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Abstract: In order to reduce the circuit cost and improve the stability and flexibility of the circuit, a
simplified symmetry chaotic circuit was designed and implemented by using an inverse integration
circuit and a voltage follower as isolators. The change of different symmetry chaotic dynamic
behaviors caused by the change of parameters can be realized by adjusting the time constant. The
behavior coexistence characteristics and amplitude control characteristics under different initial
conditions were verified. The results of circuit experiments are in good agreement with those of
numerical simulation and theoretical analysis. This method is effective and feasible.

Keywords: chaotic system; chaotic circuit; inverse integration circuit; operational amplifier;
voltage follower

1. Introduction

Lorenz system, as the first discovered chaotic system model, has become a model for
the study of nonlinear dynamic systems [1].

.
x = σ(y− x)
.
y = λx− y− xz
.
z = xy− γz

(σ, λ, γ) = (10,
8
3

, 28) (1)

In 1999, Chen et al. constructed a dual system to the Lorenz chaotic system in the
sense defined by Celikovsky and Vanecek [2]. It is called the Chen chaotic system.

.
x = σ(y− x)
.
y = (λ− σ)x + λy− xz
.
z = xy− γz

(σ, γ, λ) = (35, 3, 28) (2)

In 2002, Lü et al. constructed the Lü chaotic system [3], which represents the transition
between the Chen chaotic system and the Lorenz chaotic system.

.
x = σ(y− x)
.
y = λy− xz
.
z = xy− γz

(σ, γ, λ) = (36, 3, 20) (3)

In 2008, Yang and Chen constructed the Yang and Chen chaotic system [4,5], which is
a system with two stable saddle focal points and one saddle point.

.
x = σ(y− x)
.
y = λx− xz
.
z = xy− γz

(σ, γ, λ) = (10, 3, 40) (4)
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These chaotic systems are not topologically equivalent but are closely related to each
other. Other scholars have also constructed some new chaotic systems, forming a large
family of chaotic systems [6–10].

In nonlinear systems and chaotic circuits, the design of signal sources based on chaos is
currently an active research topic. Recently, using embedded systems such as FPGA (Field
Programmable Gate Array), FPAA (Field Programmable Analog Array), and integrated
circuit technology to realize chaotic system has become a hot topic [11–13]. In Ref. [11],
CMOS OTA-based filters were used to realize fractional chaotic system circuits. Ref. [12]
uses FPGA to realize image encryption of a chaotic system. In Ref. [13], a memristor
chaotic system was realized by FPGA. Traditional chaotic system circuit is realized by using
operational amplifier and capacitor to form an inverse integrator, and using operational
amplifier and resistor to form an inverse summation circuit to realize linear operation. The
nonlinear operation circuit is realized by multiplier and resistor. The op-amp is used to solve
a differential equation for chaotic signal generation [14–19]. In Refs. [14–19], operational
amplifier and capacitor are used for reverse-phase integration operation, operational
amplifier is used for reverse-phase summing operation, and operational amplifier and
resistance are used for inverse operation. For the 3D chaotic system circuit, at least three or
four operational amplifiers are needed.

In the traditional chaotic system circuit implementation scheme, the use of too many
integrated operational amplifiers composed of computing units not only makes the circuit
structure more complex, but also makes the success rate of the circuit relatively low, so
that the whole circuit robustness is poor [20–23]. Recently, Bkakely et al. implemented the
Lorenz system circuit using a combination of two multipliers and multiple linear elements,
which is a simple Lorenz circuit without the use of operational amplifiers compared to
the original implementation [24]. The simplified circuit structure not only saves the cost
of components, but also improves the stability of the circuit, so that the circuit has better
robustness in the application [25,26]. Wu and Li used this method to implement 24 variable-
boostable chaotic systems [22,26]. The method in Refs. [20–25] can only realize chaotic
systems with symmetric terms, such as the Lorenz system, while for systems without
symmetric terms, such as system (4), it cannot be directly realized. Based on the idea of
simplified design, the system without symmetry term (4) can be realized by constructing a
voltage follower with an operational amplifier, and it can also be realized by constructing a
reverse-phase integrator.

Based on that simple structure, the present paper builds a symmetry chaotic system
with circuit realization. Based on this idea, a simple chaotic system circuit with symmetric
attractors is constructed in this paper. Instead of using at least three or four op-amps before,
there is only one op-amp in this circuit.

Different from the traditional one that uses at least three or four operational amplifiers,
only one operational amplifier is used to form the voltage follower or inverse integration
circuit in the circuit designed in this paper to realize the chaotic system, which reduces the
number of circuit components and thus reduces the design cost of the circuit. In this circuit,
the combination of resistance and capacitance can be used to adjust the system parameters.
Compared with the traditional circuit which only uses resistance to adjust the parameters,
the flexibility of parameter design in the circuit is improved. Compared with the traditional
design method, this design scheme uses less components, which improves the stability and
robustness of the circuit.

The left of this paper is organized as follows. In Section 2, function analysis of circuit
module. In Section 3, Lyapunov exponents spectrum and a bifurcation diagram of the
symmetry chaotic system are analyzed. In Section 4, the symmetry chaotic system is
realized in a simplified analog circuit. In Section 5, amplitude control of the symmetry
chaotic system variables is discussed. Conclusions are drawn in the last section.
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2. Function Analysis of Circuit Module
2.1. Function Analysis of the Voltage Follower and Multiplier

The circuit diagram of voltage follower is shown in Figure 1. Because of the “virtual
break” and “virtual short” of the op amp, the output voltage Vo is equal to the input
voltage Vi. As shown in Figure 2, using the external resistance, the multiplier AD633JN can
convert the external voltage output into the external current output. The external voltage
characteristic relationship of AD633JN can be expressed as: W = (X1−X2)(Y1−Y2)

10 + Z. If a
resistor is connected in series between W and Z, the output voltage-current relationship
can be expressed as: W = (X1−X2)(Y1−Y2)

10 + W − iR. Consequently, the current equation

i = (X1−X2)(Y1−Y2)
10R is obtained. The equation of

.
u = (X1−X2)(Y1−Y2)

10RC is derived.
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Figure 1. The diagram of voltage follower.
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Figure 2. The multiplier and resistance-capacity current control by the voltage follower.

2.2. Function Analysis of the Voltage Follower Circuit as Isolators

As shown in Figure 3, the output of multiplier AD633JN connects the capacitor C2 via
resistor R1, the output of the capacitor u2 connects in series with the output of the capacitor
u1 via the voltage follower and resistor R2. Because the input resistance of the op-amp is
infinite, which is equivalent to a circuit break, the current on the resistor R flows directly
into the capacitor C1, but not to the current C2. Therefore, the voltage generated by current
i through R only affects capacitance C1, but not capacitance C2. When a capacitor and a
multiplier are connected in series, as shown in Figure 3, the multiplier is connected through
external resistor R and capacitor C2, and capacitor C2 is connected to capacitor C1 through
voltage path follower and resistor R, as shown in Figure 3. From Kirchhoff’s current and



Symmetry 2022, 14, 2299 4 of 16

voltage law, the following expression can be obtained.
.
u = (X1−X2)(Y1−Y2)

10RC is derived. When

X1 = c, X2 = z, Y1 = x, Y2 = 0,u = y, so
.
y = (c−z)x

10RC .
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2.3. Function Analysis of Multiplier and Resistance-Capacity Parallel Connection in Series

The multiplier is connected in parallel with capacitor C through external resistors R1
and R2, as shown in Figure 4. The following expression can be obtained from the Kilhoff
law of current and voltage.

.
u = (X1−X2)(Y1−Y2)

10R1C − 1
R2C u is derived. When X1 = x, X2 = 0,

Y1 = y, Y2 = 0, u = z, so
.
z = xy

10R1C −
1

R2C z.
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Figure 4. The multiplier and resistance-capacity parallel connection in series.

2.4. Function Analysis of the Inverse Integration Circuit as Isolators

As shown in Figure 5, the output u2 of the op-amp is connected in series to another output
u1 through the resistor R2. Because the op-amp output resistance is very small, equivalent
to a circuit short circuit, the output from the output u1 on the reverse current i, through the
resistance R2, flow to the op-amp, but not to the capacitor C2. Therefore, the voltage generated
by current i through R only affects capacitance C1, but not capacitance C2.
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Figure 5. The multiplier and the inverse integration circuit connection in series as isolators.

The multiplier and the inverse integration circuit connect in series as isolators, as
shown in Figure 5. From the current balance under Kirchhoff’s Law, the equation of
.
u2 = − (X1−X2)(Y1−Y2)

10R1C2
,

.
u1 = u2−u1

R1C1
is derived, When X1 = 0, X2 = x, Y1 = c, Y2 = 0,

u1 = x, u2 = y,so
.
x = y−x

R1C1
,

.
y = (c−z)x

10R1C2
.

3. Bifurcation Analysis of Lyapunov Exponents Spectrum and Bifurcation Diagram

As a and b vary, the dynamics of system (4) are further researching by phase portrait,
bifurcation diagram, Lyapunov exponents spectrum, and so on. In the following matalb
solution, when the initial condition is (2,2,2) and the time interval is 0.001, the Runge–Kutta
method of order 4–5 is adopted to solve the differential equation. The three Lyapunov
exponents of system (4) are denoted by L1, L2, L3 and L1 > L2 > L3.

3.1. Fixing a = 10, c = 40 and Varying b

The Lyapunov exponents spectrum of state variable x of system (4) with respect
to parameter b is shown in Figure 6a. The corresponding bifurcation diagram is given
in Figure 6b. It is clear that the Lyapunov exponents spectrum coincides well with the
bifurcation diagram.
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Figure 6. Dynamics of system (4) with a = 10, c = 40 under IC = [2,2,2]. (a) Lyapunov exponent
spectrum. (b) Bifurcation diagram.

When b ∈ [1, 6], L1 > 0, L2 = 0 and L3 < 0, and symmetry chaotic attractors will appear.
When b = 1, 2, 3.5, 5 and 6, some chaotic attractors are shown in Figures 7a, 8a, 9a, 10a and 11a,
respectively, with corresponding Lyapunov exponents shown in Table 1.
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Figure 7. Symmetry chaotic attractors of system (4) with b = 1. (a) Numerical simulation. (b) Experi-
mental results.
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Figure 8. Symmetry chaotic attractors of system (4) with b = 2. (a) Numerical simulation. (b) Experi-
mental results.
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Figure 9. Symmetry chaotic attractors of system (4) with b = 3.5. (a) Numerical simulation. (b) Ex-
perimental results.
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Figure 10. Symmetry chaotic attractors of system (4) with b = 5. (a) Numerical simulation. (b) Exper-
imental results.
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Figure 11. Symmetry chaotic attractors of system (4) with b = 6. (a) Numerical simulation. (b) Exper-
imental results.

Table 1. Typical phase trajectories of system (4) with a = 10, c = 40 and initial condition (2, 2, 2).

b Attractor Lyapunov Exponents

1 chaotic (0.853348,0,−11.781354)
2 chaotic (1.173480,0,−13.136391)

3.5 chaotic (1.233097,0,−14.707076)
4 chaotic (1.24612,0,−15.218009)
5 chaotic (1.252662,0,−16.225784)
6 chaotic (1.282429,0,−17.261460)

3.2. Fixing b = 3, c = 40 and Varying a

Figure 12 shows the bifurcation diagram and the Lyapunov exponent spectrum of
system (4) with respect to parameter a. Obviously, the Lyapunov exponents spectrum
coincides well with the bifurcation diagram.
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Figure 12. Dynamics of system (4) with b = 3, c = 40 under IC = [2,2,2]. (a) Lyapunov exponent
spectrum. (b) Bifurcation diagram.
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When a ∈ [3, 15], L1 > 0, L2 = 0 and L3 < 0, symmetry chaotic attractors will appear.
When a = 3.75, 7.5, 12 and 15, some chaotic attractors are shown in Figures 13a, 14a, 15a and 16a,
respectively, with corresponding Lyapunov exponents shown in Table 2.
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Figure 13. Symmetry chaotic attractors of system (4) with a = 3.75. (a) Numerical simulation.
(b) Experimental results.
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Figure 14. Symmetry chaotic attractors of system (4) with a = 7.5. (a) Numerical simulation.
(b) Experimental results.
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Figure 15. Symmetry chaotic attractors of system (4) with a = 12. (a) Numerical simulation. (b) Ex-
perimental results.
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Figure 16. Symmetry chaotic attractors of system (4) with a = 15. (a) Numerical simulation. (b) Ex-
perimental results.

Table 2. Typical phase trajectories of system (4) with b = 3, c = 40 and initial condition (2, 2, 2).

a Attractor Lyapunov Exponents

3.75 chaotic (0.383651,0,−7.128153)
7.5 chaotic (0.935087,0,−11.4205181)
12 chaotic (1.294339,0,−16.245770)
15 chaotic (1.297606,0,−19.201739)
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4. Simplified Circuit Realization and Experimental Results

The realization of chaos circuit is the basis of chaos application in engineering practice.
In this part, using two multipliers, one operational amplifier, and some passive components,
based on the design idea of simplified circuit, a simplified chaotic circuit was designed to
realize system (4). Through the external resistance of the multiplier, the voltage is converted
into current. According to Kirchhoff’s current law, the voltage summation operation is
realized by the capacitor integration, and the voltage product operation is realized by
the multiplier.

The operational amplifier LF347BN, the multiplier AD633JN, has a scale factor of 0.1.
The positive and negative poles were connected with VCC and VEE, respectively.

4.1. Simplified Circuit Realization Based on Voltage Follower

Taking advantage of some external voltage input characteristics of the multiplier, the
system (4) is implemented in a simplified circuit based on voltage follower, as shown
in Figure 17.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

All capacitance are set to 10nF , according to the Equations (4) and (5), and we set 

1 1R k=  , 2 10R k=  , 3 110 , 4R k V=  =  in Figure 17. The equation is transformed as fol-

lows: 

4

10( )

40 10

100

dx
y x

d

dy
x xz

d

dz
xy z

d R








= −




= −



= −


 (6) 

 

Figure 17. The analog circuit of the simplified circuit realization based on voltage follower. 

When 4 100R k=  , it is 1b = , the circuit experimental results obtained from oscillo-

scopes are shown in Figure 7b. When 4 50R k=  , it is 2b = , the circuit experimental re-

sults obtained from oscilloscopes are shown in Figure 8b. When 4 28.5R k=  , it is 3.5b =

, and the circuit experimental results obtained from oscilloscopes are shown in Figure 9b. 

When 4 20R k=  , it is 5b = , and the circuit experimental results obtained from oscillo-

scopes are shown in Figure 10b. When 4 16.7R k=  , it is 6b = , and the circuit experi-

mental results obtained from oscilloscopes are shown in Figure 11b. It is obvious that the 

numerical simulation results matched well with the circuit experimental results. 

4.2. Simplified Circuit Realization Based on Inverse Integration 

The circuit simulation of the chaotic system could be realized. For time scaling factors 
100t = , Equation (4) can be written as follows: 

100 ( )

100 100

100 100

dx
a y x

d

dy
cx xz

d

dz
xy bz

d








= −




= −



= −


 (7) 

The analog circuit is shown in Figure 18, from which the state equations can be ob-

tained as follows:  
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According to system (4), the circuit equation is described by
dx
dt = 1

R2C1
(y− x)

dy
dt = (V1−z)x

10R1C2
dz
dt = xy

10R3C3
− 1

R4C3
z

(5)

All capacitance are set to 10 nF, according to the Equations (4) and (5), and we set
R1 = 1 kΩ, R2 = 10 kΩ, R3 = 10 kΩ, V1 = 4 in Figure 17. The equation is transformed
as follows: 

dx
dτ = 10(y− x)
dy
dτ = 40x− 10xz
dz
dτ = xy− 100

R4
z

(6)

When R4 = 100 kΩ, it is b = 1, the circuit experimental results obtained from
oscilloscopes are shown in Figure 7b. When R4 = 50 kΩ, it is b = 2, the circuit experimental
results obtained from oscilloscopes are shown in Figure 8b. When R4 = 28.5 kΩ, it is
b = 3.5, and the circuit experimental results obtained from oscilloscopes are shown in
Figure 9b. When R4 = 20 kΩ, it is b = 5, and the circuit experimental results obtained
from oscilloscopes are shown in Figure 10b. When R4 = 16.7 kΩ, it is b = 6, and the circuit
experimental results obtained from oscilloscopes are shown in Figure 11b. It is obvious that
the numerical simulation results matched well with the circuit experimental results.
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4.2. Simplified Circuit Realization Based on Inverse Integration

The circuit simulation of the chaotic system could be realized. For time scaling factors
τ = 100t, Equation (4) can be written as follows:

dx
dτ = 100a(y− x)
dy
dτ = 100cx− 100xz
dz
dτ = 100xy− 100bz

(7)

The analog circuit is shown in Figure 18, from which the state equations can be
obtained as follows: 

dx
dt = 1

R2C1
(y− x)

dy
dt = − (V1−z)(−x)

10R1C2
dz
dt = xy

10R3C3
− 1

R4C3
z

(8)
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Supposing that the coefficients in Equation (7) are equal to the corresponding ones in
Equation (8), the above equations can be written as follows:

1
R2C1

= 100a,
V1

R1C2
= 100c,

1
R1C2

= 10,
1

R3C3
= 100,

1
R3C3

= 100b

The specific resistance parameters and capacitance parameters were set as C1 = C2 =
C3 = 100 nF, R1 = 1 kΩ, R3 = 10 kΩ,R4 = 33.3 kΩ, and the resistance parameters could be
calculated as: When a = 3.75, it is R2 = 2.67 kΩ, the circuit experimental results obtained
from oscilloscopes are shown in Figure 13b. When a = 7.5, it is R2 = 1.35 kΩ, and the
circuit experimental results obtained from oscilloscopes are shown in Figure 14b. When
a = 12, it is R2 = 0.83 kΩ, and the circuit experimental results obtained from oscilloscopes
are shown in Figure 15b. When a = 3.75, it is R2 = 0.67 kΩ, and the results obtained from
oscilloscopes are shown in Figure 16b. As can be seen from Figure 13b to Figure 16b, the
results of circuit experimental are consistent with the results of the numerical simulations,
shown from Figure 13a to Figure 16a.

4.3. The Frequency Behavior of the System (4)

The frequency of the circuit can be increased by reducing the capacitance in it. When
a = 10, b = 3, c = 40, the C1 = C2 = C3 = 100 nF and C1 = C2 = C3 = 68 nF, respectively,
the x variable FFT of the chaotic waveforms of Figure 17 are shown in Figure 19a,b. When
a = 10, b = 3, c = 40, the C1 = C2= C3= 47 nF and C1 = C2 = C3 = 22 nF, respectively,
the x variable FFT of the chaotic waveforms of Figure 17 are shown in Figure 19c,d.
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C1 = C2 = C3 = 22 nF.

From Figure 19, it can be seen that the frequency gradually increases with the decrease
of capacitance value. Therefore, it is possible to increase the frequency of the circuit by
reducing the capacitance value in the circuit.

5. Amplitude Control by a Single Parameter

For a dynamic system, there are many parameters that affect its dynamic characteris-
tics, some of which affect the bifurcation characteristics, and some of which do not. The
Yang–Chen chaotic system introduces only a quadratic term with a parameter to adjust the
amplitude. When a = 10, b = 3, c = 40, let x → (x/

√
m) , y→ (y/

√
m) , z→ z , system (4)

turns to be, 
.
x = a(y− x)
.
y = cx− 10xz
.
z = mxy− bz

(9)

the parameter m makes the state variables x, y rescaled by the parameter
√

m, but cannot
control the state variable z. As shown in Figure 20a, parameter m has basically the same
influence on the amplitude of system state variables x, y.
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The mean of the absolute value of the state variable decreases as m increases, but when
the parameter m changes in the range of [0 5], the Lyapuov exponent spectrum remains
constant, as shown in Figure 21. The controlled amplitude can be clearly seen from the
attractor, as shown in Figure 21a. Figure 21 shows that the amplitude of the attractor has a
negative proportion with the parameter m.

Symmetry 2022, 14, x FOR PEER REVIEW 23 of 24 
 

 

 

  

Figure 21. Dynamical evolution of system (9). (a) Average value of the absolute value of the chaotic 

signal. (b) Lyapunov exponent spectrum. 

When 1m = , it is 3 10R k=  , and 2m = , it is 3 5R k=  , and 4m = , it is 3 2.5R k= 

, the experimental results obtained from oscilloscopes are shown in Figure 20b. Figure 20b 

shows that the amplitude of ,x y  is controlled by adjusting resistance 3R . 

6. Conclusions 

In this paper, through the external input of multiplier, using voltage follower circuit 

and inverse integrator circuit, the circuit of simplified chaotic system is realized. The dy-

namic characteristics of the system were analyzed by Lypunaov exponential spectrum 

and bifurcation diagram, and numerical simulation was carried out. The circuit experi-

mental results are consistent with the numerical simulation results. The simplified circuit 

regulates the amplitude through resistance to obtain chaotic signals with controllable am-

plitude. The main disadvantages of this paper are: (1) the bias voltage of the components 

used is relatively high, and the power consumption is large. (2) The frequency of the gen-

erated signal is relatively low. Simplifying the circuit reduces the number of components, 

reduces the cost of the circuit, improves the stability and flexibility of the circuit, and pro-

vides strong technical support for the application of chaotic systems in information en-

cryption and other engineering practices. 

Further research needs to consider possible applications of this simple chaotic sys-

tem. 

Author Contributions: Conceptualization, Z.W.; methodology, Z.W.; software, Z.W.; validation, 

Z.W. and S.L.; formal analysis, Z.W. and S.L.; investigation, Z.W. and S.L; resources, Z.W. and S.L.; 

data curation, Z.W.; writing—original draft preparation, Z.W. and S.L.; writing—review and edit-

ing, Z.W. and S.L.; visualization, Z.W. and S.L.; supervision, Z.W. and S.L.; project administration, 

Z.W. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported the Natural Science Foundation of Shandong Province (Grant 

No.: ZR2014FQ019), the Key Research and Development Plan of Shandong Province (Grant No.: 

2017GGX10132). 

Data Availability Statement: The data used to support the findings of this study are available from 

the corresponding author upon request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lorenz, E.N. Deterministic non-perodic flows. Atoms Sci,1963, 20, 130. 

2. Chen, G.; Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. 

3. Lü, J.; Chen, G. A new chaotic attractor coined. Int. J. Bifurc. Chaos 2002, 12, 659–661. 

Figure 21. Dynamical evolution of system (9). (a) Average value of the absolute value of the chaotic
signal. (b) Lyapunov exponent spectrum.

When m = 1, it is R3 = 10 kΩ, and m = 2, it is R3 = 5 kΩ, and m = 4, it is R3 = 2.5 kΩ,
the experimental results obtained from oscilloscopes are shown in Figure 20b. Figure 20b
shows that the amplitude of x, y is controlled by adjusting resistance R3.

6. Conclusions

In this paper, through the external input of multiplier, using voltage follower circuit
and inverse integrator circuit, the circuit of simplified chaotic system is realized. The dy-
namic characteristics of the system were analyzed by Lypunaov exponential spectrum and
bifurcation diagram, and numerical simulation was carried out. The circuit experimental
results are consistent with the numerical simulation results. The simplified circuit regulates
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the amplitude through resistance to obtain chaotic signals with controllable amplitude.
The main disadvantages of this paper are: (1) the bias voltage of the components used is
relatively high, and the power consumption is large. (2) The frequency of the generated
signal is relatively low. Simplifying the circuit reduces the number of components, reduces
the cost of the circuit, improves the stability and flexibility of the circuit, and provides
strong technical support for the application of chaotic systems in information encryption
and other engineering practices.

Further research needs to consider possible applications of this simple chaotic system.
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