Datatrain,k)
based on the current weight Θ and kth batch data Datatrain,k. The new weights are updated
as Θnew by deducting the current weights stored in Θ from the product of learning rate `
and gradient of cross-entropy loss ∇Θ f (Θ, Datatrain,k), i.e.,

Θnew ← Θ− `∇Θ f (Θ, Datatrain,k) (5)

After completing the training process, the fitness value of the trained CNN model rep-
resented by the nth learner is measured by computing its classification accuracy (i.e., Xn.Acc)
when handling the validation dataset denoted as Datavalid with a size of |Datavalid|. Simi-
larly, the evaluation of trained CNN model is performed with multiple steps, Stepvalid, by
dividing |Datavalid| with batch_size, where

Stepvalid =
|Datavalid|
batch_size

(6)

In each kth evaluation step of trained CNN model, its classification accuracy is cal-
culated based on the trained weights and kth batch data of Datavalid before storing this
value into the list variable denoted as acc_list. Notably, the value of classification accuracy
obtained by the trained CNN model in every kth evaluation step is different due to the
employment of different batch data. After all Stepvalid batch data stored in Datavalid are
evaluated, the mean classification accuracy of the trained CNN model is computed from
acc_list as Xn.Acc to indicate the fitness value of the nth learner, i.e.,

Xn.Acc =
∑

Stepvalid
k=1 acc_list[k]

Stepvalid
(7)

Evidently, the fitness evaluation process is considered the main bottleneck of the
proposed TLBOCNN because each learner represents a potential CNN model with unique
architecture that must be trained based on its current weights with Datatrain before its final
classification accuracy can be obtained from Datavalid. It is not computationally feasible to
perform full training on every potential CNN model with large training epoch numbers,
etrain, especially when it involves the population-based MSAs that require searching for the
optimal architecture design of a CNN in multiple iterations. This undesirable drawback
can be addressed by training each potential CNN model with a smaller etrain during fitness
evaluation. Although the final classification accuracy of a potential CNN model cannot be
measured accurately with a smaller etrain, the performance trends of all TLBOCNN learners
during fitness evaluation can be observed, and this becomes the main consideration in
assessing the quality of each learner. The potential CNN model represented by a TLBOCNN
learner is more likely to have good final classification accuracy if it can perform better in
several training epochs first. Full training with a higher etrain is only performed to measure
the final classification accuracy when the optimal design of CNN architecture is obtained
after the termination of TLBOCNN. Notably, dropout and batch normalization can be
added between the layers to prevent the overfitting issue [67].

Symmetry 2022, 14, 2323 13 of 35

3.4. Teacher Phase of TLBOCNN
3.4.1. Computation of Mainstream CNN Architecture

In the teacher phase of original TLBO, the population mean (i.e., Xmean) is calculated
using Equation (1) to describe the mainstream knowledge used to guide the population
search and to update the new solutions of learners. It is non-trivial to calculate the popula-
tion mean of TLBOCNN because the Xn.Blocks of each nth learner has different lengths
to represent a potential CNN model with unique architecture (in terms of network depth,
layer types, kernel size, number of filters, number of neurons, etc.). A novel mechanism is
introduced in the teacher phase of TLBOCNN to calculate the mainstream CNN architecture
based on functional block information encoded in all learners with variable length.

Figure 3 shows the mechanisms used to construct a mainstream CNN architecture
from the TLBOCNN population consisting of five learners (i.e., N = 5) that represents CNN
models with different architectures. Define Xn.Blocks[j] as functional block information
stored in the jth dimension of the nth TLBOCNN learner, where n = 1, . . . , N and j =
1, . . . , numBn. Let X f requent.Blocks[j] be a list variable used to record the most frequently
occurring functional block in the jth dimension of all learners, where j = 1, . . . , numB f requent

and numB f requent are the largest network depth in the current population, i.e.,

numB f requent = max(numBn|n = 1, . . . , N) (8)

For instance, the second and fourth learners of the TLBOCNN population shown
in Figure 3 have the largest network depth. Therefore, the total dimensional size of
X f requent.Blocks is set as numB f requent = 6. Let ICV,j, IAve,j, IMax,j, and IFC,j be the frequen-
cies of convolutional block, average pooling block, maximum pooling block, and fully
connected block occurring in the jth dimension, respectively, where j = 1, . . . , numB f requent.
For every jth dimension, the functional block with the highest frequency of occurrence
is assigned to X f requent.Blocks[j]. As shown in Figure 3, the average pooling block has
the highest frequency of occurrence of IAve,j = 2 for j = 4, whereas the fully connected
block appears most frequently at j = 5 with IFC,j = 4. Therefore, the average pooling
block and fully connected block are assigned to X f requent.Blocks[4] and X f requent.Blocks[5],
respectively. For any jth dimension with more than one functional block appears with the
highest frequency, such as IMax,j = ICV,j = 2 for j = 2. As shown in Figure 3, random
selection is performed to choose one of these most frequently appearing functional blocks
for the corresponding component of X f requent.Blocks[j]. Referring to X f requent.Blocks, the
mainstream CNN architecture used for guiding the population search of TLBOCNN is
then derived as Xmean.Blocks. Suppose that numBmean is the network depth of mainstream
CNN architecture represented by Xmean.Blocks and that it is calculated as:

numBmean = round

(
∑N

n=1 numBn

N

)
(9)

where numBn is the network depth of the CNN model represented by the nth TLBOCNN
learner via Xn.Blocks; round(·) is a rounding operator. According to Equations (8) and (9),
numBmean ≤ numB f requent. The mainstream CNN architecture of Xmean.Blocks is obtained
by extracting the first numBmean elements from X f requent.Blocks, i.e.,:

Xmean.Blocks[j] = X f requent.Blocks[j], for j = 1, . . . , numBmean (10)

Apart from the type of functional block to be assigned in every jth dimension of
mainstream CNN architecture, i.e., Xmean.Blocks[j], the hyperparameters of the selected
functional block can also be calculated with the proposed mechanism. Supposing that a

Symmetry 2022, 14, 2323 14 of 35

convolutional block is assigned to Xmean.Blocks[j], the corresponding numbers of output
filters (i.e., numFmean

j) and kernel size (i.e., KSmean
j) are calculated as:

numFmean
j = round

∑
ICV,j
iCV,j=1 numFiCV,j ,j

ICV,j

 (11)

KSmean
j = round

∑
ICV,j
iCV,j=1 KSiCV,j ,j

ICV,j

 (12)

where iCV,j = 1, . . . , ICV,j refers to the index of a learner that is assigned as a convolutional
block in the jth dimension; ICV,j is the frequency of convolutional blocks occurring in the
j-th dimension. Meanwhile, if maximum pooling block or average pooling block is assigned
to Xmean.Blocks[j], their pool size and stride size are set as 3× 3 and 2× 2, respectively,
according to Table 1. Finally, if a fully connected block is assigned to Xmean.Blocks[j], the
corresponding numbers of hidden neurons numNeumean

j are calculated as:

numNeumean
j = round

∑
IFC,j
iFC,j=1 numNeuiFC,j ,j

IFC,j

 (13)

where iFC,j = 1, . . . , IFC,j refers to the index of learner that is assigned as fully connected
block in the j th dimension; IFC,j is the frequency of the fully connected block occurring
in the jth dimension. To satisfy the design constraints mentioned, the first (i.e., j = 1)
and last (i.e., j = numBmean) blocks of mainstream CNN architecture are assigned to
the convolutional and fully connected blocks, respectively. Furthermore, the number of
output neurons assigned to the last fully connected block of mainstream CNN architecture
in Xmean.Blocks[numBmean] is set equal to the numbers of output classes of datasets, i.e.,
numNuemean

numBmean = numOut. The procedures used to generate the mainstream CNN
architecture are summarized in Algorithm 3.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 37

Figure 3. Mechanisms used to construct mainstream CNN architecture of TLBOCNN

with N = 5.

3.4.2. Computation of Differences between Two Learners

For the teacher phase in the original TLBO described in Equation (2), a new solution

𝑋𝑛
𝑛𝑒𝑤 of each nth learner is updated based on the differences between the teacher solution

𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟and the mainstream knowledge of population 𝑋𝑚𝑒𝑎𝑛 . It is not trivial to determine

the differences between CNN models represented by the teacher solution (i.e.,

𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . 𝐵𝑙𝑜𝑐𝑘𝑠) and mainstream CNN architecture (i.e., 𝑋𝑚𝑒𝑎𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠) of TLBOCNN be-

cause they tend to have different network architectures (in terms of network depth, layer

types, kernel size, number of filters, number of neurons, etc.). Furthermore, the infor-

mation encoded in each dimension of 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . 𝐵𝑙𝑜𝑐𝑘𝑠 and 𝑋𝑚𝑒𝑎𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠 refers to the

functional block types (i.e., CV, MP, AP, and FC), which cannot be directly subtracted

from each other.

Figure 4 illustrates the overall mechanisms used to measure the differences between

CNN architectures represented by two TLBOCNN learners with variable lengths. Define

L1 and L2 as two temporary list variables used to store the functional block information

of 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 . 𝐵𝑙𝑜𝑐𝑘𝑠 and 𝑋𝑚𝑒𝑎𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠, respectively. The feature extraction module (i.e.,

FE) and fully connected layers (i.e., FC) of L1 and L2 are compared separately to ensure

that the new CNN architectures obtained can comply to design constraints, i.e., the fully

connected block cannot be inserted between the convolutional and pooling blocks within

the feature extraction module. Let 𝐿𝐷𝑖𝑓𝑓 be a list variable used to store the differences

between L1 and L2 (i.e., 𝐿1 − 𝐿2); it has the total dimensional size of 𝑛𝑢𝑚𝐵𝐷𝑖𝑓𝑓 , calculated

as:

𝑛𝑢𝑚𝐵𝐷𝑖𝑓𝑓 = 𝑚𝑎𝑥(𝑛𝑢𝑚𝐵𝐿1
𝐹𝐸 , 𝑛𝑢𝑚𝐵𝐿2

𝐹𝐸) + 𝑚𝑎𝑥(𝑛𝑢𝑚𝐵𝐿1
𝐹𝐶 , 𝑛𝑢𝑚𝐵𝐿2

𝐹𝐶) (14)

where 𝑛𝑢𝑚𝐵𝐿1
𝐹𝐸 and 𝑛𝑢𝑚𝐵𝐿2

𝐹𝐸 represent the total numbers of convolutional and pooling

layers encoded in the feature extractor modules of L1 and L2, respectively, and 𝑛𝑢𝑚𝐵𝐿1
𝐹𝐶

and 𝑛𝑢𝑚𝐵𝐿2
𝐹𝐶 represent the total numbers of fully connected layers encoded in L1 and L2,

Figure 3. Mechanisms used to construct mainstream CNN architecture of TLBOCNN with N = 5.

Symmetry 2022, 14, 2323 15 of 35

Algorithm 3: Computation of Mainstream CNN Architecture

Input: P = {X1, . . . , Xn, . . . , XN}, N, numOut
01: Calculate numB f requent using Equation (8) and initialize X f requent.Blocks← ∅ ;
02: for j = 1 to numB f requent do
03: Calculate ICV,j, IAve,j, IMax,j and IFC,j;
04: if more than one functional block has highest frequency of occurrence do
05: Randomly select one of these functional blocks and assign to X f requent.Blocks[j];
06: else
07: Assign the functional block with highest frequency of occurrence to X f requent.Blocks[j];
08: end if
09: end for
10: Calculate numBmean using Equation (9) and initialize Xmean.Blocks← ∅ ;
11: for j = 1 to numBmean do
12: if j = 1 then
13: Assign Xmean.Blocks[j] with convolutional block (CV);
14: Calculate numFmean

j and KSmean
j using Equations (11) and (12), respectively;

15: else if j = numBmean do
16: Assign Xmean.Blocks[j] with fully-connected block (FC);
17: Assign numNeumean

j as numOut;
18: else if j > 1 and j < numBmean − 1 then
19: if ICV,j has the highest count then
20: Assign Xmean.Blocks[j] with convolutional block (CV);
21: Calculate numFmean

j and KSmean
j using Equations (11) and (12), respectively;

22: else if IMax,j has the highest count then
23: Assign Xmean.Blocks[j] with maximum pooling block (MP);
24: Set the pool size and stride size as 3× 3 and 2× 2, respectively;
25: else if IAve,j has the highest count then
26: Assign Xmean.Blocks[j] with average pooling block (AP);
27: Set the pool size and stride size as 3× 3 and 2× 2, respectively;
28: else if IFC,j has the highest count then
29: Assign Xmean.Blocks[j] with fully-connected block (FC);
30: Calculate numNeumean

j using Equation (13);
31: end if
32: end if
33: end for
Output: Xmean.Blocks

3.4.2. Computation of Differences between Two Learners

For the teacher phase in the original TLBO described in Equation (2), a new solution
Xnew

n of each nth learner is updated based on the differences between the teacher solution
Xteacher and the mainstream knowledge of population Xmean. It is not trivial to determine the
differences between CNN models represented by the teacher solution (i.e., Xteacher.Blocks)
and mainstream CNN architecture (i.e., Xmean.Blocks) of TLBOCNN because they tend to
have different network architectures (in terms of network depth, layer types, kernel size,
number of filters, number of neurons, etc.). Furthermore, the information encoded in each
dimension of Xteacher.Blocks and Xmean.Blocks refers to the functional block types (i.e., CV,
MP, AP, and FC), which cannot be directly subtracted from each other.

Figure 4 illustrates the overall mechanisms used to measure the differences between
CNN architectures represented by two TLBOCNN learners with variable lengths. Define
L1 and L2 as two temporary list variables used to store the functional block information of
Xteacher.Blocks and Xmean.Blocks, respectively. The feature extraction module (i.e., FE) and
fully connected layers (i.e., FC) of L1 and L2 are compared separately to ensure that the
new CNN architectures obtained can comply to design constraints, i.e., the fully connected
block cannot be inserted between the convolutional and pooling blocks within the feature

Symmetry 2022, 14, 2323 16 of 35

extraction module. Let LDi f f be a list variable used to store the differences between L1 and
L2 (i.e., L1− L2); it has the total dimensional size of numBDi f f , calculated as:

numBDi f f = max(numBFE
L1 , numBFE

L2) + max(numBFC
L1 , numBFC

L2) (14)

where numBFE
L1 and numBFE

L2 represent the total numbers of convolutional and pooling
layers encoded in the feature extractor modules of L1 and L2, respectively, and numBFC

L1
and numBFC

L2 represent the total numbers of fully connected layers encoded in L1 and
L2, respectively. For instance, Figure 4 shows that learner L1 has five convolutional and
pooling layers in its feature extractor module (i.e., numBFE

L1 = 5) and two fully connected
layers (i.e., numBFC

L1 = 2). Meanwhile, learner L2 has four convolutional and pooling layers
in its feature extractor module (i.e., numBFE

L2 = 4) and three fully connected layers (i.e.,
numBFC

L2 = 3). Therefore, the list variable LDi f f used to store the differences between L1
and L2 has the total dimensional size of numBDi f f = 8 according to Equation (14).

The following guidelines are used to compare the differences between CNN architec-
tures encoded in every jth dimension of learners L1 and L2 and stored in LDi f f [j], where
j = 1, . . . , numBDi f f . When both L1 and L2 have different functional block types encoded
in the jth dimension, the information contained in L1[j] (i.e., functional block type and
its hyperparameters) are extracted and assigned to LDi f f [j]. For instance, if L1[j] = ‘CV′

and L2[j] = ‘AP′, then the jth dimension of LDi f f is assigned with the convolutional block,
i.e., LDi f f [j] = ‘CV′, along with its hyperparameters. LDi f f [j] is assigned as ‘0’ when both
L1 and L2 have same functional block type encoded in the jth dimension, implying that
there are no changes in functional block in this dimension when it is used to calculate the
CNN architecture of a new learner. When comparing L1 and L2 with different network
depths, it is possible for L1 to have more functional blocks than L2 or vice versa. For any
jth dimension, if L1 has more functional blocks than L2 in the feature selector module
or the fully connected layer, LDi f f [j] is assigned as ‘+B’ to imply that a new functional
block should be added by referring to that of L1[j], where B can refer to CV, AP, MP, or
FC blocks. On the other hand, LDi f f [j] is assigned as ‘-’ to indicate the removal of an
existing functional block when L1 has lesser functional block than L2 in the jth dimension
of the feature selector module or the fully connected layer. The overall procedures used to
compare the differences between L1 and L2 are summarized in Algorithm 4.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 37

respectively. For instance, Figure 4 shows that learner L1 has five convolutional and pool-

ing layers in its feature extractor module (i.e., 𝑛𝑢𝑚𝐵𝐿1
𝐹𝐸 = 5) and two fully connected lay-

ers (i.e., 𝑛𝑢𝑚𝐵𝐿1
𝐹𝐶 = 2). Meanwhile, learner L2 has four convolutional and pooling layers

in its feature extractor module (i.e., 𝑛𝑢𝑚𝐵𝐿2
𝐹𝐸 = 4) and three fully connected layers (i.e.,

𝑛𝑢𝑚𝐵𝐿2
𝐹𝐶 = 3). Therefore, the list variable 𝐿𝐷𝑖𝑓𝑓 used to store the differences between L1

and L2 has the total dimensional size of 𝑛𝑢𝑚𝐵𝐷𝑖𝑓𝑓 = 8 according to Equation (14).

The following guidelines are used to compare the differences between CNN archi-

tectures encoded in every jth dimension of learners L1 and L2 and stored in 𝐿𝐷𝑖𝑓𝑓[𝑗],where

𝑗 = 1, . . . , 𝑛𝑢𝑚𝐵𝐷𝑖𝑓𝑓 . When both L1 and L2 have different functional block types encoded

in the jth dimension, the information contained in 𝐿1[𝑗] (i.e., functional block type and

its hyperparameters) are extracted and assigned to 𝐿𝐷𝑖𝑓𝑓[𝑗]. For instance, if 𝐿1[𝑗] = ′𝐶𝑉′

and 𝐿2[𝑗] = ′𝐴𝑃′ , then the jth dimension of 𝐿𝐷𝑖𝑓𝑓 is assigned with the convolutional

block, i.e., 𝐿𝐷𝑖𝑓𝑓[𝑗] = ′𝐶𝑉′ , along with its hyperparameters. 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned as ‘0’

when both L1 and L2 have same functional block type encoded in the jth dimension, im-

plying that there are no changes in functional block in this dimension when it is used to

calculate the CNN architecture of a new learner. When comparing L1 and L2 with differ-

ent network depths, it is possible for L1 to have more functional blocks than L2 or vice

versa. For any jth dimension, if L1 has more functional blocks than L2 in the feature selec-

tor module or the fully connected layer, 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned as ‘+B’ to imply that a new

functional block should be added by referring to that of 𝐿1[𝑗], where B can refer to CV,

AP, MP, or FC blocks. On the other hand, 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned as ‘-’ to indicate the removal

of an existing functional block when L1 has lesser functional block than L2 in the jth di-

mension of the feature selector module or the fully connected layer. The overall proce-

dures used to compare the differences between L1 and L2 are summarized in Algorithm

4.

Figure 4. Graphical illustration of mechanisms used to calculate the differences between two learn-

ers, L1 and L2, that represent CNN models with different network architectures.

Figure 4. Graphical illustration of mechanisms used to calculate the differences between two learners,
L1 and L2, that represent CNN models with different network architectures.

Symmetry 2022, 14, 2323 17 of 35

Algorithm 4: Calculate Differences Between L1 and L2

Input: L1, L2
01: Separate the FC layers encoded in L1 and L2 from the FE module as shown in Figure 4.
02: Calculate numBFE

L1 and numBFC
L1 from L1 as well as numBFC

L2 and numBFC
L2 from L2;

03: Calculate numBDi f f using Equation (14) and initialize LDi f f ← ∅ ;;
04: for j= 1 to numBDi f f do
05: if L1[j] has different functional block with L2[j] then
06: Assign LDi f f [j] with the functional block information of L1[j];
07: else if L1[j] has same functional block with L2[j] then
08: Assign LDi f f [j] with ‘0’ to indicate no changes of functional block;
09: else if L1[j] has functional block and L2[j] has no functional block then
10: Assign LDi f f [j] with ‘ + B’, where B refers to the functional block information obtained from L1[j];
11: else if L1[j] has no functional block and L2[j] has functional block then
12: Assign LDi f f [j] with ‘-’ to indicate the removal of functional block;
13: end if
14: end for
Output: LDi f f

3.4.3. Computation of New Learner

Given the difference LDi f f obtained between Xteacher.Blocks and Xmean.Blocks from
Algorithm 4, a new learner with CNN representation of Xnew

n .Blocks is calculated for every
nth TLBOCNN learner with a CNN representation of Xn.Blocks. The position update
mechanism of the original TLBO stated in Equation (2) is not applicable to calculating the
new Xnew

n .Blocks from LDi f f and Xn.Blocks due to their different network depths and the
infeasibility of direct subtraction between functional blocks. Figure 5 illustrates the overall
mechanisms used to calculate the new solution of n-th learner (i.e., Xnew

n .Blocks) based
on its current solution (i.e., Xn.Blocks) and the differences between teacher solution and
population mean (i.e., LDi f f). Similarly, the feature extraction module (i.e., FE) and fully
connected layers (i.e., FC) of LDi f f and Xn.Blocks are compared independently to ensure
the new CNN architectures obtained in Xnew

n .Blocks can comply to design constraint, i.e., a
fully connected block cannot be inserted between the convolutional and pooling blocks
within feature extraction module. Define numBnew,max

n as the maximum dimensional size
of Xnew

n .Blocks and it is calculated as:

numBnew,max
n = max

(
numBFE

Di f f , numBFE
n

)
+ max

(
umBFC

Di f f , numBFC
n

)
(15)

where numBFE
Di f f and numBFE

n are the total numbers of convolutional and pooling layers

encoded in LDi f f and Xn.Blocks, respectively; numBFC
Di f f and numBFC

n are the total numbers

of fully connected layers encoded in LDi f f and Xn.Blocks, respectively.
The following guidelines are used to determine the functional block information as-

signed to each jth dimension of Xnew
n .Blocks by comparing those of LDi f f and Xn.Blocks,

where j = 1, . . . , numBnew,max
n . If LDi f f [j] is assigned as ‘0’ and Xn.Blocks[j] is not empty,

then Xnew
n .Blocks[j] can inherit the functional block and hyperparameters of Xnew

n .Blocks[j].
For instance, if LDi f f [j] = 0 and Xn.Blocks[j] = ‘CV′, then the jth dimension of Xnew

n .Blocks
is assigned as a convolutional block, i.e., Xnew

n .Blocks[j] = ‘CV′ along with its hyperparam-
eters. On the other hand, Xnew

n .Blocks[j] is assigned as an empty value if LDi f f [j] is assigned
as ‘0’ and Xn.Blocks[j] is empty. If LDi f f [j] is assigned as “-”, then Xnew

n .Blocks[j] is also as-
signed as an empty value regardless of the presence of any functional block in Xn.Blocks[j].
When LDi f f [j] is assigned “+B” where B can refer to the functional blocks of Conv, AP, MP,
or FC, Xnew

n .Blocks[j] is added with a new functional block as specified in B regardless of
the presence of any functional block in Xn.Blocks[j]. For instance, if LDi f f [j] = ‘ + AP′ and
Xn.Blocks[j] is an empty value, then an average pooling block is added to Xnew

n .Blocks[j]. It
is also notable that Xnew

n .Blocks[j] always refers to the functional block assigned in LDi f f [j]
without considering the presence of any functional block in Xn.Blocks[j]. On the other

Symmetry 2022, 14, 2323 18 of 35

hand, Xnew
n .Blocks[j] only refers to the functional block of Xn.Blocks[j] if LDi f f [j] is an empty

value. Algorithm 5 presents the pseudocode used to calculate Xnew
n .Blocks based on LDi f f

and Xn.Blocks. For any Xnew
n .Blocks[j] assigned with an empty value in the jth dimension,

it implies the absence of functional block information and can be eliminated. The numbers
of AP and MP blocks contained in Xnew

n .Blocks must be adjusted based on the input sizes of
datasets. Excessive pooling layers must be removed from Xnew

n .Blocks one by one starting
from the last layer if the new solution of the nth learner is found to have more pooling
layers than allowed by the sizes of input datasets. Therefore, the actual dimensional size
of Xnew

n .Blocks (i.e., numBnew,actual
n) can be smaller than that of numBnew,max

n obtained from
Equation (15) after these post-processing processes.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 37

Figure 5. Mechanisms used to calculate 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 based on 𝐿𝐷𝑖𝑓𝑓 and 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠.

The following guidelines are used to determine the functional block information as-

signed to each jth dimension of 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 by comparing those of 𝐿𝐷𝑖𝑓𝑓and 𝑋𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠,

where 𝑗 = 1, . . . , 𝑛𝑢𝑚𝐵𝑛
𝑛𝑒𝑤,𝑚𝑎𝑥 . If 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned as ‘0’ and 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is not

empty, then 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] can inherit the functional block and hyperparameters of

𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗]. For instance, if 𝐿𝐷𝑖𝑓𝑓[𝑗] = 0 and 𝑋𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] = ′𝐶𝑉′, then the jth dimen-

sion of 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 is assigned as a convolutional block, i.e., 𝑋𝑛

𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] = ′𝐶𝑉′

along with its hyperparameters. On the other hand, 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is assigned as an

empty value if 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned as ‘0’ and 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is empty. If 𝐿𝐷𝑖𝑓𝑓[𝑗] is as-

signed as “-”, then 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is also assigned as an empty value regardless of the

presence of any functional block in 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗]. When 𝐿𝐷𝑖𝑓𝑓[𝑗] is assigned “+B” where

B can refer to the functional blocks of Conv, AP, MP, or FC, 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is added with

a new functional block as specified in B regardless of the presence of any functional block

in 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗]. For instance, if 𝐿𝐷𝑖𝑓𝑓[𝑗] = ′ + 𝐴𝑃′ and 𝑋𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] is an empty value,

then an average pooling block is added to 𝑋𝑛
𝑛𝑒𝑤. 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] . It is also notable that

𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗]always refers to the functional block assigned in 𝐿𝐷𝑖𝑓𝑓[𝑗] without consid-

ering the presence of any functional block in 𝑋𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] . On the other hand,

𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] only refers to the functional block of 𝑋𝑛 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] if 𝐿𝐷𝑖𝑓𝑓[𝑗] is an empty

value. Algorithm 5 presents the pseudocode used to calculate 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 based on

𝐿𝐷𝑖𝑓𝑓 and 𝑋𝑛. 𝐵𝑙𝑜𝑐𝑘𝑠. For any 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠[𝑗] assigned with an empty value in the jth di-

mension, it implies the absence of functional block information and can be eliminated. The

numbers of AP and MP blocks contained in 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 must be adjusted based on the

input sizes of datasets. Excessive pooling layers must be removed from 𝑋𝑛
𝑛𝑒𝑤 . 𝐵𝑙𝑜𝑐𝑘𝑠 one

by one starting from the last layer if the new solution of the nth learner is found to have

more pooling layers than allowed by the sizes of input datasets. Therefore, the actual di-

mensional size of 𝑋𝑛
𝑛𝑒𝑤. 𝐵𝑙𝑜𝑐𝑘𝑠 (i.e., 𝑛𝑢𝑚𝐵𝑛

𝑛𝑒𝑤,𝑎𝑐𝑡𝑢𝑎𝑙) can be smaller than that of

𝑛𝑢𝑚𝐵𝑛
𝑛𝑒𝑤,𝑚𝑎𝑥 obtained from Equation (15) after these post-processing processes.

Figure 5. Mechanisms used to calculate Xnew
n .Blocks based on LDi f f and Xn.Blocks.

Algorithm 5: Calculate New Solution Based on LDi f f and Xn.Blocks

Input: Functional block information encoded in LDi f f and Xn.Blocks
01: Separate the FC layers encoded in LDi f f and Xn.Blocks from the FE module as shown in Figure 5.
02: Calculate numBFE

Di f f and numBFC
Di f f from LDi f f as well as numBFC

n and numBFC
n from Xn.Blocks;

03: Calculate numBnew,max
n using Equation (15) and initialize Xnew

n .Blocks← ∅ ;
04: for j= 1 to numBnew,max

n do
05: if LDi f f [j] = ‘0’ and Xn.Blocks[j] has a functional block then
06: Assign Xnew

n .Blocks[j] with the functional block information of Xn.Blocks[j];
07: else if LDi f f [j] = ‘0’ and Xn.Blocks[j] has no functional block then
08: Assign Xnew

n .Blocks[j] with an empty value;
09: else ifLDi f f [j] = ‘− ’ then
10: Assign Xnew

n .Blocks[j] with an empty value;
11: else ifLDi f f [j] = ‘ + B’ then
12: Assign Xnew

n .Blocks[j] with the functional block information of B;
13: else if LDi f f [j] has a functional block then
14: Assign Xnew

n .Blocks[j] with the functional block information of LDi f f [j];
15: else if LDi f f [j] has no functional block and Xn.Blocks[j] has a functional block then
16: Assign Xnew

n .Blocks[j] with the functional block information of Xn.Blocks[j];
17: end if
18: end for
19: Eliminate the dimensional component of Xnew

n .Blocks assigned with an empty value;

20:
Reduce the pooling layers in Xnew

n .Blocks one by one starting from last layers if it is found to have more pooling layers than
that allowed by the sizes of input datasets.

Output: Xnew
n .Blocks;

Symmetry 2022, 14, 2323 19 of 35

The overall mechanisms of the teacher phase in TLBOCNN are described in Algorithm 6.
After obtaining the new solution of the nth learner (i.e., Xnew

n .Blocks) via the teacher phase,
the fitness of this new solution is evaluated using Algorithm 2 to measure its classifi-
cation accuracy Xnew

n .Acc, which is compared to that of Xn.Blocks (i.e., Xn.Acc). If the
CNN architecture represented by Xnew

n .Blocks has better fitness than Xn.Blocks does, i.e.,
Xnew

n .Acc > Xn.Acc, the new solution of the nth TLBOCNN learner can be used to replace
its current solution. Otherwise, the more inferior new solution is discarded and the original
solution of the nth learner is retained. A similar mechanism is used to determine if the new
solution obtained by every nth learner can be used to replace the teacher solution.

Algorithm 6: Teacher Phase of TLBOCNN

Input: P = {X1, . . . , Xn, . . . , XN}, N, Xteacher, Datatrain, Datavalid, batch_size, etrain, `, numOut
01: Compute Xmean.Blocks with Algorithm 3;
02: for n = 1 to N do
03: L1← Xteacher.Blocks , L2← Xmean.Blocks ;
04: Calculate LDi f f from L1 and L2 with Algorithm 4;
03: CalculateXnew

n .Blocks based on LDi f f and Xn.Blocks with Algorithm 5;
04: Perform fitness evaluation on Xnew

n .Blocks to obtain Xnew
n .Acc with Algorithm 2;

06: if Xnew
n .Acc is higher than Xn.Acc then

07: Xn.Blocks← Xnew
n .Blocks , Xn.Acc← Xnew

n .Acc ;
08: if Xnew

n .Acc is higher than Xteacher.Acc then
09: Xteacher.Blocks← Xnew

n .Blocks , Xteacher.Acc← Xnew
n .Acc ;

10: end if
11: end if
12: end for
Output: P = {X1, . . . , Xn, . . . , XN}, Xteacher

3.5. Learner Phase of TLBOCNN

The learner phase of TLBOCNN facilitates information exchange between the peer
learners to update their solutions. For each nth TLBOCNN learner with a CNN represen-
tation of Xn.Blocks, its new CNN architecture represented in Xnew

n .Blocks can be obtained
by interacting with a randomly selected pth peer learner with a CNN representation of
Xp.Blocks, where n 6= p. Similarly to the teacher phase, the original position update
mechanism used in the learner phase of TLBO as described in Equation (3) cannot be
used to determine the new Xnew

n .Blocks of the nth TLBOCNN learner from Xn.Blocks and
Xp.Blocks due to their different network depths and the infeasibility of direct subtraction
of functional blocks.

Algorithm 7 presents the overall mechanisms used to calculate new CNN represen-
tation Xnew

n .Blocks of every nth learner in the learner phase of TLBOCNN. Suppose that
Xn.Acc and Xp.Acc refer to the fitness values of the nth learner and pth learner in terms of
the classification accuracies achieved by their respective CNN models. If the CNN model
represented by the pth peer learner has higher classification accuracy than the nth learner
does, i.e., Xp.Acc > Xn.Acc, their CNN representations of Xp.Blocks and Xn.Blocks are
assigned to the temporary list variables of L1 and L2, respectively. On the other hand,
Xn.Blocks and Xp.Blocks are stored in L1 and L2, respectively, if the CNN model represented
by the pth peer learner does not have better classification accuracy than the nth learner,
i.e., Xp.Acc ≤ Xn.Acc. Referring to the functional block information encoded in both L1
and L2, their differences can be measured as LDi f f by using Algorithm 4. Given LDi f f and
Xn.Blocks, the new CNN representation of the nth learner can be obtained as Xnew

n .Blocks
with Algorithm 5. The fitness value of Xnew

n .Blocks is evaluated using Algorithm 2 to mea-
sure its classification accuracy Xnew

n .Acc and compared with that of Xn.Blocks (i.e., Xn.Acc).
If the new CNN architecture represented by Xnew

n .Blocks has better fitness than Xn.Blocks,
i.e., Xnew

n .Acc > Xn.Acc, the new solution of the nth TLBOCNN learner can be used to
replace its current solution. Otherwise, the more inferior new solution is discarded and the

Symmetry 2022, 14, 2323 20 of 35

original solution of the nth learner is retained. A similar mechanism is used to determine if
the new solution obtained by every nth learner can be used to replace the teacher solution.

Algorithm 7: Learner Phase of TLBOCNN

Input: P = {X1, . . . , Xn, . . . , XN}, N, Xteacher, Datatrain, Datavalid, batch_size, etrain, `, numOut
01: for n = 1 to N do
02: Randomly selected the pth peer learner from population, where p 6= n;
03: if Xp.Acc is higher than Xn.Acc then
04: L1← Xp.Blocks , L2← Xn.Blocks ;
05: else
06: L1← Xn.Blocks , L2← Xp.Blocks ;
07: end if
08: Calculate LDi f f from L1 and L2 with Algorithm 4;
09: Calculate Xnew

n .Blocks based on LDi f f and Xn.Blocks with Algorithm 5;
10: Perform fitness evaluation on Xnew

n .Blocks to obtain Xnew
n .Acc with Algorithm 2;

11: if Xnew
n .Acc is higher than Xn.Acc then

12: Xn.Blocks← Xnew
n .Blocks , Xn.Acc← Xnew

n .Acc ;
13: if Xnew

n .Acc is higher than Xteacher.Acc then
14: Xteacher.Blocks← Xnew

n .Blocks , Xteacher.Acc← Xnew
n .Acc ;

15: end if
16: end if
17: end for
Output: P = {X1, . . . , Xn, . . . , XN}, Xteacher

3.6. Overall Framework of TLBOCNN

The overall framework of the proposed TLBOCNN is presented in Algorithm 8,
where υ is a counter variable used to record the current iteration number and υmax is
the maximum iteration number used as terminate criterion of TLBOCNN. After loading
the training and validation datasets (i.e., Datatrain and Datavalid), the initial population of
TLBOCNN is generated using Algorithm 1. The new CNN architectures represented by
TLBOCNN learners are iteratively generated via the teacher phase (Algorithm 6) and the
learner phase (Algorithm 7) until the termination criterion of υ > υmax is satisfied. After
completing the search process, Xteacher is returned as the best solution found by TLBOCNN.
As explained in earlier subsection, the CNN architectures represented by all TLBOCNN
learners are trained with a small epoch number of etrain during the fitness evaluation process
(Algorithm 2) to prevent excessive computational overhead of the proposed algorithm, but
this approach cannot solve real-world applications with optimal performance. Therefore,
a full training process with larger epoch numbers of e f ull

train is performed on the CNN
architecture represented by Xteacher.Blocks after TLBOCNN is terminated. It is noteworthy
that the mechanisms of full training process are same as those of Algorithm 2 except that
a larger e f ull

train is used to ensure the optimal performance of CNN architecture obtained.
Dropout and batch normalization can be added between layers to address the overfitting
issue. At the end of the full training process, information related to the fully trained CNN
model represented by Xteacher.Blocks (i.e., architecture, classification accuracy, and number
of network parameters) is returned.

Symmetry 2022, 14, 2323 21 of 35

Algorithm 8: TLBOCNN

Input : Datatrain, Datavalid, batch_size, etrain, e f ull
train,,υ, υmax, N, numBmin, numBmax, numFmin, numFmax, KS, numNeumin,

numNeumax, numOut
01: Load training dataset Datatrain and validation dataset Datavalid from the directory;
02: Population initialization of P = {X1, . . . , Xn, . . . , XN} with Algorithm 1;
03: for υ = 1 to υmax do
04: Perform teacher phase to update P and Xteacher with Algorithm 6;
05: Perform learner phase to update P and Xteacher with Algorithm 7;
06: end for
07: Perform full training on the best CNN architecture of Xteacher.Blocks with e f ull

train using Algorithm 2;
08: Calculate the numbers of network parameters of fully-trained best CNN architecture represented by Xteacher.Blocks and

stored as Xteacher.Params;
Output : Xteacher

4. Experimental Design and Results Analysis
4.1. Image Datasets

In this section, the classification performance of the proposed TLBOCNN algorithm is
evaluated by using nine image datasets with different characteristics and compared to state-
of-the-art peer classifiers. The selected image datasets are Modified National Institute of
Standards and Technology (MNIST), MNIST with Rotated Digits (MNIST-RD), MNIST with
Random Background (MNIST-RB), MNIST with Background Images (MNIST-BI), MNIST
with Rotated Digits and Background Images (MNIST-RD+BI), Rectangles, Rectangles with
Images (Rectangles-I), Convex, and Fashion. These image datasets are publicly available at
http://www.iro.umontreal.ca/~lisa/icml2007data/ (accessed on 3 June 2022), while the
sample images of each selected dataset with a size of 28× 28 are illustrated in Figure 6.
Meanwhile, Table 2 summarizes the characteristics of nine selected image classification
benchmark datasets in terms of their input size, number of output classes, numbers of
training samples, and numbers of testing samples.

Symmetry 2022, 14, x FOR PEER REVIEW 23 of 37

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e)

Figure 6. Sample images from the image datasets of (a) MNIST, (b) MNIST-RD, (c) MNIST-RB, (d)
MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, (h) Convex, and (i) Fashion.

Table 2. Overview of the image datasets used for performance evaluation of TLBOCNN.

Dataset Input Size
No. of Output

Classes
No. of Training

Samples
No. of Testing

Samples
MNIST 28 × 28 × 1 10 50,000 10,000

MNIST-RD 28 × 28 × 1 10 12,000 50,000
MNIST-RB 28 × 28 × 1 10 12,000 50,000
MNIST-BI 28 × 28 × 1 10 12,000 50,000

MNIST-RD+BI 28 × 28 × 1 10 12,000 50,000
Rectangles 28 × 28 × 1 2 1200 50,000

Rectangles-I 28 × 28 × 1 2 12,000 50,000
Convex 28 × 28 × 1 2 8000 50,000
Fashion 28 × 28 × 1 10 60,000 10,000

MNIST [55] is a popular image dataset used to test classification performance of ma-
chine learning or deep learning algorithms. Different mechanisms, such as rotation, ran-
dom background noise, background images, and combinations of rotation and back-
ground images are introduced into original MNIST to produce MNIST-RD, MNIST-RB,
MNIST-BI, and MNIST-RD+BI, respectively [77]. These MNIST variants contain irrelevant
information and are useful for evaluating the generalization capability of classifiers. The
Rectangle dataset is a collection of grayscale images of rectangle outlines with different
sizes, and it aims to train the machine learning or deep learning models to recognize the
larger dimension of rectangles (i.e., height or width). Rectangle with Image (Rectangle-I)
dataset is more challenging because it requires the trained models to identity if the images
patches are located inside the rectangle or the background of images. The Convex dataset
is a collection of grayscale geometrical shape images, and the models are trained to recog-
nize if the geometrical shape is convex or non-convex. The Fashion dataset [78] contains
the grayscale image collection of fashion products that can be categorized into 10 output
classes: trousers, dresses, coats, top, bags, sneakers, sandals, ankle boots, pullovers, and
shirts. It is considered to be a more challenging dataset and is used to benchmark the
classification performances of machine learning and deep learning algorithms.

Figure 6. Sample images from the image datasets of (a) MNIST, (b) MNIST-RD, (c) MNIST-RB,
(d) MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, (h) Convex, and (i) Fashion.

http://www.iro.umontreal.ca/~lisa/icml2007data/

Symmetry 2022, 14, 2323 22 of 35

Table 2. Overview of the image datasets used for performance evaluation of TLBOCNN.

Dataset Input Size No. of Output
Classes

No. of Training
Samples

No. of Testing
Samples

MNIST 28× 28× 1 10 50,000 10,000
MNIST-RD 28× 28× 1 10 12,000 50,000
MNIST-RB 28× 28× 1 10 12,000 50,000
MNIST-BI 28× 28× 1 10 12,000 50,000

MNIST-RD+BI 28× 28× 1 10 12,000 50,000
Rectangles 28× 28× 1 2 1200 50,000

Rectangles-I 28× 28× 1 2 12,000 50,000
Convex 28× 28× 1 2 8000 50,000
Fashion 28× 28× 1 10 60,000 10,000

MNIST [55] is a popular image dataset used to test classification performance of
machine learning or deep learning algorithms. Different mechanisms, such as rotation,
random background noise, background images, and combinations of rotation and back-
ground images are introduced into original MNIST to produce MNIST-RD, MNIST-RB,
MNIST-BI, and MNIST-RD+BI, respectively [77]. These MNIST variants contain irrelevant
information and are useful for evaluating the generalization capability of classifiers. The
Rectangle dataset is a collection of grayscale images of rectangle outlines with different
sizes, and it aims to train the machine learning or deep learning models to recognize the
larger dimension of rectangles (i.e., height or width). Rectangle with Image (Rectangle-I)
dataset is more challenging because it requires the trained models to identity if the images
patches are located inside the rectangle or the background of images. The Convex dataset is
a collection of grayscale geometrical shape images, and the models are trained to recognize
if the geometrical shape is convex or non-convex. The Fashion dataset [78] contains the
grayscale image collection of fashion products that can be categorized into 10 output classes:
trousers, dresses, coats, top, bags, sneakers, sandals, ankle boots, pullovers, and shirts. It is
considered to be a more challenging dataset and is used to benchmark the classification
performances of machine learning and deep learning algorithms.

4.2. Selection of Peer Algorithms and Simulation Settings

The well-established machine learning and deep learning models that have solved
the nine selected datasets with promising classification accuracy are selected as the peer
algorithms of the proposed TLBOCNN. In particular, 13 peer algorithms—RandNet-2 [79],
LDANet-2 [79], CAE-1 [80], CAE-2 [80], ScatNet-2 [81], SVM+RBF [77], SVM+Poly [77],
PCANet-2 [79], NNet [77], SAA-3 [77], DBN-3 [77], EvoCNN [67], and psoCNN [60]—are
chosen for performance-comparative studies with TLBOCNN in solving eight datasets:
MNIST, MNIST-RD, MNIST-RB, MNIST-RI, MNIST-RD+BI, Rectangle, Rectangle-I, and
Convex. Another 15 peer algorithms compared to TLBOCNN for the Fashion dataset were
AlexNet [22], VGG [23], ResNet [25], SqueezeNet-200 [82], EvoCNN [67], psoCNN [60],
2C1P2F+Dropout, 2C1P2F, 3C2F, 3C1P2F + Dropout, GRU+SVM, GRU+SVM+Dropout,
HOG+SVM, MLP 256-128-64, and MLP 256-128-100. The results of all peer algorithms are
either extracted from the literature (e.g., https://github.com/zalandoresearch/fashion-
mnist (accessed on 3 June 2022)) or simulated based on the original source codes provided
by their authors. Notably, EvoCNN [67] and psoCNN [60] are the only metaheuristic-search-
based algorithms that share similar concepts with the proposed TLBOCNN, i.e., the best
network architectures for given datasets are searched iteratively until termination criteria
are satisfied. All parameter settings of TLBOCNN are presented in Table 3, and their values
are chosen based on the conventions of deep learning and MSA communities. Simulations
of TLBOCNN are conducted for 30 independent runs on a personal computer installed with
Python 3.8.5 and an Nvidia GeForce RTX 3090 to obtain statistically meaningful results.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Symmetry 2022, 14, 2323 23 of 35

Table 3. Parameter settings of proposed TLBOCNN for performance analyses.

Parameters Values

Maximum iteration number, υmax 10
Population size, N 20

Minimum total number of layers, nLayermin 3
Maximum total number of layers, nLayermax 20

Minimum number of filters of convolution layer, nFiltermin 3
Maximum number of filters of convolution layer, nFiltermax 256

Minimum kernel size of of convolution layer, nKSmin 3× 3
Maximum kernel size of of convolution layer, nKSmax 7× 7

Pool size of pooling layer 3× 3
Stride size of pooling layer 2× 2

Minimum number of neurons of fully connected layer, nNeumin 1
Maximum number of neurons of fully connected layer, nNeumax 300

Batch normalization Yes
Dropout rate 0.5

Number of epochs for learner evaluation during optimization, etrain 1
Number of epochs for full training of teacher solution, e f ull

train
100

4.3. Simulation Results
4.3.1. Performance Comparisons in Solving Eight Image Datasets

Table 4 presents the best classification accuracies produced by TLBOCNN and other
peer algorithms in solving the eight image datasets, MNIST, MNIST-RD, MNIST-RB, MNIST-
BI, MNIST-RD+BI, Rectangles, Rectangles-I, and Convex. Only the test sets of these eight
image datasets are used to obtain the best classification accuracies of all algorithms for
comparing their generalization capabilities. The compared algorithms that solve each
image dataset with the best and second-best results are indicated with boldfaced and
underlined fonts, respectively, as shown in Table 4. The signs of “(+)”, “(−)”, and “(=)”
are also defined in Table 4 to indicate if the best classification accuracy produced by the
proposed TLBOCNN in solving the test set of given image dataset is better than, worse
than, or equal to those of its peer algorithms, respectively. Given that the results of most
compared algorithms are extracted from the literature, “NA” in Table 4 implies that the
results of compared algorithms to solve particular image datasets are unavailable. The
performances of all compared algorithms in solving the eight selected image datasets are
summarized as w/t/l and #BCA in Table 4. In particular, w/t/l implies that the optimal
network architectures found by TLBOCNN outperform its peer algorithm in w datasets,
ties with its peer algorithm in t datasets, and underperforms its peer algorithm in l datasets.
Meanwhile, #BCA represents the number of best classification accuracy values produced
by each compared algorithm to solve the eight selected image datasets.

Table 4 reports the proposed TLBOCNN as producing the best classification accuracies
of 99.55%, 96.44%, 98.06%, 97.13%, 83.64%, 99.99%, 97.25%, and 97.84% when solving the
MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD+BI, Rectangles, Rectangles-I, and
Convex datasets, respectively. The mean classification accuracies produced by TLBOCNN
for these eight datasets are 99.52%, 95.73%, 97.72%, 96.96%, 81.14%, 99.94%, 95.72%, and
97.53%, respectively. From Table 4, the proposed TLBOCNN is best among all compared
algorithms due to its excellent capability to solve the eight selected image datasets with the
best accuracy. TLBOCNN is also observed to completely dominate RandNet-2. LDANet-2,
CAE-1, CAE-2, SVM+RBF, SVM+Poly, PCANet-2, NNet, SAA-3, DBN-3, and psoCNN when
solving these eight selected image datasets. Notably, the mean classification accuracies
produced by TLBOCNN can outperform the other 13 peer algorithms when solving five
out of eight image datasets (i.e., MNIST, MNIST-RD, MNIST-RB, MNIST-BI, and MNIST-
RD+BI). For the Rectangles dataset, the proposed TLBOCNN, EvoCNN, and ScatNet-2
have produced the same best classification accuracy of 99.99%, followed by psoCNN, with a
classification accuracy of 99.93%. Another interesting trend observed from Table 4 is that at
least one of the metaheuristic-search-based methods (i.e., proposed TLBOCNN, EvoCNN,

Symmetry 2022, 14, 2323 24 of 35

and psoCNN) has emerged as one of the top two performers in solving the eight selected
image datasets. These observations have verified the promising potential of applying
MSAs to automatically discover the optimal CNN network architectures and solve the
given problems with promising performance without human intervention. Furthermore,
the superior classification performances produced by the TLBOCNN compared to EvoCNN
and psoCNN in solving the majority of image datasets also imply that the proposed method
is incorporated with more robust search mechanisms that can achieve better balancing of
exploration and exploitation strengths in searching for more appropriate CNN network
architectures to solve the given datasets.

Table 4. Comparisons between TLBOCNN and its peers to solve the MNIST, MNIST-RD, MNIST-RB,
MNIST-BI, MNIST-RD+BI, Rectangles, Rectangles-I, and Convex datasets.

Algorithms MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-
RD+BI

RandNet-2 98.75% (+) 91.53% (+) 86.53% (+) 88.35% (+) 56.31% (+)
LDANet-2 98.95% (+) 92.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)

CAE-1 98.60% (+) 95.48% (+) 93.19% (+) 87.58% (+) 61.46% (+)
CAE-2 97.52% (+) 90.34% (+) 89.10% (+) 84.50% (+) 54.77% (+)

ScatNet-2 98.73% (+) 92.52% (+) 87.70% (+) 81.60% (+) 49.52% (+)
SVM+RBF 96.97% (+) 88.89% (+) 85.42% (+) 77.49% (+) 44.82% (+)
SVM+Poly 96.31% (+) 84.58% (+) 83.38% (+) 75.99% (+) 43.59% (+)
PCANet-2 98.60% (+) 91.48% (+) 93.15% (+) 88.45% (+) 64.14% (+)

NNet 95.31% (+) 81.89% (+) 79.96% (+) 72.59% (+) 37.84% (+)
SAA-3 96.54% (+) 89.70% (+) 88.72% (+) 77.00% (+) 48.07% (+)
DBN-3 96.89% (+) 89.70% (+) 93.27% (+) 83.69% (+) 52.61% (+)

EvoCNN 98.82% (+) 94.78% (+) 97.20% (+) 95.47% (+) 64.97% (+)
psoCNN 99.51% (+) 94.56% (+) 97.61% (+) 96.87% (+) 81.05% (+)

TLBOCNN (Best) 99.55% 96.44% 98.06% 97.13% 83.64%
TLBOCNN (Mean) 99.52% 95.73% 97.72% 96.96% 81.14%

Algorithms Rectangles Rectangles-I Convex w/t/l #BCA

RandNet-2 99.91% (+) 83.00% (+) 94.55% (+) 8/0/0 0
LDANet-2 99.86% (+) 83.80% (+) 92.78% (+) 8/0/0 0

CAE-1 99.86% (+) 83.80% (+) NA 7/0/0 0
CAE-2 98.46% (+) 78.00% (+) NA 7/0/0 0

ScatNet-2 99.99% (=) 91.98% (+) 93.50% (+) 7/1/0 0
SVM+RBF 97.85% (+) 75.96% (+) 80.87% (+) 8/0/0 0
SVM+Poly 97.85% (+) 75.95% (+) 80.18% (+) 8/0/0 0
PCANet-2 99.51% (+) 86.61% (+) 95.81% (+) 8/0/0 0

NNet 92.84% (+) 66.80% (+) 67.75% (+) 8/0/0 0
SAA-3 97.59% (+) 75.95% (+) 81.59% (+) 8/0/0 0
DBN-3 97.39% (+) 77.50% (+) 81.37% (+) 8/0/0 0

EvoCNN 99.99% (=) 94.97% (+) 95.18% (+) 7/1/0 1
psoCNN 99.93% (+) 96.03% (+) 97.74% (+) 8/0/0 0

TLBOCNN (Best) 99.99% 97.25% 97.84% NA 8
TLBOCNN (Mean) 99.94% 95.72% 97.53% NA NA

Apart from the quantitative analysis in Table 4, the performances of TLBOCNN in
solving the eight selected datasets are also analyzed qualitatively. Figure 7 presents the
boxplots indicating the distributions of test errors produced by TLBOCNN to solve these
eight image datasets. TLBOCNN is proven to be able to consistently solve all image
datasets with high classification accuracy. Another more balanced evaluation method used
to analyze the effectiveness of optimal CNN architectures found by TLBOCNN is based
on the receiver operating characteristic (ROC) curves and their corresponding area under
curve (AUC) values, as shown in Figure 8. These AUC-ROC curves are constructed based
on the true positive and false positive rates of TLBOCNN under different threshold settings
when solving the eight selected image datasets. The values of AUC range from 0 to 1,

Symmetry 2022, 14, 2323 25 of 35

where higher values imply better performance of the classifier. An ideal classifier has an
AUC value of 1, whereas a classifier that makes random guesses has an AUC value of
0.5. Meanwhile, a classifier with AUC value of 0 tends to suffer with severe failure in the
modelling process because it tends to predict a positive class as a negative class and vice
versa. Referring to the locations of ROC curves and their corresponding AUCs that have
values above 0.94, it is concluded that the optimal CNN network architectures found by
TLBOCNN have good capabilities to distinguish one class from other classes for all selected
image datasets.

To further analyze the performance difference among TLBOCNN and other peer
algorithms in solving the eight selected image datasets, a set of non-parametric statistical
analyses [83,84] was performed based on the results in Table 4. Both CAE-1 and CAE-2 are
excluded due to the absence of their results for solving the Convex dataset. A Wilcoxon
signed-rank test [84] is performed for pairwise comparison between TLBOCNN and other
11 peer algorithms to solve the eight image datasets. The pairwise comparison results of R+,
R−, p-value, and h-value are reported in Table 5. R+ and R− are the sum of ranks at which
TLBOCNN outperforms and underperforms each of its peers, respectively. The p-value
is a minimum significance level used to detect differences between two algorithms. The
algorithms with p-values smaller than a threshold value of α = 0.05 are significantly better
than their compared methods. The h-value is obtained based on p andvalues to determine
if TLBOCNN is significantly better (h = “+”), insignificant (h = “=”), or significantly worse
(h = “−”) than its peer algorithms at solving all eight selected image datasets. From
Table 5, it can be concluded that the proposed TLBOCNN is significantly better than all
peer algorithms, as indicated by the h-values of “+” for all pairwise comparisons.

Symmetry 2022, 14, x FOR PEER REVIEW 27 of 37

Table 5. Wilcoxon signed-rank test results between TLBOCNN and its peer algorithms.

TLBOCNN (Best) vs. 𝑹+ 𝑹− p-Value h-Value

RandNet-2 36.0 0.0 9.58 × 10−3 +

LDANet-2 36.0 0.0 9.58 × 10−3 +

ScatNet-2 28.0 0.0 1.42 × 10−2 +

SVM+RBF 36.0 0.0 9.58 × 10−3 +

SVM+Poly 36.0 0.0 9.58 × 10−3 +

PCANet-2 36.0 0.0 9.58 × 10−3 +

NNet 36.0 0.0 9.58 × 10−3 +

SAA-3 36.0 0.0 9.58 × 10−3 +

DBN-3 36.0 0.0 9.58 × 10−3 +

EvoCNN 28.0 0.0 1.23 × 10−2 +

psoCNN 36.0 0.0 5.34 × 10−3 +

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Test errors produced by TLBOCNN while solving (a) MNIST, (b) MNIST-RD, (c) MNIST-

RB, (d) MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, and (h) Convex datasets.
Figure 7. Test errors produced by TLBOCNN while solving (a) MNIST, (b) MNIST-RD, (c) MNIST-RB,
(d) MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, and (h) Convex datasets.

Symmetry 2022, 14, 2323 26 of 35

Table 5. Wilcoxon signed-rank test results between TLBOCNN and its peer algorithms.

TLBOCNN (Best) vs. R+ R− p-Value h-Value

RandNet-2 36.0 0.0 9.58 × 10−3 +
LDANet-2 36.0 0.0 9.58 × 10−3 +
ScatNet-2 28.0 0.0 1.42 × 10−2 +
SVM+RBF 36.0 0.0 9.58 × 10−3 +
SVM+Poly 36.0 0.0 9.58 × 10−3 +
PCANet-2 36.0 0.0 9.58 × 10−3 +

NNet 36.0 0.0 9.58 × 10−3 +
SAA-3 36.0 0.0 9.58 × 10−3 +
DBN-3 36.0 0.0 9.58 × 10−3 +

EvoCNN 28.0 0.0 1.23 × 10−2 +
psoCNN 36.0 0.0 5.34 × 10−3 +

A Friedman test [83,84] is performed as a multiple comparisons analysis to evaluate
the overall performance differences between TLBOCNN and the other 11 peer algorithms
when solving the eight image datasets. From Table 6, all compared algorithms are ranked
by the Friedman test based on their classification accuracies from best to worst, as follows:
TLBOCNN, psoCNN, EvoCNN, LDANet-2, PCANet-2, ScatNet-2, RandNet-2, DBN-3,
SAA-3, SVM+RBF, SVM+Poly, and NNet. Table 6 also reveals that the p-value of Friedman
test is lower than α = 0.05, implying significant global differences between all compared
algorithms. Three post hoc statistical procedures [83] known as Bonferroni–Dunn, Holm,
and Hochberg are then performed to further analyze the concrete differences by assigning
TLBOCNN as a control algorithm. The results of z-values, unadjusted p-values, and
adjusted p-values (APVs) are presented in Table 7. All post hoc procedures confirm the
significant improvement of TLBOCNN over NNet, SVM+Poly, SVM+RBF, SAA-3, and
DBN-3 because their APVs are smaller than α = 0.05. Holm and Hochberg procedures
verify the significant improvements of TLBOCNN over RandNet02 and ScatNet-2.

Table 6. Average ranking and associated p-values produced through Friedman test.

Algorithms Ranking Chi-Square Statistic p-Value

RandNet-2 6.0000

76.658654 0.00 × 10

LDANet-2 5.2500
ScatNet-2 5.8125
SVM+RBF 9.4375
SVM+Poly 10.5625
PCANet-2 5.2500

NNet 12.0000
SAA-3 9.0625
DBN-3 7.9375

EvoCNN 3.6250
psoCNN 2.5000

TLBOCNN (Best) 1.1250

Symmetry 2022, 14, 2323 27 of 35Symmetry 2022, 14, x FOR PEER REVIEW 28 of 37

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. AUR-ROC curves of TLBOCNN while solving (a) MNIST, (b) MNIST-RD, (c) MNIST-RB,

(d) MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, and (h) Convex datasets. The dot-

ted line is a baseline method to indicate a classifier with random prediction capability.

Figure 8. AUR-ROC curves of TLBOCNN while solving (a) MNIST, (b) MNIST-RD, (c) MNIST-RB,
(d) MNIST-BI, (e) MNIST-RD+BI, (f) Rectangles, (g) Rectangles-I, and (h) Convex datasets. The dotted
line is a baseline method to indicate a classifier with random prediction capability.

Symmetry 2022, 14, 2323 28 of 35

Table 7. Adjusted p-values of Bonferroni–Dunn, Holm, and Hochberg procedures.

TLBOCNN
(Best) vs. z Unadjusted

p
Bonferroni-Dunn

p Holm p Hochberg
p

NNet 6.03 × 10 0.00 × 10 0.00 × 10 0.00 × 10 0.00 × 10
SVM+Poly 5.23 × 10 0.00 × 10 2.00 × 10−6 2.00 × 10−6 2.00 × 10−6

SVM+RBF 4.61 × 10 4.00 × 10−6 4.40 × 10−5 3.60 × 10−5 3.60 × 10−5

SAA-3 4.40 × 10 1.10 × 10−5 1.17 × 10−4 8.50 × 10−5 8.50 × 10−5

DBN-3 3.78 × 10 1.58 × 10−4 1.73 × 10−3 1.10 × 10−3 1.10 × 10−3

RandNet-2 2.70 × 10 6.85 × 10−3 7.53 × 10−2 4.11 × 10−2 4.11 × 10−2

ScatNet-2 2.60 × 10 9.32 × 10−3 1.02 × 10−1 4.66 × 10−2 4.66 × 10−2

LDANet-2 2.29 × 10 2.21 × 10−2 2.43 × 10−1 8.85 × 10−2 6.64 × 10−2

PCANet-2 2.29 × 10 2.21 × 10−2 2.43 × 10−1 8.85 × 10−2 6.64 × 10−2

EvoCNN 1.07 × 10 2.82 × 10−1 3.11 × 10 5.65 × 10−1 4.46 × 10−1

psoCNN 7.63 × 10−1 4.46 × 10−1 4.90 × 10 5.65 × 10−1 4.45 × 10−1

4.3.2. Performance Comparisons in Solving Fashion Dataset

Table 8 compares the performances of all algorithms in solving the Fashion dataset in
terms of the classification accuracies and the network complexity represented by total num-
bers of parameters. Accordingly, ResNet-18, VGG-16, EvoCNN, psoCN, and TLBOCNN
have emerged as the top five performers in solving the Fashion dataset, with classification
accuracies of 94.90%, 93.50%, 94.53%, 92.81%, 92.72%, respectively. Similarly to Table 4, the
simulation results in Table 8 also verify the benefits of using MSAs to automatically search
for optimal CNN network architectures that can solve different classification problems
competitively without requiring rich expert domain knowledge.

Table 8. Classification accuracies and number of parameters produced by the proposed TLBOCNN
and other algorithms to solve Fashion dataset.

Algorithms Classification Accuracy # Parameters

Human Performance 1 83.50% NA
2C1P2F+Dropout 1 91.60% 3.27 M

2C1P 1 92.50% 100 k
3C2F 1 90.70% NA

3C1P2F+Dropout 1 92.60% 7.14 M
GRU+SVM 1 88.80% NA

GRU+SVM+Dropout 89.70% NA
HOG + SVM 1 92.60% NA
ResNet-18 [25] 94.90% 11 M
VGG-16 [23] 93.50% 26 M
AlexNet [22] 89.90% 60 M

SqueezeNet-200 [82] 90.00% 500 k
MLP 256-128-64 1 90.00% 41 k

MLP 256-128-100 1 88.33% 3 M
EvoCNN [67] 94.53% 6.68 M
psoCNN [60] 92.81% 2.58 M

TLBOCNN (Best) 92.72% 414 k
TLBOCNN (Mean) 92.54% 1.56 M

1 https://github.com/zalandoresearch/fashion-mnist (accessed on 3 June 2022).

Although the classification accuracy produced by the proposed TLBOCNN for the
Fashion dataset is slightly outperformed by those of ResNet-18, VGG-16, EvoCNN, and
psoCNN, their performance differences are marginal, i.e., only 2.18%, 0.78%, 1.81%, and
0.09%, respectively. On the other hand, the best network architecture found by TLBOCNN
to solve Fashion dataset only has 0.414 million parameters, and it is much less complicated
that those of ResNet-18, VGG-16, EvoCNN, and psoCNN, which have total network pa-
rameter numbers of 11 million (i.e., 25.57 times higher), 26 million (i.e., 62.80 times higher),

https://github.com/zalandoresearch/fashion-mnist

Symmetry 2022, 14, 2323 29 of 35

6.68 million (i.e., 16.14 times higher), and 2.58 million (6.23 times highers), respectively.
As compared to ResNet-18, VGG-16, EvoCNN, and psoCNN, the proposed TLBOCNN
has exhibited better capability to achieve proper tradeoffs between classification accuracy
and network complexity when designing optimal network architectures that can solve
any given classification problems. In recent years, there has been growing demand for
deploying deep learning algorithms in edge devices to solve various real-world applica-
tions, such as road condition monitoring systems, vehicle autopilot systems, and mobile
devices. Most of these edge devices have limited computational power and battery capacity.
Therefore, it is more desirable to deploy deep learning models that require lesser computing
power and energy supply. The proposed TLBOCNN is envisioned as a potential solution
for manufacturers given its promising capability to automatically search for less complex
network architectures with good performances.

Other peer algorithms, such as AlexNet, 3C1P2F+Dropout, 2C1P2F+Dropout, and
MLP 256-128-100, are observed to solve the Fashion dataset with worse accuracies than that
of TLBOCNN despite the four former methods having more complex network architectures
that consists of 60 million, 7.14 million, 3.27 million, and 3 million parameters, respectively.
An important fact is revelated through these observations, i.e., most existing deep learning
models designed with handcrafted approaches have excessive amounts of redundant pa-
rameters that tend to significantly increase the computational efforts without leading to
any notable performance improvement in models in terms of classification accuracy. On
the contrary, TLBOCNN can solve the Fashion dataset with competitive performance with-
out requiring any data augmentation techniques nor complicated network architectures.
Unlike most handcrafted deep learning networks that might feature feedback or parallel
connections, the optimal network architectures found by TLBOCNN are simpler because
the learners are initialized with smaller network architectures that can converge at a faster
rate. The promising classification accuracy of TLBOCNN also implies the possibility of
using smaller network architectures to achieve the state-of-the-art results.

4.3.3. Optimal Network Architecture Designed by TLBOCNN

The CNN network architectures designed by the proposed TLBOCNN to solve all
nine selected image datasets with the highest classification accuracies are presented in
Table 9. Accordingly, the optimal network architectures found by TLBOCNN to solve all
image datasets only consist of one fully connected layer. This observation is consistent with
recent findings in [85], i.e., a CNN network architecture with a single fully connected layer
may produce better results than those with multiple fully connected layers. Table 9 also
reveals that it is not always necessary to insert a pooling layer between two convolutional
layers to solve certain image datasets (e.g., MNIST-RF, MNIST-RB, MNIST-BI, MNIST-
RD+BI, Rectangle, and Convex) with the best classification accuracy. It is also possible to
construct a CNN network architecture that can solve a dataset with the lowest error without
incorporating any pooling layer, as shown in MNIST and MNIST-BI. In other words, the
search mechanisms incorporated into the proposed TLBOCNN can prevent the inclusion
of any redundant layers or parameters into network architectures if they are unable to
offer any meaningful network performance gains. This desirable characteristic has justified
the excellent capability of the proposed TLBOCNN to automatically discover the optimal
network architectures that can solve the given classification tasks without requiring any
domain knowledge of the problems.

Symmetry 2022, 14, 2323 30 of 35

Table 9. Best CNN architecture produced by TLBOCNN for solving nine datasets.

Dataset Layers Parameters

MNIST

Convolutional numF = 209, KS = 4× 4
Convolutional numF = 170, KS = 5× 5
Convolutional numF = 236, KS = 6× 6

Fully Connected numNeu = 10

MNIST-RD

Convolutional numF = 71, KS = 4× 4
Convolutional numF = 185, KS = 6× 6

Average Pooling Strides = 2× 2, Pool size = 3× 3
Convolutional numF = 215, KS = 6× 6

Fully Connected numNeu = 10

MNIST-RB

Convolutional numF = 230, KS = 3× 3
Max Pooling Strides = 2× 2, Pool size = 3× 3

Convolutional numF = 195, KS = 6× 6
Convolutional numF = 176, KS = 4× 4

Fully Connected numNeu = 10

MNIST-BI

Convolutional numF = 173, KS = 4× 4
Convolutional numF = 218, KS = 4× 4
Convolutional numF = 183, KS = 6× 6
Convolutional numF = 145, KS = 6× 6

Fully Connected numNeu = 10

MNIST-RD+BI

Convolutional numF = 239, KS = 4× 4
Average Pooling Strides = 2× 2, Pool size = 3× 3
Convolutional numF = 160, KS = 4× 4
Convolutional numF = 211, KS = 6× 6

Fully Connected numNeu = 10

Rectangles

Convolutional numF = 208, KS = 5× 5
Average Pooling Strides = 2× 2, Pool size = 3× 3
Convolutional numF = 141, KS = 5× 5

Average Pooling Strides = 2× 2, Pool size = 3× 3
Convolutional numF = 176, KS = 5× 5

Fully Connected numNeu = 2

Rectangles-I

Convolutional numF = 165, KS = 4× 4
Max Pooling Strides = 2× 2, Pool size = 3× 3

Convolutional numF = 236, KS = 6× 6
Convolutional numF = 176, KS = 5× 5
Convolutional numF = 176, KS = 5× 5

Fully Connected numNeu = 2

Convex

Convolutional numF = 222, KS = 4× 4
Max Pooling Strides = 2× 2, Pool size = 3× 3
Max Pooling Strides = 2× 2, Pool size = 3× 3

Convolutional numF = 229, KS = 4× 4
Convolutional numF = 147, KS = 5× 5
Convolutional numF = 191, KS = 6× 6

Fully Connected numNeu = 2

MNIST-Fashion
Convolutional numF = 241, KS = 5× 5
Max Pooling Strides = 2× 2, Pool size = 3× 3

Fully Connected numNeu = 10

5. Conclusions

A new network architecture design method known as TLBOCNN is proposed to auto-
matically search for optimal CNN network architectures that can solve different classifica-
tion problems effectively and efficiently without requiring rich expert domain knowledge.
The hyperparameters of CNN networks optimized by TLBOCNN include the number of
layers, type of layers, kernel sizes, number of filters, and umber of neurons. To achieve
this goal, an appropriate solution-encoding strategy is introduced into TLBOCNN to fa-

Symmetry 2022, 14, 2323 31 of 35

cilitate the representation of CNN network architectures with flexible sizes by learners
with variable length. Design constraints are also introduced to prevent the construction of
invalid network architectures without compromising the ability of TLBOCN to search for
novel network architectures. During the teacher phase of TLBOCNN, a novel mainstream
architecture computation scheme is designed to determine population mean by referring
to all learners with different lengths. A new difference operator is also introduced in both
the teacher and learner phases of TLBOCNN to compare the differences between two
learners with variable length followed by the design of a new position update operator
used to search for the new CNN models that are represented by updated TLBO learners.
The proposed TLBOCNN is compared to various state-of-the-art deep learning algorithms
using nine different image datasets. Extensive simulation studies reveal that TLBOCNN
can perform significantly better than most peer algorithms by solving the selected image
datasets with higher classification accuracies. TLBOCNN is also able to search for optimal
network architectures that can achieve proper tradeoffs between classification accuracy
and network complexity when solving the given problems.

Despite the promising performances exhibited by TLBOCNN, some of its limitations
are explained as follows. First, the current version of TLBOCNN only considers three
types of functional blocks (i.e., convolutional, pooling and fully connected layers) when
searching for the optimal network architectures of CNN. The potentials of other more
sophisticated building blocks (e.g., ResNet, DenseNet, Inception, NASNet, etc.) to further
enhance network performance are yet to be investigated by TLBOCNN. Some recent
studies conducted in [68] revealed the feasibility of considering both ResNet and DenseNet
blocks when designing the CNN network architectures without having to make substantial
modifications to the original search operators of MSAs. Second, the search operators of
TLBOCNN are similar to those of the original TLBO except for the modifications made
to handle the variable-length learners issue. The original TLBO tends to suffer from
the premature convergence issue when solving complex problems because its search
operators rely on historical information (i.e., teacher solution and population mean), which
is less frequently updated in the latter optimization stage. Similar challenges might be
encountered by TLBOCNN when solving more complex real-world classification problems.
Third, the network design method considered in the current study is a single optimization
problem in which classification accuracy is the only criterion used to evaluate the quality of
network architectures represented by each TLBOCNN. In practical scenarios, manufacturers
must consider multiple criteria when selecting suitable network architectures for their
applications. It is more desirable have a network design method that can generate multiple
network architectures so that the manufacturers can make better decisions based on their
current needs. Referring to these limitations, some future works can be proposed as
extensions of the current work. First, the proposed TLBOCNN can be further enhanced
by considering other sophisticated building blocks, such as ResNet block, DenseNet block,
Inception block, NASNet block, etc., when it is used to design optimal CNN network
architectures for solving given classification problems. Second, further modifications
can be introduced to the search operators of TLBOCNN to achieve better balancing of
exploration and exploitation searches, hence reducing its likelihood of suffering from
premature convergence and enhancing its ability to search for more promising network
architectures when solving more complex real-world classification problems. Finally, it is
also worth investigating the possibility of formulating network architecture design as a
multi-objective optimization problem in which different contradictory requirements, such
as classification accuracy, network complexity, inference speed, etc., can be taken into
account during the optimization process to produce multiple CNN network architectures
with different characteristics.

Symmetry 2022, 14, 2323 32 of 35

Author Contributions: Conceptualization, W.H.L., S.S.T. and E.-S.M.E.-k.; methodology, K.M.A.,
W.H.L. and E.-S.M.E.-k.; software, K.M.A., A.A.A. and A.I.; validation, K.M.A., A.H.A. and D.S.K.;
formal analysis, K.M.A., S.S.T. and W.H.L.; investigation, K.M.A., W.H.L. and E.-S.M.E.-k.; resources,
E.-S.M.E.-k., A.H.A. and D.S.K.; data curation, K.M.A., A.A.A. and A.I.; writing—original draft
preparation, K.M.A., A.A.A. and A.I.; writing—review and editing, W.H.L., S.S.T. and E.-S.M.E.-k.;
visualization, K.M.A., A.H.A. and D.S.K.; supervision, W.H.L., S.S.T. and E.-S.M.E.-k.; project admin-
istration, W.H.L. and E.-S.M.E.-k.; funding acquisition, A.H.A. and D.S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R120), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement: The data will be provided upon reasonable request.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R120), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carvalho, M.; Ludermir, T.B. Particle swarm optimization of neural network architectures andweights. In Proceedings of the 7th

International Conference on Hybrid Intelligent Systems (HIS 2007), Kaiserslautern, Germany, 17–19 September 2007; pp. 336–339.
2. Sainath, T.N.; Mohamed, A.-R.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for LVCSR. In Proceedings

of the 2013 IEEE international Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;
pp. 8614–8618.

3. Syulistyo, A.R.; Purnomo, D.M.J.; Rachmadi, M.F.; Wibowo, A. Particle swarm optimization (PSO) for training optimization on
convolutional neural network (CNN). J. Ilmu Komput. Dan Inf. 2016, 9, 52–58. [CrossRef]

4. Rodriguez, P.; Wiles, J.; Elman, J.L. A recurrent neural network that learns to count. Connect. Sci. 1999, 11, 5–40. [CrossRef]
5. Sumachev, A.E.; Kuzmin, V.A.; Borodin, E.S. River flow forecasting using artificial neural networks. Int. J. Mech. Eng. Technol.

2018, 9, 706–714.
6. Hu, M.; Wu, Y.; Fan, J.; Jing, B. Joint Semantic Intelligent Detection of Vehicle Color under Rainy Conditions. Mathematics 2022, 10,

3512. [CrossRef]
7. Alotaibi, M.F.; Omri, M.; Abdel-Khalek, S.; Khalil, E.; Mansour, R.F. Computational Intelligence-Based Harmony Search Algorithm

for Real-Time Object Detection and Tracking in Video Surveillance Systems. Mathematics 2022, 10, 733. [CrossRef]
8. Maturana, D.; Scherer, S. Voxnet: A 3d convolutional neural network for real-time object recognition. In Proceedings of the 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015;
p. 922.

9. Abdelhamid, A.A.; El-Kenawy, E.-S.M.; Alotaibi, B.; Amer, G.M.; Abdelkader, M.Y.; Ibrahim, A.; Eid, M.M. Robust Speech
Emotion Recognition Using CNN+ LSTM Based on Stochastic Fractal Search Optimization Algorithm. IEEE Access 2022, 10,
49265–49284. [CrossRef]

10. Fan, C.-L.; Chung, Y.-J. Design and Optimization of CNN Architecture to Identify the Types of Damage Imagery. Mathematics
2022, 10, 3483. [CrossRef]

11. Feng, X.; Gao, X.; Luo, L. A ResNet50-Based Method for Classifying Surface Defects in Hot-Rolled Strip Steel. Mathematics 2021, 9,
2359. [CrossRef]

12. Khurma, R.A.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.A.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction
Method Using Island Moth Flame Optimization. Mathematics 2021, 9, 1722. [CrossRef]

13. Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic data generation for steel defect detection and classification using deep
learning. Symmetry 2021, 13, 1176. [CrossRef]

14. Deng, H.; Cheng, Y.; Feng, Y.; Xiang, J. Industrial Laser Welding Defect Detection and Image Defect Recognition Based on Deep
Learning Model Developed. Symmetry 2021, 13, 1731. [CrossRef]

15. El-kenawy, E.-S.M.; Albalawi, F.; Ward, S.A.; Ghoneim, S.S.; Eid, M.M.; Abdelhamid, A.A.; Bailek, N.; Ibrahim, A. Feature
selection and classification of transformer faults based on novel meta-heuristic algorithm. Mathematics 2022, 10, 3144. [CrossRef]

16. Alhussan, A.A.; Khafaga, D.S.; El-Kenawy, E.-S.M.; Ibrahim, A.; Eid, M.M.; Abdelhamid, A.A. Pothole and Plain Road Classifica-
tion Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars. IEEE Access 2022, 10,
84188–84211. [CrossRef]

17. Xin, R.; Zhang, J.; Shao, Y. Complex network classification with convolutional neural network. Tsinghua Sci. Technol. 2020, 25,
447–457. [CrossRef]

18. Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model
to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [CrossRef]

http://doi.org/10.21609/jiki.v9i1.366
http://doi.org/10.1080/095400999116340
http://doi.org/10.3390/math10193512
http://doi.org/10.3390/math10050733
http://doi.org/10.1109/ACCESS.2022.3172954
http://doi.org/10.3390/math10193483
http://doi.org/10.3390/math9192359
http://doi.org/10.3390/math9151722
http://doi.org/10.3390/sym13071176
http://doi.org/10.3390/sym13091731
http://doi.org/10.3390/math10173144
http://doi.org/10.1109/ACCESS.2022.3196660
http://doi.org/10.26599/TST.2019.9010055
http://doi.org/10.1016/j.compbiomed.2017.08.022

Symmetry 2022, 14, 2323 33 of 35

19. Khafaga, D.S.; Alhussan, A.A.; El-Kenawy, E.-S.M.; Ibrahim, A.; Eid, M.M.; Abdelhamid, A.A. Solving Optimization Problems of
Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms. IEEE Access 2022, 10, 74449–74471.
[CrossRef]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

21. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, Santiago, Chile, 7–13
December 2015; pp. 1–9.

22. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

24. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

26. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
27. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
28. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055. [CrossRef]
29. Bäck, T.; Fogel, D.B.; Michalewicz, Z. Handbook of evolutionary computation. Release 1997, 97, B1. [CrossRef]
30. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement learning. arXiv 2016,

arXiv:1611.02167. [CrossRef]
31. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578. [CrossRef]
32. Melanie, M. An Introduction to Genetic Algorithms; Massachusetts Institute of Technology: Cambridge, MA, USA, 1996; p. 158.
33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 1944, pp. 1942–1948.
34. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.

J. Glob. Optim. 1997, 11, 19. [CrossRef]
35. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]
36. Behera, M.; Sarangi, A.; Mishra, D.; Mallick, P.K.; Shafi, J.; Srinivasu, P.N.; Ijaz, M.F. Automatic Data Clustering by Hybrid

Enhanced Firefly and Particle Swarm Optimization Algorithms. Mathematics 2022, 10, 3532. [CrossRef]
37. Chen, J.; Chen, M.; Wen, J.; He, L.; Liu, X. A Heuristic Construction Neural Network Method for the Time-Dependent Agile Earth

Observation Satellite Scheduling Problem. Mathematics 2022, 10, 3498. [CrossRef]
38. Qiu, J.; Yin, X.; Pan, Y.; Wang, X.; Zhang, M. Prediction of Uniaxial Compressive Strength in Rocks Based on Extreme Learning

Machine Improved with Metaheuristic Algorithm. Mathematics 2022, 10, 3490. [CrossRef]
39. Kaya, E. A New Neural Network Training Algorithm Based on Artificial Bee Colony Algorithm for Nonlinear System Identification.

Mathematics 2022, 10, 3487. [CrossRef]
40. Ma, Z.; Yuan, X.; Han, S.; Sun, D.; Ma, Y. Improved chaotic particle swarm optimization algorithm with more symmetric

distribution for numerical function optimization. Symmetry 2019, 11, 876. [CrossRef]
41. Zhang, M.; Long, D.; Qin, T.; Yang, J. A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for

high-dimensional optimization problems. Symmetry 2020, 12, 1800. [CrossRef]
42. El-Kenawy, E.-S.M.; Mirjalili, S.; Alassery, F.; Zhang, Y.-D.; Eid, M.M.; El-Mashad, S.Y.; Aloyaydi, B.A.; Ibrahim, A.; Abdelhamid,

A.A. Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems. IEEE Access
2022, 10, 40536–40555. [CrossRef]

43. El-Kenawy, E.-S.M.; Mirjalili, S.; Abdelhamid, A.A.; Ibrahim, A.; Khodadadi, N.; Eid, M.M. Meta-heuristic optimization and
keystroke dynamics for authentication of smartphone users. Mathematics 2022, 10, 2912. [CrossRef]

44. Liu, X.-J.; Yi, H.; Ni, Z.-H. Application of ant colony optimization algorithm in process planning optimization. J. Intell. Manuf.
2013, 24, 1–13. [CrossRef]

45. Meng, A.-B.; Chen, Y.-C.; Yin, H.; Chen, S.-Z. Crisscross optimization algorithm and its application. Knowl.-Based Syst. 2014, 67,
218–229. [CrossRef]

46. Gharehchopogh, F.S.; Maleki, I.; Dizaji, Z.A. Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection. Evol.
Intell. 2022, 15, 1777–1808. [CrossRef]

47. Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex.
Eng. J. 2022, 61, 3831–3872. [CrossRef]

48. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural
Networks; MIT Press: Cambridge, MA, USA, 1998.

49. Schaffer, J.D.; Caruana, R.A.; Eshelman, L.J. Using genetic search to exploit the emergent behavior of neural networks. Phys. D
Nonlinear Phenom. 1990, 42, 244–248. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3190508
http://doi.org/10.1145/3065386
http://doi.org/10.48550/arXiv.1409.1556
http://doi.org/10.1613/jair.301
http://doi.org/10.48550/arXiv.1806.09055
http://doi.org/10.1887/0750308958
http://doi.org/10.48550/arXiv.1611.02167
http://doi.org/10.48550/arXiv.1611.01578
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.3390/math10193532
http://doi.org/10.3390/math10193498
http://doi.org/10.3390/math10193490
http://doi.org/10.3390/math10193487
http://doi.org/10.3390/sym11070876
http://doi.org/10.3390/sym12111800
http://doi.org/10.1109/ACCESS.2022.3166901
http://doi.org/10.3390/math10162912
http://doi.org/10.1007/s10845-010-0407-2
http://doi.org/10.1016/j.knosys.2014.05.004
http://doi.org/10.1007/s12065-021-00590-1
http://doi.org/10.1016/j.aej.2021.09.013
http://doi.org/10.1016/0167-2789(90)90078-4

Symmetry 2022, 14, 2323 34 of 35

50. Kitano, H. Empirical studies on the speed of convergence of neural network training using genetic algorithms. In Proceedings of
the AAAI Conference on Artificial Intelligence-1990, Boston, MA, USA, 29 July–3 August 1990; pp. 789–795.

51. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef]

52. Siebel, N.T.; Sommer, G. Evolutionary reinforcement learning of artificial neural networks. Int. J. Hybrid Intell. Syst. 2007, 4,
171–183. [CrossRef]

53. Stanley, K.O.; D’Ambrosio, D.B.; Gauci, J. A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 2009,
15, 185–212. [CrossRef] [PubMed]

54. Verbancsics, P.; Harguess, J. Generative neuroevolution for deep learning. arXiv 2013, arXiv:1312.5355. [CrossRef]
55. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
56. Albeahdili, H.M.; Han, T.; Islam, N.E. Hybrid algorithm for the optimization of training convolutional neural network. Int. J. Adv.

Comput. Sci. Appl. 2015, 1, 79–85.
57. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto:

Toronto, ON, Canada, 2009. Available online: http://www.cs.utoronto.ca/~{}kriz/learning-features-2009-TR.pdf (accessed on
3 June 2022).

58. Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. In Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3288–3291.

59. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. Evolving deep convolutional neural networks by variable-length particle swarm optimization
for image classification. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–8.

60. Junior, F.E.F.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol.
Comput. 2019, 49, 62–74. [CrossRef]

61. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. A particle swarm optimization-based flexible convolutional autoencoder for image
classification. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 2295–2309. [CrossRef]

62. Koza, J.R. Genetic Programming; MIT Press: Cambridge, MA, USA, 1997.
63. Oullette, R.; Browne, M.; Hirasawa, K. Genetic algorithm optimization of a convolutional neural network for autonomous crack

detection. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA,
19–23 June 2004; pp. 516–521.

64. Ijjina, E.P.; Chalavadi, K.M. Human action recognition using genetic algorithms and convolutional neural networks. Pattern
Recognit. 2016, 59, 199–212. [CrossRef]

65. Reddy, K.K.; Shah, M. Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 2013, 24, 971–981. [CrossRef]
66. Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.-H.; Patton, R.M. Optimizing deep learning hyper-parameters through an

evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments,
Austin, TX, USA, 15 November 2015; pp. 1–5.

67. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol.
Comput. 2019, 24, 394–407. [CrossRef]

68. Xue, Y.; Wang, Y.; Liang, J.; Slowik, A. A self-adaptive mutation neural architecture search algorithm based on blocks. IEEE
Comput. Intell. Mag. 2021, 16, 67–78. [CrossRef]

69. Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural network ar-
chitectures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp.
497–504.

70. Harding, S. Evolution of image filters on graphics processor units using cartesian genetic programming. In Proceedings of the
2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China,
1–6 June 2008; pp. 1921–1928.

71. Miller, J.F.; Smith, S.L. Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput.
2006, 10, 167–174. [CrossRef]

72. Miller, J.F.; Harding, S.L. Cartesian genetic programming. In Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, Montreal, QC, Canada, 8–12 July 2009; pp. 3489–3512.

73. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks
for image classification. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Wellington, New Zealand,
11–14 December 2018; pp. 237–250.

74. Dahou, A.; Elaziz, M.A.; Zhou, J.; Xiong, S. Arabic sentiment classification using convolutional neural network and differential
evolution algorithm. Comput. Intell. Neurosci. 2019, 2019, 2537689. [CrossRef] [PubMed]

75. Ghosh, A.; Jana, N.D.; Mallik, S.; Zhao, Z. Designing optimal convolutional neural network architecture using differential
evolution algorithm. Patterns 2022, 3, 100567. [CrossRef]

76. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1162/106365602320169811
http://doi.org/10.3233/HIS-2007-4304
http://doi.org/10.1162/artl.2009.15.2.15202
http://www.ncbi.nlm.nih.gov/pubmed/19199382
http://doi.org/10.48550/arXiv.1312.5355
http://doi.org/10.1109/5.726791
http://www.cs.utoronto.ca/~{}kriz/learning-features-2009-TR.pdf
http://doi.org/10.1016/j.swevo.2019.05.010
http://doi.org/10.1109/TNNLS.2018.2881143
http://doi.org/10.1016/j.patcog.2016.01.012
http://doi.org/10.1007/s00138-012-0450-4
http://doi.org/10.1109/TEVC.2019.2916183
http://doi.org/10.1109/MCI.2021.3084435
http://doi.org/10.1109/TEVC.2006.871253
http://doi.org/10.1155/2019/2537689
http://www.ncbi.nlm.nih.gov/pubmed/30936911
http://doi.org/10.1016/j.patter.2022.100567

Symmetry 2022, 14, 2323 35 of 35

77. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An empirical evaluation of deep architectures on problems with
many factors of variation. In Proceedings of the 24th International Conference on Machine Learning, Virtual, 13–15 April 2021;
pp. 473–480.

78. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

79. Chan, T.-H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans.
Image Process. 2015, 24, 5017–5032. [CrossRef]

80. Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; Bengio, Y. Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of ICML’11 Proceedings of the 28th International Conference on International Conference on Machine Learning,
Bellevue, WA, USA, 28 June–2 July 2011.

81. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. 2013, 35, 1872–1886. [CrossRef]
82. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
83. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
84. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary

algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15,
617–644. [CrossRef]

85. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,
arXiv:1412.6806.

http://doi.org/10.1109/TIP.2015.2475625
http://doi.org/10.1109/TPAMI.2012.230
http://doi.org/10.1016/j.swevo.2011.02.002
http://doi.org/10.1007/s10732-008-9080-4

	Introduction
	Related Works
	Teaching–Learning-Based Optimization (TLBO)
	Convolutional Neural Networks (CNNs)
	Existing Metaheuristic-Search-Based Methods in Optimizing Neural Networks
	Technical Contributions of Current Works

	Details of Proposed TLBOCNN
	Functional Blocks Encoding Scheme
	Population Initialization of TLBOCNN
	Fitness Evaluation of TLBOCNN
	Teacher Phase of TLBOCNN
	Computation of Mainstream CNN Architecture
	Computation of Differences between Two Learners
	Computation of New Learner

	Learner Phase of TLBOCNN
	Overall Framework of TLBOCNN

	Experimental Design and Results Analysis
	Image Datasets
	Selection of Peer Algorithms and Simulation Settings
	Simulation Results
	Performance Comparisons in Solving Eight Image Datasets
	Performance Comparisons in Solving Fashion Dataset
	Optimal Network Architecture Designed by TLBOCNN

	Conclusions
	References

