
Citation: Ma, X.-S.; Jiang, G.-H.;

Zheng, B. SPM: Sparse Persistent

Memory Attention-Based Model for

Network Traffic Prediction. Symmetry

2022, 14, 2319. https://doi.org/

10.3390/sym14112319

Academic Editors: Yiming Tang,

Yong Zhang, Zhaohong Deng

and Xiaohui Yuan

Received: 4 October 2022

Accepted: 31 October 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

SPM: Sparse Persistent Memory Attention-Based Model for
Network Traffic Prediction
Xue-Sen Ma 1,2,*,†, Gong-Hui Jiang 1,2,† and Biao Zheng 1,2

1 School of Computer and Information, Hefei University of Technology, Hefei 230009, China
2 Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology,

Hefei 230009, China
* Correspondence: mxs@hfut.edu.cn
† These authors contributed equally to this work.

Abstract: The network traffic prediction (NTP) model can help operators predict, adjust, and control
network usage more accurately. Meanwhile, it also reduces network congestion and improves the
quality of the user service experience. However, the characteristics of network traffic data are quite
complex. NTP models with higher prediction accuracy tend to have higher complexity, which shows
obvious asymmetry. In this work, we target the conflict between low complexity and high prediction
performance and propose an NTP model based on a sparse persistent memory (SPM) attention
mechanism. SPM can accurately capture the sparse key features of network traffic and reduce the
complexity of the self-attention layer while ensuring prediction performance. The symmetric SPM
encoder and decoder replace the high complexity feed-forward sub-layer with an attention layer to
reduce the complexity. In addition, by adding an attention layer to persistently memorize key features,
the prediction performance of the model could be further improved. We evaluate our method on two
real-world network traffic datasets. The results demonstrate that the SPM-based method outperforms
the state-of-the-art (SOTA) approaches in NTP results by 33.0% and 21.3%, respectively. Meanwhile,
the results of RMSE and R2 are also optimal. When measured by temporal performance, SPM reduces
the complexity and reduces the training time by 22.2% and 30.4%, respectively, over Transformer.

Keywords: prediction model; network traffic; symmetry and asymmetry; machine learning; sparse
attention; persistent memory

1. Introduction

Network traffic prediction (NTP) is used to predict and estimate the future state
of links in a network [1]. NTP provides a decision-making basis for communication
network management and optimization by estimating future traffic [2]. To improve network
performance, accurate NTP is a crucial step in dynamic cellular networks [3]. With the
rapid development of 5G cellular networks, telecommunication systems and networks will
become intelligent and self-organized [4]. A self-organizing network (SON) should adapt
to dynamic usage patterns. Thereby, the network traffic needs to be configured, managed,
and optimized in advance. Thus, predicting the future dynamics of mobile traffic is crucial
to support intelligent and automated management [5–7].

With the development of the field of communication systems and networking, the num-
ber of network devices has sharply increased. Popular on-line platforms such as Facebook
have further increased the network traffic data [8,9]. It is becoming more challenging to
achieve accurate NTP [10].

There exist various methods for NTP. Generally, these methods are mainly categorized
into classic prediction methods and neural network (NN) based methods. Classic predic-
tion methods include auto regressive moving average (ARMA) [11] and autoregressive
integrated moving average (ARIMA) [12] models. Such methods generally rely on the his-
torical mean value, which often fails to predict complex real network traffic accurately [12].

Symmetry 2022, 14, 2319. https://doi.org/10.3390/sym14112319 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14112319
https://doi.org/10.3390/sym14112319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3101-0733
https://doi.org/10.3390/sym14112319
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14112319?type=check_update&version=1

Symmetry 2022, 14, 2319 2 of 20

Compared with the classic prediction methods, the NN-based methods have a stronger
fitting ability to extract high-order features [13,14]. NN-based methods can better approxi-
mate the network traffic with complex characteristics, such as recurrent neural network
(RNN) [15], gated recurrent unit (GRU) [16], long short-term memory neural network
(LSTM) [17,18], and convolution-based temporal convolution network (TCN) [19], etc.

However, due to “gradient vanishing and exploding” problems in RNNs. There exist
limitations for RNNs in long-term and complex feature modeling in NTP [20]. Different
from the RNN-based and CNN-based approaches, Transformer utilizes the self-attention
mechanisms to extract features of sequences. The self-attention mechanism has the potential
capabilities in modeling network traffic sequence. Thus, Transformer can capture the
implicit dependencies between the influencing factors of network traffic well. In addition,
the Transformer has a lower prediction mean absolute error (MAE) than that of classic and
NN-based methods when the prediction sequence length is short. However, as the length
of the prediction sequence increases, the complexity of Transformer grows quadratically,
which seriously affects its prediction performance.

To address this issue, we propose an NTP model based on the sparse persistent
memory (SPM) attention mechanism. Our main contributions are summarized as follows:

• We propose a low-complexity SPM self-attention, which learns the sparse key features
in the multivariate network traffic sequence, and carries out persistent memory to
effectively use the key features to predict network traffic with more accuracy than the
SOTA methods;

• We further develop a symmetric structure of the SPM Encoder and SPM Decoder
based on SPM self-attention, which removes the feed-forward sub-layer, simplifies the
structure of the model, and thus further reduces the complexity of the model;

• We evaluate SPM on two real-world network traffic datasets. The results demonstrate
that SPM is optimal in terms of RMSE, MAE, and R2. Compared with Transformer,
SPM also achieves great promotion in time performance.

The remaining sections of this paper are structured as follows. In Section 2, the related
work of NTP methods are introduced. The proposed SPM for NTP is introduced in detail
in Section 3. In Section 4, the evaluation results and analysis compared with other SOTA
and ablation methods are given. Finally, the work of this paper is summarized in Section 5.

2. Related Work

NTP is essentially a time series prediction problem. In the literature of NTP, most of
the existing works are based on classic and NN-based prediction methods. Yuan et al. [21]
analyzed and predicted six different application-layer traffic in the metropolitan area
network by establishing a reasonable ARIMA seasonal product hybrid model. The results
indicate that the predicted application layer traffic trend is basically similar to the actual
curve, and the average absolute percentage error is around 10%. Jiang et al. [22] analyzed
the prediction accuracy of ARMA, ARIMA, FARIMA, and other linear prediction models
under different time scale through experiments.

In recent years, NN-based methods have been widely used for NTP tasks [23]. The RNN
is more suitable for processing all kinds of time series due to its cyclic chain structure and
special structure inside each variant gate unit [24]. Cui et al. [25] utilize LSTM for traffic
flow prediction, and the results demonstrate that LSTM outperforms the classical model in
terms of both accuracy and robustness. Fu et al. [26] utilize GRU for traffic flow prediction
for the first time. The experimental results indicate that GRU reduces MAE by about 10%
and 5% when compared with the ARIMA and LSTM respectively. Salinas et al. [27] propose
a Deep Autoregressive approach (DeepAR) based on an LSTM-based autoregressive RNN
architecture, which helps to consider other external features and can learn complex patterns
from the data. Experimental results show that DeepAR improves the accuracy by about
15% compared with the SOTA methods. Different from the way that RNNs extract features,
Neo et al. [20] propose a deep Transformer method for prediction based on vanilla Trans-
former [28]. Transformer allows models to access any part of the history to process entire

Symmetry 2022, 14, 2319 3 of 20

data sequences and utilizes self-attention mechanisms to learn complex patterns in time
series data, which are commonly used for univariate and multivariate time series prediction.
Experimental results indicate the effectiveness of the proposed Transformer method.

However, the complexity of the Transformer self-attention mechanism grows quadrat-
ically with the sequence length. Moreover, applying the attention mechanism to longer
sequences will result in a dramatic increase in computational complexity [29]. Therefore,
how to improve the efficiency of self-attention calculation in the Transformer model and
reduce the complexity of the model has become one of the main research directions.

Li et al. [29] propose the LogSparse Transformer to break the memory bottleneck of
Transformer and reduce the space complexity. Experimental results indicate that the model
can build fine-grained long-term sequences better with less memory usage. Zhou et al. [30]
propose the ProbSparse self-attention layer to compute key attention by approximate spar-
sity assessment. Empirical results justify that focusing on sparse key attention can im-
prove model performance and reduce the complexity of the model attention module.
Sukhbaatar et al. [31] remove the feed-forward sub-layer with high complexity in vanilla
Transformer and enhance the self-attention layer by adding persistent memory attention
in the attention layer. Experimental results have demonstrated that the persistent memory
attention module simplifies the structure and achieves slight performance reduction.

Although the above improvements reduce the complexity and also have a certain
prediction accuracy, there still exists a loss in prediction performance. To reduce the loss
of NTP performance, we make a trade-off between the complexity and NTP accuracy and
propose an SPM-based model. On one hand, the SPM attention mechanism adopts the
calculation method of ProbSparse self-attention to reduce the complexity. On the other hand,
SPM adds a persistent memory layer to store more key attention information, which greatly
improves the NTP accuracy.

3. SPM for Network Traffic Prediction
3.1. Problem Formulation

The network traffic data is a time series that reflects changes in regional network traffic
and is related to various factors, such as Call, SMS, and Dates. Given the NTP target ŷt+1:t+τ

of the model, the time ranges [1, t] and [t, t + τ] represent the known historical range and
prediction range, respectively, then the NTP problem can be formulated as follows.

ŷt+1:t+τ = SPM(y1:t, xi,1:t, ui,1:t+τ , τ), (1)

where [ŷt+1, ŷt+2, · · · , ŷt+τ] := ŷt+1:t+τ denotes the prediction target, τ ∈ {1, 2, · · · , τmax}
is the prediction step; [y1, y2, · · · , yt] := y1:t is the historical observation data, yj denotes
the network traffic at the j-th timestamp; [xi,1, xi,2, · · · , xi,t] := xi,1:t is the historical co-
variate associated with the target, xi,j represents the sequence value of the i-th covariate
at the j-th timestamp, which is related to the network traffic, such as Call, SMS, etc.;
[ui,1, ui,2, · · · , ui,t+τ] := ui,1:t+τ is a static known external feature related to the NTP target,
such as the date and festival information, etc. The definition and description of common
symbols in this paper are listed in Table 1.

Symmetry 2022, 14, 2319 4 of 20

Table 1. The definition and description of common symbols in this paper.

Symbol Definition and Description

y1:t, xi,1:t, ui,1:t+τ Input data
τ Prediction steps
t The length of history time series

ŷt+1:t+τ The predicted network traffic target
Xen The input of Symmetric SPM Encoder Layer
Xde The input of Symmetric SPM Decoder Layer
Yen The output of Symmetric SPM Encoder Layer
Yde The output of Symmetric SPM Decoder Layer

Q, Qs, Q̄, Q̄s Queries matrix
K, Ks, Km, K̄ Keys matrix

V, Vm, V̄ Values matrix
D, LQ, LK , LV , Ltoken, L, lK , lV , l, dk, dv, d Dimension parameters
WQ, WQ̄, WK , WK̄ , WV , WV̄ , WO, WŌ Projection matrix

W1, W2, b1, b2 The parameters of full connection layer
h Attention heads
M The number of symmetric SPM encoders
N The number of symmetric SPM decoders

3.2. Overview of SPM

The overall architecture of the SPM-based method is shown in Figure 1. It is mainly
divided into four parts: Input Layer, Symmetric SPM Encoder Layer, Symmetric SPM Decoder
Layer, and Output Layer.

(1) Input Layer

The Input Layer preprocesses the input features, which include target variables, co-
variates, and timestamp features. The input layer fuses discrete, continuous, and position
encoding features and maps to the Symmetric SPM Encoder Layer input Xen and the Symmet-
ric SPM Decoder Layer input Xde, respectively.

(2) Symmetric SPM Encoder Layer

The Symmetric SPM Encoder Layer consists of a stack of M symmetric SPM encoders.
The symmetric SPM encoder consists of the multi-head SPM self-attention layer and
normalization layer, which are connected by a residual network. The input Xen outputs
Yen through the Symmetric SPM Encoder Layer. Yen is the input of the Symmetric SPM
Decoder Layer.

(3) Symmetric SPM Decoder Layer

The Symmetric SPM Decoder Layer consists of a stack of N symmetric SPM decoders.
The symmetric SPM decoder consists of a masked multi-head ProbSparse self-attention
layer, a normalization layer, and a multi-head SPM self-attention layer. Xde and Yen are
jointly input to the Symmetric SPM Decoder Layer to generate the output Xde, which is the
input of the fully connected Output Layer.

(4) Output Layer

The Output Layer is composed of a fully connected layer, and the output Xde of the
Symmetric SPM Decoder Layer is feature-mapped through the fully connected layer, and the
predicted network traffic target ŷt+1:t+τ is obtained.

Symmetry 2022, 14, 2319 5 of 20

Figure 1. Architecture of SPM-based NTP model.

3.3. Input Layer

The input layer uniformly processes network traffic and relative position features to
obtain outputs Xen ∈ RL×D and Xde ∈ RL×D (D and L are the dimensions of the data).
These outputs are input into the SPM Encoder Layer and the SPM Decoder Layer.

3.3.1. Data Normalization

In order to avoid the interference of the experimental results of the model due to the
large difference in the value of SMS, Call, and Internet, we utilize the min-max method to
normalize the original sequence values to [0, 1].

z∗ =
z− zmin

zmax − zmin
, (2)

where z is the original data value and z∗ is the data value after normalization (e.g., yi
and xi,j).

3.3.2. Scalar Projection

Scalar projection is used to project the input variable into a feature matrix. The nor-
malized time series y1:t, x1:t are spliced to form the original variable matrix, they are
projected as variable features Xvar ∈ RD×(L+Ltoken) through the Conv1D layer. In relative
chronological order, the first Xen

var ∈ RD×L is the partial input of the encoder, and the latter
Xde

var ∈ RD×Ltoken is the partial input of the decoder.

3.3.3. Timestamp Feature Encoding

Features such as dates and festivals (day, weekday, and month) are discrete category
attribute features and cannot be directly used for model input. Therefore, it needs to be
converted into vector form through the encoding layer. We adopt the embedding layer
to encode the timestamp external features and convert the date-time features ui,1:t+τ into
timestamp features Xdate ∈ RD×L.

3.3.4. Position Encoding

When the historical sequence is input to the attention layer, all features are processed
at the same time, without timing position information. Positional encoding is based on sine
and cosine functions of different frequencies. By embedding the temporal relationship of
the sequence, the positional encoding output Xpos ∈ RD×L can be obtained.

Symmetry 2022, 14, 2319 6 of 20

3.3.5. Input Feature Fusion Encoding

The input Xen ∈ RL×D of the SPM Encoder layer consists of variable feature Xen
var,

timestamp feature Xdate, and position encoding feature Xpos.

Xen = (Xen
var + Xdate + Xpos)

T (3)

The input Xen ∈ RL×D of the SPM decoding layer is mainly composed of a partial
variable feature Xde

var with a length of Ltoken, a variable X0 ∈ RD×τ to be predicted with
all zeros, and a timestamp feature Xdate. Masked multi-head attention is applied to the
predicted location to avoid future information leakage.

Xde = (concat(Xde
var, X0) + Xdate)

T (4)

3.4. Symmetric SPM Encoder Layer
3.4.1. Sparse Query Block

By focusing and persistently memorizing key features related to NTP, the SPM self-
attention utilizes less key attention, reduces complexity, and achieves better prediction
results. The SPM self-attention layer leverages the Sparse Query Block to decrease the
complexity and remain the effect in some case [30]. The calculation process of Sparse Query
Block is shown in Figure 2, where X ∈ RL×D denotes the input, query matrices Q = XWQ ,
key matrices K = XWK , and value matrices V = XWV respectively. The calculating
progress of Sparse Query Block can be formulated as follows.

Figure 2. The calculation process of Sparse Query Block.

First, we evaluate the sparsity of qi through the computational formulation that
empirically approximates the sparsity.

M(qi, K) = max
j

{
qikT

j√
dk

}
− 1

LK

LK

∑
j=1

qikT
j√

dk
, (5)

where qi is the row vector of Q ∈ RLQ×dk , and ki is the row vector of K ∈ RLK×dk .
We randomly sample c× log LK ki vectors as Ks (c is the sampling constant), and cal-

culate the sparsity of all qi and Ks in Q through the sparsity calculation formula, and obtain
the sparsity set Ms.

Ms =
{

M(q1, Ks), M(q2, Ks), · · · , M(qLQ , Ks)
}

(6)

Then, we utilize the top-k function to sort and filter Ms to obtain the first k = c× log LQ
subscript sets S corresponding to the sparsity.

S = topk(Ms) = {s1, s2 · · · , sk} (7)

Symmetry 2022, 14, 2319 7 of 20

Finally, the sparse Qs is obtained by filtering from Q through the subscript set S.

Qs =


q1
q2
...

qLQ

, qi =

{
qi, i ∈ S, 1 ≤ i ≤ LQ
0, i /∈ S, 1 ≤ i ≤ LQ

, (8)

where Qs is a sparse matrix of the same-size as Q, and it only consists of c× log LQ valid
query vectors (non-zero vector) under the sparsity measurement.

3.4.2. SPM Self-Attention

Based on sparse query Qs, the SPM self-attention layer is shown in Figure 3, where
X ∈ RL×D denotes the input, query matrices Q = XWQ , key matrices Km = XWKm , and
value matrices Vm = XWVm respectively. Qs is a sparse query, which can be obtained
through the Sparse Query Block. The calculating progress of SPM self-attention (SPMAtten)
can be formulated as follows.

Figure 3. The calculating progress of SPM self-attention.

(1) Concatenation and normalization of sparse key attention weights

Qs is used as a connection bridge between newly added Km ∈ RLK×dk and K ∈ RLK×dk ,
and the attention weight Sim is obtained by concatenating the matrix dot product results.
After that, the Sim is scaled by

√
dk, and the normalized attention weight (AW) is calculated

by the so f tmax layer. The so f tmax is one of the core components of Transformer, which
helps to capture long-range dependencies and thus improves the prediction performance
of the attention-based methods [28].

Sim(Qs, K, Km) = concat(QsKT , QsKT
m) (9)

AW = so f tmax
(

Sim
/√

dk

)
(10)

(2) Split and fill sparse attention

Symmetry 2022, 14, 2319 8 of 20

AW contains all network traffic key attention weight information. Firstly, we split
the attention weights of AW ∈ RLQ×(LK+lk) to get AWs ∈ RLQ×LK and AWm ∈ RLQ×lK .
The new attention weight AWm has a persistent memory for key features. We calculate
the dot product of the split attention weight with V ∈ RLV×dv and the newly added
Vm ∈ RlV×dv , respectively, to obtain the key attention values of Atten′s ∈ RLQ×dv and
Atten′m ∈ RLQ×dv . Atten′m is the key attention value that persistently memorizes the new
attention layer of the network traffic features.

Atten′s = AWs ·V (11)

Atten′m = AWm ·Vm (12)

Then, we fill and complete the attention value of the corresponding positions of the
LQ− c× log LQ zero vectors in Qs to obtain secondary filling attentions Atten′′s and Atten′′m.
The fill value is the vector v ∈ Rdv and vm ∈ Rdv composed of the average value of V
and Vm, respectively. Finally, the secondary attention and the key attention are combined
respectively to obtain two parts of attention Attens and Attenm .

Attens(Qs, K, V)={Atten′s, Atten′′s } (13)

Attenm(Qs, Km, Vm)={Atten′m, Atten′′m} (14)

(3) Fusion sparse key attention

Finally, we superimpose the key attention in Attens and Attenm, and act together on
the output of the attention to obtain the fusion sparse key attention, that is, the output of
the SPM self-attention layer (SPMAtten).

SPMAtten(Qs, K, Km, V, Vm)=Attens + Attenm (15)

(4) Multi-head SPM self-attention layer

The self-attention generally appears in the form of multi-head attention. Each attention
head performs the attention function in parallel to generate the output values of h attention
heads, and these attention heads, calculated with different sparse key-value pairs, are
used. The output values are spliced together and projected through the projection matrix
WO ∈ Rhdv×D for which to obtain the output result of the multi-head SPM self-attention
(MSPMAtten).

MSPMAtten(X) = MultiHead(Q, K, Km, V, Vm)

= concat(head1, · · · , headh)WO ,
(16)

headi = SPMAtten(Qi, Ki, Kmi , Vi, Vm i), (17)

where Qi ∈ RL×dk , Ki ∈ RL×dk , Kmi ∈ Rl×dk , Vi ∈ RL×dv , Vmi ∈ Rl×dv , h is the number of
attention heads, in this work, dk = dv = d.

3.4.3. Symmetric SPM Encoder Layer

The symmetric SPM encoder is mainly composed of a multi-head SPM self-attention
and a normalization layer, which are connected by a residual network structure. The X
input to the symmetric SPM encoder, and the output hi of the i-th encoder are obtained,
which can be expressed as follows.

hi = SPMEncoder(X)

= X + LayerNorm(MSPMAtten(X))
(18)

The Symmetric SPM Encoder Layer is formed by stacking M symmetric SPM encoders.
Xen is input to the Symmetric SPM Encoder Layer, and the network traffic encoding feature

Symmetry 2022, 14, 2319 9 of 20

Yen after the Symmetric SPM Encoder Layer is stacked with M layers of symmetric SPM
encoders, which can be formally defined as follows.

hen
i =

{
SPMEncoder(Xen), i = 1
SPMEncoder(hen

i−1), 2 ≤ i ≤ M , (19)

Yen = hen
M = SPMEncoder(hen

M−1) (20)

3.5. Symmetric SPM Decoder Layer
3.5.1. ProbSparse Self-Attention

The ProbSparse self-attention evaluates the main attention in the input features of
network traffic by sparsity. The input X ∈ RL×D first gets Q̄s through the Sparse Query Block
and then obtains the masked ProbSparse self-attention (MPSAtten) through the dot product.

MPSAtten(Q̄s, K̄, V̄) = so f tmax
(

Q̄sK̄T
√

dk
·M
)

V̄, (21)

where Q̄ = XWQ̄ , K̄ = XWK̄ , V̄ = XWV̄ , the dimensions of Q̄s and Q̄ are the same, with
the difference being that the number of effective vectors of Q̄s is c× ln L, c is the constant
sampling factor, and M is the mask matrix used to avoid future information leakage.
The masked multi-head ProbSparse self-attention (MMPSAtten) can be formally defined
as follows.

MMPSAtten(X) = MultiHead(Q̄s, K̄, V̄)

= concat(head1, · · · , headh)WŌ ,
(22)

headi = MPSAtten(Q̄si , K̄i, V̄i), (23)

where Q̄si ∈ RL×d, K̄i ∈ RL×d, V̄i ∈ RL×d.

3.5.2. Symmetric SPM Decoder Layer

The symmetric SPM decoder is mainly composed of a MSPMAtten layer, a MMP-
SAtten layer, and a normalization layer, which are connected by two residual network
structures. The input of the symmetric SPM decoder is divided into two parts, denoted as
X and Y respectively. The input X passes through the MMPSAtten layer and outputs the
sparse key attention value. Through the first layer normalization and residual connection,
the intermediate output pi of the i-th decoder is obtained.

pi = X + LayerNorm(MMPSAtten(X)) (24)

Then, pi and another part of the input Y are jointly input into the multi-head SPM
self-attention. Through the second layer normalization and residual connection, the output
hi of the i-th decoder is obtained, which can be expressed as follows.

hi = SPMDecoder(X, Y)

= pi + LayerNorm(MSPMAtten(pi, Y))
(25)

The Symmetric SPM Decoder Layer is formed by stacking N symmetric SPM decoders.
Xde and Yen are input to the Symmetric SPM Decoder Layer. After stacking N layers of
symmetric SPM decoders, the encoded features of the network traffic are decoded into the
output Yde, which can be formally defined as follows.

hde
i =

{
SPMDecoder(Xde, Yen), i = 1
SPMDecoder(hde

i−1, Yen), 2 ≤ i ≤ N
, (26)

Yde = hde
N = SPMDecoder(hde

N−1, Yen) (27)

Symmetry 2022, 14, 2319 10 of 20

3.6. Output Layer

After passing through the Symmetric SPM Decoder Layer, the fully connected (FC) layer
is used to extract features. The calculation process for the NTP target can be formally
formulated as follows.

ŷt+1:t+τ = W2(ReLU(W1Yde + b1)) + b2, (28)

where W1, W2, b1, and b2 are learnable parameters of the FC layer. ReLU denotes the
activation function, and ŷt+1:t+τ is the NTP target.

3.7. Cost Function

The widely used exponential mean square error (MSE) is utilized as a cost function to
calculate the errors of the ground truth and the predicted value [32].

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2, (29)

where yi and ŷi are the ground truth and predicted value of the network traffic, respectively.
m denotes the total number of the training samples.

4. Evaluation
4.1. Dataset Description and Experiment Setup
4.1.1. Dataset Description

The evaluation dataset is an openly accessible multi-source dataset of the Telecom
Italia Big Data Challenge [33], which is widely used in NTP evaluation. The dataset consists
of a time series of traffic from 1 November 2013 to 1 January 2014 in Milan and Trentino,
with an interval of 10 min. This dataset records five main types of activity data attributes,
including Received SMS, Sent SMS, Incoming Call, Outgoing Call, and Internet. As the
statement in Problem Formulation, the Internet attribute is the target predicted variable,
and the other variables are the covariates associated with the target Internet.

4.1.2. Experiment Setup

The experimental data preprocessing strategy is performed as follows. We combine
the receive and send dimensions and adopt the preprocessing measures by inputting the
total traffic in the prediction model. All data are pre-processed by min-max normalization,
which allows the model to converge faster and improves the computational efficiency of
the fitting process, thus benefiting the accurate NTP [19]. A total of 80% of the historical
data is applied as the training dataset and the remaining 20% is applied as the test dataset.
To avoid overfitting in training, we randomly divide part data from the training set as
the validation set. All the datasets are constructed using the widely used sliding window
method [20].

The hyperparameter settings of the SPM model and its variants are as follows. The num-
ber of symmetric SPM Encoder and Decoder is 3 and the number of attention heads is
4. Moreover, the Adam [34] optimizer is adopted, the initial learning rate is set to 0.02,
the batch size is 32, and the number of training iterations is 300.

4.1.3. Evaluated Approaches and Metrics

We implement the following baseline approaches.
• ARIMA [11], or autoregressive integrated moving average model, is one of the most

classic time series prediction models;
• LSTM [35], or long short-term memory, is an extension of the RNN model;
• GRU [16], or gated recurrent unit, is a variant of LSTM;
• DeepAR [27] is a probabilistic prediction model based on neural networks, and its

prediction target is the probability distribution of sequences over time steps;

Symmetry 2022, 14, 2319 11 of 20

• Transformer [20] is an improved prediction model based on vanilla Transformer.

To evaluate the NTP accuracy of these approaches, we adopt three metrics to evaluate
the NTP accuracy, i.e., the root mean square error (RMSE), mean absolute error (MAE),
and determination coefficient R2. Their calculation formulas are given as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (30)

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (31)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

, (32)

where yi and ŷi are the ground truth and predicted value of network traffic, respectively.
ȳ is the average values of the ground truth. n is the length of the sequence to be predicted.

4.2. Evaluation Results

Tables 2–7 demonstrate the comparison results of SPM and baseline methods on
two datasets, respectively. From the table, three observations can be found.

(1) The performance of the classical model (e.g., ARIMA) is generally lower than that of
the NN-based approaches, because such classical approaches generally rely on the
mean value of history;

(2) Transformer has effective performance when the prediction step is short (τ = 144).
However, as the prediction step increases (τ = 432, 1008), the Transformer pays
attention to all the features. It will generate a quadratic complexity, causing its
inference speed to be slow. In addition, the key attention feature will also be affected
by most other non-critical attention features, resulting in performance degradation,
which is lower than the DeepAR;

(3) SPM can decrease the interference of other non-critical attention information and
focus on more key attention information, which can effectively improve the prediction
performance. For instance, on the Milian dataset (τ = 1008), SPM achieves RMSE
reductions of 52.7%, 55.9%, and 23.5%, compared with GRU, LSTM, and DeepAR
respectively. Moreover, compared with Transformer, SPM reduces the prediction
MAE and RMSE by 48.3% and 42.9%, respectively. When measured by R2, the average
R2 of SPM at different prediction steps is about 0.1142 and 0.1553 higher than the
sub-optimal baseline in the two datasets, respectively.

Table 2. Experimental results of RMSE (×10−2) on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 190.1470 196.6632 206.1349
GRU 99.6861 150.1390 142.0568
LSTM 107.0977 131.5001 152.1568

DeepAR 89.4358 74.2318 87.7861
Transformer 79.8580 87.7893 126.4511

SPM 49.1054 58.4251 67.1300
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Symmetry 2022, 14, 2319 12 of 20

Table 3. Experimental results of MAE on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 1.3847 1.5369 1.6408
GRU 0.7939 1.1959 1.1203
LSTM 0.8931 1.0615 1.1814

DeepAR 0.5981 0.5570 0.6963
Transformer 0.6378 0.6637 0.9250

SPM 0.3839 0.3785 0.4782
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 4. Experimental results of R2 on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 0.8777 0.8249 0.8128
GRU 0.9163 0.8803 0.7832
LSTM 0.9546 0.8183 0.8365

DeepAR 0.9790 0.9546 0.9177
Transformer 0.9849 0.8072 0.6995

SPM 0.9901 0.9630 0.9578
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 5. Experimental results of RMSE (×10−2) on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 89.1283 112.846 120.8139
GRU 73.7290 93.2989 130.0032
LSTM 54.3140 114.9338 112.9086

DeepAR 36.9362 57.4856 80.1257
Transformer 31.3617 118.3934 153.0669

SPM 25.4240 51.8640 57.3931
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 6. Experimental results of MAE on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 0.6029 0.7877 0.8477
GRU 0.5470 0.6848 0.9567
LSTM 0.4299 0.8825 0.7772

DeepAR 0.2453 0.3924 0.6811
Transformer 0.2356 0.8722 0.9705

SPM 0.1933 0.3794 0.3902
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 7. Experimental results of R2 on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

ARIMA 0.8612 0.7758 0.7344
GRU 0.9050 0.8467 0.6924
LSTM 0.9485 0.7674 0.7680

DeepAR 0.9762 0.9418 0.8832
Transformer 0.9829 0.7532 0.5736

SPM 0.9887 0.9527 0.9401
Bolded indicates the optimal value, underlined denotes sub-optimal value.

The NTP results are illustrated in Figures 4 and 5. We plot NTP results for τ = 432 on
Milan and τ = 144 on Trentino datasets, with similar results for other prediction steps. It
can be seen that SPM can achieve the optimal NTP accuracy with respect to the baseline

Symmetry 2022, 14, 2319 13 of 20

approaches. On average, when measured by MAE, SPM outperforms the sub-optimal
method by 33.0% and 21.3% in two datasets respectively.

Figure 4. The network traffic prediction results of the Milan dataset on the prediction step τ = 432.

Figure 5. The network traffic prediction results of the Trentino dataset on the prediction step τ = 144.

Symmetry 2022, 14, 2319 14 of 20

4.3. Ablation Evaluation

To further verify the temporal performance of SPM, the ablation baselines are tested
in the same experimental environment. The encoder architecture of the ablation methods
are demonstrated in Figure 6.

• Transformer, an improved prediction model based on vanilla Transformer;
• PS, or ProbSparse Transformer, Ablation model, using the ProbSparse self-attention

layer to replace the vanilla self-attention layer;
• PM, or Persistent Memory Transformer, Ablation model, using the persistent memory

self-attention layer structure, removing the feed-forward sub-layer;
• SPM, the proposed symmetric model in this paper.

Figure 6. The encoder architecture of ablation methods.

4.3.1. Time Complexity Analysis

The SPM is an improvement based on the vanilla Transformer. The existing work
mainly analyzes the time complexity of the two main parts, which includes the self-attention
layer and the feed-forward layer. The vanilla Transformer has both O(L2d) in two parts [29].
The PS adopts the ProbSparse self-attention layer, and the complexity of the self-attention
part is O(Ld log L) [30]. The PM removes the feed-forward layer, and the complexity of feed-
forward is O(0) [31]. In the sparse persistent memory self-attention layer, the SPM adopts
the sparse query Qs to calculate the self-attention, the complexity is O(max(L, l)d log L).
Moreover, in the feed-forward layer, the SPM removes the feed-forward, and thus the
complexity is O(0). The complexity comparison results are shown in Table 8, where l is the
dimension of the added attention layer.

Table 8. Comparison of the time complexity.

Model Self-Attention Layer Feed-Forward Layer

Transformer O(L2d) O(L2d)
PS O(Ld log L) O(L2d)
PM O(L2d) O(0)

SPM O(max(L, l)d log L) O(0)

4.3.2. Ablation Evaluation Results of Temporal Performance

The temporal experimental results are demonstrated in Figures 7 and 8. From the
figure, three observations can be found.

(1) The PS Transformer replaces the vanilla attention layer with the ProbSparse self-
attention layer. In terms of time performance, the complexity of the ProbSparse self-
attention layer has been proved to be lower than that of the original attention layer.
Therefore, the training time of the PS Transformer model is shorter than that of the
Transformer model.

Symmetry 2022, 14, 2319 15 of 20

(2) PM Transformer adopts the structure of the PM self-attention layer, which eliminates
the feed-forward sub-layer and has low complexity. In terms of time performance,
although the complexity of the self-attention layer is O(L2d), the calculation method
of self-attention is direct and does not calculate other factors. Therefore, the training
time of PM is lower than that of SPM models.

(3) SPM utilizes the SPM self-attention layer to obtain key attention information in the
form of a sparse query matrix and carries out persistent memory for key attention
information to retain the key attention information in a new attention layer. When
calculating SPM attention, two attention fragments are calculated by branches and
the attention weight is concatenated. Although such a fragmented structure has
been shown to be beneficial for accuracy, it could decrease the efficiency because
it is unfriendly for devices with strong parallel computing powers such as GPU. It
also introduces extra overheads such as kernel launching and synchronization [36].
However, PM uses a simple single-branch calculation method, which can fully make
use of the parallel computing powers of GPU and has high training efficiency. Thus,
although the theoretical time complexity of SPM has reached a good level, the actual
training time may be longer than that of PM. Compared with other methods, SPM
removes the high complexity component of the feed-forward layer, and thus the time
performance is in sub-optimal performance. Compared with Transformer, the training
time of SPM is reduced by 22.2% and 30.4% on two real-world datasets, respectively.
Compared with the baseline approaches, the R2 evaluation metric is also optimal on
two datasets.

Figure 7. Comparison of the training time of the ablation models on the Milan datasets.

Figure 8. Comparison of the training time of the ablation models on the Trentino datasets.

Symmetry 2022, 14, 2319 16 of 20

4.3.3. Ablation Evaluation Results of Prediction Performance

The experimental results are demonstrated in Tables 9–14. From the table, three obser-
vations can be found.

(1) The PS Transformer replaces the vanilla self-attention layer with the ProbSparse self-
attention layer. Sparse attention will only lead to the loss of partial attention informa-
tion and can retain some key attention information. Therefore, the performance of
RMSE and MAE evaluation indicators is not significantly reduced compared to the
Transformer model, and still maintains a certain prediction accuracy;

(2) The PM Transformer removes the feed-forward layer directly. PM calculates all the
attention weights and cannot distinguish the key attention values. Moreover, there
is no feed-forward sub-layer to further extract the key features, resulting in its poor
prediction performance;

(3) SPM utilizes the SPM self-attention layer, obtains key attention information in the
form of a sparse query matrix, and carries out persistent memory for key attention
information, so as to retain key attention information in the new attention layer, thus
obtaining higher prediction accuracy.

Table 9. Ablation experimental results of RMSE (×10−2) on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 79.8580 87.7893 126.4511
PS 84.8511 92.1521 117.6370
PM 112.8224 136.8528 162.4517

SPM 49.1054 58.4251 67.1300
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 10. Ablation experimental results of MAE on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 0.6378 0.6637 0.9250
PS 0.6752 0.6837 0.9108
PM 0.8354 0.8909 1.2974

SPM 0.3839 0.3785 0.4782
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 11. Ablation experimental results of R2 on the Milan dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 0.9849 0.8072 0.6995
PS 0.9766 0.8275 0.7558
PM 0.9620 0.7752 0.5437

SPM 0.9901 0.9630 0.9578
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 12. Ablation experimental results of RMSE(×10−2) on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 31.3617 118.3934 153.0669
PS 39.0264 111.9865 137.9754
PM 49.6851 127.8553 188.6106

SPM 25.4240 51.8640 57.3931
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Symmetry 2022, 14, 2319 17 of 20

Table 13. Ablation experimental results of MAE on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 0.2356 0.8722 0.9705
PS 0.3035 0.8279 0.8083
PM 0.3336 0.9653 1.2941

SPM 0.1933 0.3794 0.3902
Bolded indicates the optimal value, underlined denotes sub-optimal value.

Table 14. Ablation experimental results of R2 on the Trentino dataset.

Methods τ = 144 τ = 432 τ = 1008

Transformer 0.9829 0.7532 0.5736
PS 0.9734 0.7792 0.6535
PM 0.9569 0.7121 0.3525

SPM 0.9887 0.9527 0.9401
Bolded indicates the optimal value, underlined denotes sub-optimal value.

The NTP results are illustrated in Figure 9. We plot NTP results for τ = 1008 on
Trentino dataset, with similar results for other prediction steps. It can be seen that compared
with the ablation methods, SPM can achieve the best NTP performance.

Figure 9. The network traffic prediction results of the Trentino dataset on the prediction step τ = 1008.

5. Conclusions

This paper focused on the prediction of network traffic. Most existing methods
(e.g., Transformer) have high predictive accuracy but also have high complexity. This
paper proposed the SPM attention mechanism, which can greatly capture and persistently

Symmetry 2022, 14, 2319 18 of 20

memorize the sparse primary features of network traffic. Based on SPM attention, we
propose the symmetric SPM encoder and decoder structure, which removes the feed-
forward sub-layer, further reduces the model complexity, and utilizes the sparse primary
features to predict network traffic accurately. By doing so, the MAE is reduced by 33.0%
and 21.3%, respectively, compared with the sub-optimal method on two real-world datasets.
When measured by temporal performance, the training time of SPM is reduced by 22.2%
and 30.4%, respectively, compared with Transformer. Meanwhile, the results of RMSE and
R2 are also optimal.

SPM only considers the temporal characteristics of network traffic, which improves
the temporal performance and prediction performance to some extent, but it may also
fail to properly and accurately represent the given data. The development of networks
makes traffic have more complex spatio-temporal characteristics. Due to the mutual
influence of the geographical structure of network nodes, only considering the temporal
characteristics of network traffic may be inaccurate in reality, thus the data representation
ability and prediction performance of SPM may be potentially degraded. For future works,
we will introduce the research on spatio-temporal traffic prediction in the network space,
and extract the complex spatio-temporal characteristics of network traffic to improve the
accuracy performance. Moreover, some promising fuzzy learning techniques [37–40] can be
adopted to reduce the model complexity and further improve the prediction performance
of the proposed method.

Author Contributions: Conceptualization, X.-S.M. and G.-H.J.; methodology, X.-S.M. and G.-H.J.;
software, G.-H.J. and B.Z.; validation, X.-S.M., G.-H.J. and B.Z.; formal analysis, X.-S.M., G.-H.J. and
B.Z.; investigation, G.-H.J. and B.Z.; resources, X.-S.M.; data curation, G.-H.J. and B.Z.; writing—original
draft preparation, G.-H.J.; writing—review and editing, X.-S.M. and B.Z.; visualization, G.-H.J.;
supervision, X.-S.M.; project administration, X.-S.M., G.-H.J. and B.Z.; funding acquisition, X.-S.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Hefei Municipal Natural Science Foundation [Grant
Number 2022015]; National Key R&D Program of China [Grant Number 2020YFC1512601].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, R.; Zhao, Z.; Zhou, X.; Palicot, J.; Zhang, H. The prediction analysis of cellular radio access network traffic: From entropy

theory to networking practice. IEEE Commun. Mag. 2014, 52, 234–240. [CrossRef]
2. Xu, Y.; Yin, F.; Xu, W.; Lin, J.; Cui, S. Wireless traffic prediction with scalable gaussian process: Framework, algorithms, and

verification. IEEE J. Sel. Areas Commun. 2019, 37, 1291–1306. [CrossRef]
3. Zhang, C.; Dang, S.; Shihada, B.; Alouini, M.-S. Dual attention-based federated learning for wireless traffic prediction. In

Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May
2021; pp. 1–10. [CrossRef]

4. Klaine, P.V.; Imran, M.A.; Onireti, O.; Souza, R.D. A survey of machine learning techniques applied to self-organizing cellular
networks. IEEE Commun. Surv. Tutor. 2017, 19, 2392–2431. [CrossRef]

5. Xu, F.; Lin, Y.; Huang, J.; Wu, D.; Shi, H.; Song, J.; Li, Y. Big data driven mobile traffic understanding and forecasting: A time
series approach. IEEE Trans. Serv. Comput. 2016, 9, 796–805. [CrossRef]

6. Hwang, S.-Y.; Shin, D.-J.; Kim, J.-J. Systematic review on identification and prediction of deep learning-based cyber security
technology and convergence fields. Symmetry 2022, 14, 683. [CrossRef]

7. Abadi, A.; Rajabioun, T.; Ioannou, P.A. Traffic flow prediction for road transportation networks with limited traffic data. IEEE
Trans. Intell. Transp. Syst. 2014, 16, 653–662. [CrossRef]

8. Abbasi, M.; Shahraki, A.; Taherkordi, A. Deep learning for network traffic monitoring and analysis (NTMA): A survey. Comput.
Commun. 2021, 170, 19–41. [CrossRef]

9. Zhang, C.; Zhang, H.; Qiao, J.; Yuan, D.; Zhang, M. Deep transfer learning for intelligent cellular traffic prediction based on
cross-domain big data. IEEE J. Sel. Areas Commun. 2019, 37, 1389–1401. [CrossRef]

http://doi.org/10.1109/MCOM.2014.6829969
http://dx.doi.org/10.1109/JSAC.2019.2904330
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488883
http://dx.doi.org/10.1109/COMST.2017.2727878
http://dx.doi.org/10.1109/TSC.2016.2599878
http://dx.doi.org/10.3390/sym14040683
http://dx.doi.org/10.1109/TITS.2014.2337238
http://dx.doi.org/10.1016/j.comcom.2021.01.021
http://dx.doi.org/10.1109/JSAC.2019.2904363

Symmetry 2022, 14, 2319 19 of 20

10. Wang, S.; Nie, L.; Li, G.; Wu, Y.; Ning, Z. A multitask learning-based network traffic prediction approach for SDN-enabled
industrial internet of things. IEEE Trans. Ind. Inform. 2022, 18, 7475–7483. [CrossRef]

11. Ariyo, A.A.; Adewumi, A.O.; Ayo, C.K. Stock price prediction using the ARIMA model. In Proceedings of the 2014 UKSim-
AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014; pp. 106–112.
[CrossRef]

12. Zare Moayedi, H.; Masnadi-Shirazi, M.A. ARIMA model for network traffic prediction and anomaly detection. In Proceedings of
the 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008; pp. 1–6. [CrossRef]

13. Li, Y.-H.; Wu, T.-X.; Zhai, D.-W.; Zhao, C.-H.; Zhou, Y.-F.; Qin, Y.-G.; Su, J.-S.; Qin, H. Hybrid decision based on DNN and DTC for
model predictive torque control of PMSM. Symmetry 2022, 14, 693. [CrossRef]

14. Lohrasbinasab, I.; Shahraki, A.; Taherkordi, A.; Delia Jurcut, A. From statistical- to machine learning-based network traffic
prediction. Trans. Emerg. Telecommun. Technol. 2022, 33, e4394. [CrossRef]

15. Cui, H.; Yao, M.Y.; Zhang, M.K.; Sun, F.; Liu, M.Y. Network traffic prediction based on Hadoop. In Proceedings of the 2014
International Symposium on Wireless Personal Multimedia Communications (WPMC), Sydney, Australia, 7–10 September 2014;
pp. 29–33.

16. Li, C.; Tang, G.; Xue, X.; Saeed, A.; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. IEEE Trans.
Sustain. Energy 2020, 11, 1370–1380. [CrossRef]

17. Zhang, C.; Patras, P. Long-term mobile traffic forecasting using deep spatio-temporal neural networks. In Proceedings of the
Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Los Angeles CA, USA, 26–29 June
2018; pp. 231–240.

18. Balraj, E.; Harini, R.M.; SB, S.P.; Janani, S. A DNN based LSTM model for predicting future energy consumption. In Proceedings
of the 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 9–11 May 2022;
pp. 1667–1671.

19. Bi, J.; Zhang, X.; Yuan, H.; Zhang, J.; Zhou, M. A hybrid prediction method for realistic network traffic with temporal convolutional
network and LSTM. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1869–1879. [CrossRef]

20. Wu, N.; Green, B.; Ben, X.; O’Banion, S. Deep transformer models for time series forecasting: The influenza prevalence case. arXiv
2020, arXiv:2001.08317.

21. Yuan, X.; Chen, N.; Wang, D.; Xie, G.; Zhang, D. Traffic prediction models of traffics at application layer in metro area network. J.
Comput. Res. Dev. 2009, 46, 434–442.

22. Jiang, M.; Wu, C.; Zhang, M.; Hu, D. Research on the comparison of time series models for network traffic prediction. Acta
Electron. Sin. 2009, 37, 2353–2358. [CrossRef]

23. Nie, L.; Wang, X.; Wang, S.; Ning, Z.; Obaidat, M.S.; Sadoun, B.; Li, S. Network traffic prediction in industrial internet of things
backbone networks: A multitask learning mechanism. IEEE Trans. Ind. Inform. 2021, 17, 7123–7132. [CrossRef]

24. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the
International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 2342–2350.

25. Cui, Z.; Ke, R.; Pu, Z.; Wang, Y. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting
network-wide traffic state with missing values. Transp. Res. Part C Emerg. Technol. 2020, 118, 102674. [CrossRef]

26. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016
31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016;
pp. 324–328.

27. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.
Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

29. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver,
BC, Canada, 8–14 December 2019; pp. 5243–5253.

30. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence
time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35,
pp. 11106–11115. [CrossRef]

31. Sukhbaatar, S.; Grave, E.; Lample, G.; Jegou, H.; Joulin, A. Augmenting self-attention with persistent memory. arXiv 2019,
arXiv:1907.01470.

32. Bao, Y.-X.; Shi, Q.; Shen, Q.-Q.; Cao, Y. Spatial-Temporal 3D Residual Correlation Network for Urban Traffic Status Prediction.
Symmetry 2022, 14, 33. [CrossRef]

33. Barlacchi, G.; De Nadai, M.; Larcher, R.; Casella, A.; Chitic, C.; Torrisi, G.; Antonelli, F.; Vespignani, A.; Pentland, A.; Lepri, B. A
multi-source dataset of urban life in the city of Milan and the province of Trentino. Sci. Data 2015, 2, 150055. [CrossRef] [PubMed]

34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Ali, A.; Hassanein, H.S. Time-series prediction for sensing in smart greenhouses. In Proceedings of the GLOBECOM 2020-2020

IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

http://dx.doi.org/10.1109/TII.2022.3141743
http://dx.doi.org/10.1109/UKSim.2014.67
http://dx.doi.org/10.1109/ITSIM.2008.4631947
http://dx.doi.org/10.3390/sym14040693
http://dx.doi.org/10.1002/ett.4394
http://dx.doi.org/10.1109/TSTE.2019.2926147
http://dx.doi.org/10.1109/TASE.2021.3077537
http://dx.doi.org/10.3321/j.issn:0372-2112.2009.11.001
http://dx.doi.org/10.1109/TII.2021.3050041
http://dx.doi.org/10.1016/j.trc.2020.102674
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.3390/sym14010033
http://dx.doi.org/10.1038/sdata.2015.55
http://www.ncbi.nlm.nih.gov/pubmed/26528394

Symmetry 2022, 14, 2319 20 of 20

36. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland,
2018; pp. 122–138.

37. Kalaycı, T.A.; Asan, U. Improving classification performance of fully connected layers by fuzzy clustering in transformed feature
space. Symmetry 2022, 14, 658. [CrossRef]

38. Tang, Y.; Pan, Z.; Pedrycz, W.; Ren, F.; Song, X. Viewpoint-based kernel fuzzy clustering with weight information granules. IEEE
Trans. Emerg. Top. Comput. Intell. 2022, 2022, 1–15. [CrossRef]

39. Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy c-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020,
87, 105928. [CrossRef]

40. Yang, J.-Q.; Chen, C.-H.; Li, J.-Y.; Liu, D.; Li, T.; Zhan, Z.-H. Compressed-encoding particle swarm optimization with fuzzy
learning for large-scale feature selection. Symmetry 2022, 14, 1142. [CrossRef]

http://dx.doi.org/10.3390/sym14040658
http://dx.doi.org/10.1109/TETCI.2022.3201620
http://dx.doi.org/10.1016/j.asoc.2019.105928
http://dx.doi.org/10.3390/sym14061142

	Introduction
	Related Work
	SPM for Network Traffic Prediction
	Problem Formulation
	Overview of SPM
	Input Layer
	Data Normalization
	Scalar Projection
	Timestamp Feature Encoding
	Position Encoding
	Input Feature Fusion Encoding

	Symmetric SPM Encoder Layer
	Sparse Query Block
	SPM Self-Attention
	Symmetric SPM Encoder Layer

	Symmetric SPM Decoder Layer
	ProbSparse Self-Attention
	Symmetric SPM Decoder Layer

	Output Layer
	Cost Function

	Evaluation
	Dataset Description and Experiment Setup
	Dataset Description
	Experiment Setup
	Evaluated Approaches and Metrics

	Evaluation Results
	Ablation Evaluation
	Time Complexity Analysis
	Ablation Evaluation Results of Temporal Performance
	Ablation Evaluation Results of Prediction Performance

	Conclusions
	References

