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Abstract: Real-time acquisition of industrial production data and rapid response to changes in
the external environment are key to ensuring the symmetry of a CPS. However, during industrial
production, the collected data are inevitably disturbed by environmental noise, which has a huge
impact on the subsequent data processing of a CPS. The types of noise vary greatly in different work
scenarios in a factory. Meanwhile, barriers such as data privacy protection and copyright restrictions
create great difficulties for model synthesis in the information space. A speech enhancement model
with teacher–student architecture based on federal knowledge distillation is proposed to alleviate
this problem. (1) We pre-train teacher models under different noise conditions to create multiple
teacher models with symmetry and excelling in the suppression of a priori noise. (2) We construct
a symmetric model–student model of the physical space of the teacher model trained on public
data and transfer the knowledge of the teacher model to the student model. The student model can
suppress multiple types of noise. Notably, with the TIMIT dataset and the NoiseX92 noise set, the
accuracy of the proposed method improved by an average of 1.00% over the randomly specified
teacher method in the PESQ metric and 0.17% for STOI.

Keywords: speech enhancement; CPS; symmetry; knowledge distillation; unsupervised

1. Introduction

CPSs (cyber–physical systems) are new complex network systems that integrate physi-
cal perception, computing, communication, and control to realize real-time perception and
distributed control of physical objects [1,2]. The rise of CPSs has helped the development
of industrial CPS by breaking the bottleneck in the traditional production of industrial
automation and control systems. Embedded systems built by sensors, actuators, proces-
sors, and heterogeneous networks provide extensive and flexible support for complex and
large-scale industrial production lines, promote high automation and intelligent integration
of future industries, and achieve closer collaboration between the work of robots and
humans [3] . Speech is the most natural and convenient form of human communication. In
many industrial CPS environments, where the operation of large equipment often requires
multiple people and machines to work together, speech communication is one of the most
effective ways to communicate. However, industrial facilities are frequently noisy environ-
ments where speech is invariably interfered with, especially when the amplitude of sound
generated by powering and operating large equipment is much greater than the intensity
of speech generated by workers. As a result, mutual communication becomes significantly
less effective. In severe cases, there will be ineffective communication, resulting in the
failure of collaborative work. Speech enhancement is used to restore clean speech signals
from noise-interfered speech signals, improving speech quality and listener comfort, and is
therefore widely used for speech in noisy environments [4].

After decades of development, numerous speech enhancement algorithms have been
proposed one after another, including classical speech enhancement methods such as
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spectral subtraction, Wiener filtering, statistical model-based methods, and subspace-based
methods [5–8]. These methods tend to assume smooth or slowly varying noise and enhance
speech suppressed by noise better under high signal-to-noise ratio (SNR), low complexity,
and smooth noise conditions. However, in factories, most of the noise is low SNR and
non-smooth, and traditional methods cannot track its features effectively [9], so they are
not well-suited to real industrial environments. Due to the excellent ability of deep neural
networks to model complex non-linear functions, training with datasets from different noisy
environments can achieve stable noise reduction performance even in highly unsteady
noise environments [10,11], supporting the implementation of the CPS.

Neural network-based supervised single-channel speech enhancement is mainly di-
vided into time–frequency masking-based methods and feature mapping-based methods.
The time–frequency-based masking method uses a neural network to obtain the time–
frequency relationship between clean and noisy speech, multiplies the mask estimate of
the clean speech with the original noisy speech, and then synthesizes the time-domain
waveform of the enhanced speech through an inverse conversion technique. Early mask-
ing methods only exploited the relationship between clean and noisy speech amplitudes,
ignoring the phase information between them, and include examples such as ideal bi-
nary masking (IBM) [12], ideal ratio masking (IRM) [13], and spectral amplitude masking
(SAM) [14]. However, research has found that phase information is important for speech
perception quality improvement at low SNR [15]. A phase-sensitive mask (PSM) [16]
showed the feasibility of phase estimation. Williamson et al. [17] proposed an ideal ratio
mask that can jointly estimate the real and imaginary parts of clean speech. Tan et al. [18]
proposed a convolutional recurrent network (CRN) for complex spectral mapping (CSM)
that can theoretically estimate the real and imaginary spectra of clean speech from the
spectrum of noisy speech. The authors of [19] combined a CRN with a DPRNN module to
improve both the local modeling capability and the long-term modeling capability of the
network. The signal is converted to the complex frequency domain through STFT, so the
speech enhancement algorithm needs to process the amplitude and phase of the speech sig-
nal concurrently [20]. Due to the difficulty of phase estimation, this imposes an upper limit
on the performance of speech enhancement. In addition, effective speech enhancement in
the STFT domain requires high-frequency resolution, which leads to a relatively large time
window length and also leads to large system delays because the minimum delay of the
system is limited by the length of the STFT time window, making it difficult to carry out
in practical applications. The feature mapping-based approach uses neural networks to
learn the complex mapping relationship between noisy and clean speech, and the network
directly outputs the waveform of the enhanced speech. Conv-TasNet [21] is a representative
and high-performance model for neural network noise reduction and speech improvement.
Conv-TasNet is a fully convolutional time-domain audio separation network that models
speech signals directly in the time domain. Pascual et al. [22] used GAN [23] in the field of
speech enhancement and achieved some enhancement. Considering the powerful modeling
capability of WaveNet [24] on speech waveforms, Ref. [25] proposed to introduce speech
prior distributions into the Bayesian WaveNet framework for speech enhancement. The
authors of [26] built on WaveNet by non-causal expansion convolution to predict the target
speech. Further, Refs. [27,28] proposed an end-to-end speech enhancement framework
using a fully convolutional neural network that focuses on time-dependent information
between long speech segments.

At the same time, the highly integrated features and large-scale production lines of
industrial CPS make information security issues increasingly prominent. Data commu-
nication is an important part of a CPS, so it is important to keep CPS information secure.
In practice, a CPS operates with data from different industrial production systems that may
come from a variety of privacy scenarios. Accessing source data from a variety of different
noisy environments faces significant barriers due to issues such as user data privacy and
security and commercial competition. For data privacy preservation, federated learning
has been proposed [29,30]. This paradigm enables models to collaboratively model differ-
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ent data structures and different institutions without uploading private data, effectively
protecting user privacy and data security.

Mainstream federal learning systems are often based on the assumption that local
data on the client side are labeled. However, in realistic scenarios, due to the high cost of
capturing clean and noisy speech pairs, the data on the client side is mostly unlabeled. As an
extension of federal learning, knowledge distillation extracts features of the teacher network
in an unsupervised manner and improves the performance of the student network based
on those features. Therefore, more and more researchers are trying to apply knowledge
distillation within unsupervised domain-adaptive methods.

Two heads are better than one. Since a combination of multiple teacher models
outperforms a single teacher, Ref. [31] transferred the predictive distribution of multiple
teachers as knowledge to the student model. In [32], the authors assigned weights to teacher
knowledge by analyzing the diversity of teacher models in the gradient space. The authors
of [33,34] extended knowledge distillation to domain adaptation by training multiple
teacher models in the source domain and pooling these models in the target domain to train
a student model. In recent years, the idea of knowledge distillation has been introduced
to improve the performance of speech enhancement models. The teacher network in [35]
uses enhanced speech, while the student model uses the original noise-laden speech for
ASR training, thus encouraging the student model to attempt speech enhancement within
the network. In [36], researchers implemented single-channel speech enhancement with
low latency online using teacher–student learning to prevent performance degradation
due to reduced input segment length. The authors of [37] used the noise reduction results
of the teacher model to optimize the student model for unsupervised learning. Recently,
Refs. [38,39] attempted to transfer knowledge from multiple teachers to student models
in speech enhancement. In [38], the spectrogram was divided into multiple sub-bands,
the teacher model was trained on each sub-band, and then the knowledge was migrated
from the teacher model to the general sub-band student enhancement model through a
framework of knowledge distillation. The performance of the student model exceeded
that of the corresponding full-band model. The authors of [39] trained teacher models on
multiple datasets with different SNRs and then used these teacher models to supervise the
training of student models.

To address the above problems of speech enhancement applied in industrial noise
environments, we combine speech enhancement with knowledge distillation to obtain
a comprehensive speech enhancement model that suppresses multiple industrial noise
types. To begin, the network structure of the built student model is comparable to that of
the instructor model. This similarity between the two models’ network structures can be
thought of as symmetry between the student model and the teacher model in the physical
space. After that, by using knowledge distillation, the prior knowledge of various teacher
models is transferred to a student model. As a result, the student model represents the
unity of the prior knowledge possessed by numerous teachers in the information space.
Consequently, the student model is a symmetrical and unified model of the instructor
model in both physical space and information space and has the ability to suppress various
forms of noise. The results also demonstrate that the performance of the teacher model is
enhanced by combining multiple teacher models, as each teacher model focuses on a single
noise-reduction problem.

The remainder of the paper is structured as follows: Section 2 focuses on the method-
ology proposed in this paper; Section 3 presents the experimental configurations; Section 4
describes the experimental results and analysis; and Section 5 concludes our work.

2. Models and Methods

CPS systems provide solutions for industrial settings where noise from various com-
plex production environments can easily interfere with speech. Speech enhancement can
effectively reduce the negative effects of noise on speech. In this section, we provide a
general introduction to the proposed framework. The framework is based on a pre-trained
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teacher model, where the knowledge of the teacher model at each node is then migrated to
the student network through a knowledge distillation framework, which is a symmetric
unification of different teacher models in the CPS physical space.

Figure 1 illustrates the overall pipeline of the proposed framework. The first step is
to train a teacher model with different noisy industrial speech data. The teacher model
adopts end-to-end time-domain speech enhancement that directly takes the speech signal
as input and allows the neural network to learn the relationship between input and output
layer-by-layer. Since the time-domain signal contains amplitude and phase information in
the frequency domain, the teacher model can learn the amplitude and phase characteristics
of clean speech. The second step is to use the pre-trained teacher model to train a student
model suitable for noise reduction of various industrial noises. Since the teacher model
focuses on the suppression of different noises, using a single teacher model for knowledge
distillation may interfere with the training of the student model. Thus, we combine
multiple teacher models to jointly supervise the training of the student model and transfer
the comprehensive knowledge to the student model to enable the student model to obtain
more information.

Figure 1. Illustration of our source-data-absent unsupervised distillation framework. First, several
teacher models are trained on single noisy data sources to obtain several teacher models applicable to
different industrial noise environments. The information from the teacher models is then combined
to supervise the training of the student model so that the student model can learn more features from
different teachers.

2.1. Problem Statement

Single-channel speech enhancement can be described as estimating clean speech y(t)
from noisy speech x(t). The clean speech y(t) can be expressed as: y(t) = x(t)− n(t),
where n(t) represents noise, and t represents the time sample index. The purpose of speech
enhancement algorithms is to find a function f , given x, to obtain an approximate estimate
of ŷ.

y ≈ ŷ = fθ(x) (1)

We want to use a source-domain dataset Ds = {
(
xs

i , ys
i
)
}Ns

i=1 consisting of multiple
pairs of different single-noise data sources, where xs

i ∈ Rn, ys
i ∈ Rn represent the couples

of noisy and clean speech, to train a global student model Sθ , where the target domain
data Dt = {xt

i ∈ Rn}Nt
i=1 are not labeled. To this end, teacher models {T1

θ , · · · , TC
θ } are first

trained from the source-domain data. Different teacher models are combined to supervise
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the training of student models in order to obtain a student model S suitable for noise
reduction in multiple environments.

θ∗S = argmax
θS

n

∑
i=0

E(S(x; θS); Ti(x; θT)) (2)

where E(·) represents the evaluation function.

2.2. Teacher Model

The teacher model uses an encoder, masking, and a decoder to predict clean speech in
a supervised manner ŷ [40]. Figure 2 illustrates the end-to-end architecture.

Figure 2. Teacher model architecture: the teacher model uses an attention-based mechanism to learn
clean speech and improve the noise reduction and generalization of the model.

2.2.1. Encoder

The encoder first uses a convolutional layer to change the number of channels from
1 to 64, where the convolutional kernel size is (1, 2), and the step size is (1, 2). Then, there
are layer normalization and PReLU [41]. A dense block [22] has four dilation convolution
layers that extract the features of the lower and higher dimensions of speech. This is
followed by the same convolution, further extracting features from the speech, with the
number of channels left unchanged, but the convolutional kernel size becomes (1, 3).

2.2.2. TSTM

The TSTM consists of four stacked two-stage transformer modules that learn local and
global high-level feature z. The two-stage transformer [42] module performs intra-block
and inter-block operations successively so as to realize the interactive processing between
local and global information by interlacing the processing of intra-block and intra-block
information [40].

2.2.3. Masking

Masking first performs nonlinear processing of the features resulting from PReLU.
The high-level features are then acquired by a 2D convolution. This is followed by two
2D convolutions then two nonlinear operations. Finally, the resulting mask is obtained by
multiplying the output as input to a 2D convolution and ReLU.
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2.2.4. Decoder

The decoder uses dense-block and sub-pixel convolution [43] to perform upsampling
of the feature vectors. Finally, the mask feature is reconstructed into enhanced speech ŷ
with a 2D convolution.

The output of the teacher model population can be expressed as:

ŷ = (Decoder(x⊗Masking(TSTM(Encoder(x))))) (3)

2.2.5. Loss

The loss of the teacher model LE combines MSE loss in the time domain LT with loss
in the frequency domain LF [44] :

LT =
1
N

N

∑
i=1

(yi − ŷi)
2

LF =
1

TF

T−1

∑
t=0

F−1

∑
f=0

[
(|Yr(t, f )|+ |Yi(t, f )|)−

(∣∣Ŷr(t, f )
∣∣+ ∣∣Ŷi(t, f )

∣∣)]
LE = αLT + (1− α)LF

(4)

where α is a hyperparameter optimized on the validation set (here it is set to 0.2), y and
ŷ denote the clean and enhanced speech samples, respectively, N is the speech length,
Y and Ŷ denote the STFT-transformed spectrograms of the clean and enhanced speech,
respectively, r and i denote the real and imaginary parts, respectively, T is the number of
frames, and F is the number of frequency bands.

2.3. Student Model with Mean Distillation

After each node is trained from local data to obtain a teacher model, a single knowl-
edge set from each of C teacher models is migrated to the student model by an average
distillation strategy. The student model has the structural symmetry of the physical space
of the teacher models. Because the student model and the teacher model are structurally
symmetrical, the teacher model can better guide the student model. Since the public data
are unlabeled, we chose the augmented speech of the teacher model as the training target
for the student model.

For a typical average distillation implementation, for a number of teacher models C
with a fixed learning rate η, each teacher model provides a target to the student model, and
gc = 4Lossc

(
ŷsr−1 , ŷc

)
, where ŷsr−1 is the enhanced speech output by the student model,

and ŷc is the speech output by the c teacher model. This is equivalent to each teacher
giving the student model a gradient, which is finally aggregated by the student model and
updated when ωr ← ωr−1 − η ∑C

c=1 gc is applied. Hence η ∑C
c=1 gc = 4Lossc

(
ŷsr−1 , ŷc

)
.

That is, C teacher models simultaneously perform gradient descent on the student model.
Since the teacher models excel in the suppression of different noises, a multi-teacher

hybrid teaching network is used instead of the traditional single-teacher network to enhance
the teaching breadth and ability of the teacher network. During training, the student
model can learn from multiple teacher networks, giving the student network more valid
information and enhancing the performance of the student network. The student model
is trained using public data to obtain a speech enhancement model suitable for multiple
noisy environments, as shown in Table 1.

We use the same loss function as the teacher model to minimize the difference between
the outputs of the student and teacher models. Since the student model is symmetrical to
the teacher model, this loss allows additional knowledge to be extracted from the teacher
model during student training and enhances the ability of the student model to enhance
speech under different noises:
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LS =
1
C

C

∑
j=1
LE
(
ŷs, ŷj

)
(5)

where LE denotes the loss function combining the time and frequency domains, ŷs denotes
the clean speech estimate of the student model output, and ŷj denotes the pseudo-label of
the j teacher model output.

Table 1. The overall training procedure of mean distillation r.

Input: θ
(0)
S // initial student model weights

Output: θ
(R)
S

1. for r = 1 : r ++; while r < R do
2. // Available teacher models θ

(r)
T ⊆ {1, · · · , C}

3. T ←− (split Dt into batch)
4. for batch t in T do
5. // average distillation from teacher model
6. θ

(r)
S ← θ

(r−1)
S − η∇Loss

(
θ
(r−1)
S ; t

)
8. end

3. Experiment
3.1. Dataset

We use a public dataset to evaluate the proposed approach, and the specific details of
the dataset are shown in Table 2.

(1) Teacher models: We built four teacher models. In order to train the teacher models in
different noise environments, we selected 11,572 clean data points from VoiceBank [45].
The VoiceBank corpus consisted of 30 native English speakers from different parts of
the world, each reading approximately 400 sentences, and we used 28 speakers for
training and 2 for testing. We also used four noises common in the CPS industry—
babble, white, destroyerops, and factory (from the NoiseX-92 dataset [46])—to generate
the noise-laden speech dataset. The noisy speech in the training set was added to a
random SNR of {0, 5, 10, 15} dB corresponding to the noise. The test set had a SNR of
{5, 10, 15} dB.

(2) Student model: A total of 6300 clean speech items were selected from the TIMIT train-
ing dataset and mixed at {0, 5, 10, 15} dB with the four noises we used in the teacher
model dataset at random. This produced 25, 200 noisy speech samples. Of these,
23, 450 were used as the training dataset, and 1750 were used as the validation dataset.
To evaluate the student model, 1344 speech sounds were selected from the TIMIT test
dataset and blended at {5, 10, 15} dB with the four noises present in the two datasets
above. The resulting 5376 noisy speech samples were used as the test dataset.

A PyTorch implementation of the proposed model can be found at “http://www.msp-
lab.cn:1436/ALu/AvgKD-SE-in-CPS-industry” (accessed 4 October 2022).

Table 2. Relevant descriptions of the training and testing datasets.

Dataset Type Information Source

Clean speech
Teacher model 30 speakers training 28 speakers

testing 2 speakers VoiceBank corpus [45]

Student model 630 speakers training 462 speakers
testing 168 speakers TIMIT [47]

Noise

white Sampling a high-quality analog noise generator

NoiseX92 [46]babble 100 people speaking in a canteen
factory Plate-cutting and electrical welding equipment

destroyerops Samples from microphone on digital audio tape

3.2. Training Detail

The sampling rate for all speech was 16,000 Hz. Each frame had a size of 512 samples
with an overlap of 256 samples. If the time to train a particular speech sample was greater

http://www.msp-lab.cn:1436/ALu/AvgKD-SE-in-CPS-industry
http://www.msp-lab.cn:1436/ALu/AvgKD-SE-in-CPS-industry
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than 4 s, we sliced a random 4 s segment from it. In batch processing, shorter speech wa zero-
padded to match the size of the longest speech. In the training phase, we trained the model
for 100 epochs and optimized it using the Adam optimizer (decay rate β1 = 0.9, β2 = 0.999).
For the learning rate, we used the dynamic strategy [42] in the training phase.

3.3. Evaluation Metrics

PESQ: Perceptual Evaluation of Speech Quality (PESQ) [4] is one of the most commonly
used metrics for evaluating speech quality and is similar to MOS, but its calculation is
much more complex and includes pre-processing, temporal alignment, perceptual filtering,
masking effects, etc. The range of PESQ value is [−0.5, 4.5]. The higher the PESQ value,
the better the audible speech quality of the tested speech.

STOI: Short-Time Objective Intelligibility (STOI) [48] is calculated based on the tempo-
ral envelope correlation coefficients of clean and noisy speech. It has been shown that STOI
correlates well with the results of intelligibility listening experiments. The value range of
STOI is [0, 1], and it is positively correlated with subjective speech intelligibility; that is,
the larger the value, the better the speech intelligibility.

4. Discussion
4.1. Evaluation of the Teacher Models

In this section, we present the training results of the teacher models for four CPS
industrial background noises and test them on four noisy datasets. Four types of noise
under four SNRs of 5 dB, 10 dB, and 15 dB are plotted in Figure 3, where the same noise
conditions as in the training set were used for testing. We observed that the teacher model
trained for a certain noise condition always outperformed the other teacher models in
terms of noise reduction, even under different SNRs. This result confirms our conjecture.

Next, we further verified that the teacher model was better at suppressing a priori noise
testing with invisible speakers. The test results for different objective evaluation metrics
are given in Tables 3 and 4. “White_T” denotes the teacher model obtained by training
under the white noise condition. Similarly, “Babble_T”, “Factory_T”, and “Destroyerops_T”
denote teacher models trained under babble, factory, and destroyerops noise conditions,
respectively. As can be seen from Tables 3 and 4, the teacher models trained with the
corresponding environmental noise are better able to tap into the corresponding noise
information and are far better than the other models in the corresponding noise conditions.
As the models are more focused on noise reduction of one type of noise, the teacher models
can still achieve good noise reduction results even at a low SNR ratio of 5 dB.

Table 3. Average PESQs of teacher models on VoiseBank + NoiseX92.

Noise Type White Babble Factory Destroyerops
SNR 5 10 15 5 10 15 5 10 15 5 10 15

noisy 1.3502 1.6011 1.9188 1.955 2.3697 2.765 1.7486 2.1791 2.6098 1.7337 2.1716 2.594
White-T 3.2178 3.6357 3.9430 2.0419 2.4767 2.9081 2.0387 2.5519 3.0627 2.0122 2.4935 2.9522
Babble-T 1.3991 1.6337 1.9476 3.4725 3.7636 3.9862 2.4183 2.7894 3.1658 2.2434 2.6867 3.0835
Factory-T 2.5898 3.0094 3.4656 2.7635 3.1792 3.5274 3.2973 3.6181 3.8932 2.8717 3.2751 3.6161

Destroyerops-T 2.6038 3.0335 3.3431 2.5517 2.9989 3.3964 2.5754 2.9510 3.2934 3.2275 3.5150 3.7427

Table 4. Average STOIs of teacher models on VoiseBank + NoiseX92.

Noise Type White Babble Factory Destroyerops
SNR 5 10 15 5 10 15 5 10 15 5 10 15

noisy 0.9200 0.9481 0.9668 0.9235 0.9446 0.96 0.9241 0.9465 0.9628 0.9264 0.9478 0.9619
White-T 0.9538 0.9693 0.9798 0.9265 0.9471 0.9618 0.9291 0.9504 0.9660 0.9309 0.9513 0.9648
Babble-T 0.9283 0.9516 0.9671 0.9602 0.9696 0.9762 0.9449 0.9595 0.9701 0.9493 0.9638 0.9728
Factory-T 0.9435 0.9604 0.9718 0.9466 0.9597 0.9704 0.9563 0.9677 0.9763 0.9517 0.9647 0.9735

Destroyerops-T 0.9366 0.9543 0.9650 0.9471 0.9612 0.9718 0.9458 0.9599 0.9709 0.9610 0.9706 0.9777
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Figure 3. Experimental results under different noises and SNRs. The evaluation metrics from the first
and second rows are PESQ and STOI, respectively: teacher model testing results at SNRs of (a,b) 5 dB,
(c,d) 10 dB, and (e,f) 15 dB.

From the test results of the teacher model, we can find that the teacher model is
symmetrical in physical space but has a different ability to suppress noise. Synthesizing
the knowledge of these teacher models to obtain a symmetric and uniform speech noise
reduction model is the key to suppressing CPS industrial noise. Next, we show the test
results of the student models obtained using different distillation methods. These results
further substantiate our conjecture.

4.2. Student Models on TIMIT + NoiseX92

In this section, we perform an ablation study to analyze the effectiveness of the noise
representation model in the proposed framework. For the following two variants of our
method: (1) Random_S denotes randomly selected loss done on the pseudolabels and
augmented speech output from the teacher model and the student model, and (2) AVE_S
denotes loss done on the pseudolabels and augmented speech output from the student
model for each teacher model and then averaged.

Tables 5 and 6 give the PESQ and STOI scores of the student model on the TIMIT + Noi-
seX92 datasets. First, we observe that both student models are suppressed by different
noises. This implies that pre-trained teacher models can be used to provide pseudolabels
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when labels are missing from the dataset, and that the student models can learn noise
reduction capabilities from these pseudolabels. Furthermore, the AVE_S model was 1.00%
better than Random_S in terms of PESQ and 0.17% better in terms of STOI in most test
cases. This indicates that multiple-teacher model distillation can provide more knowledge
to the student model.

In order to more intuitively compare the enhancement due to various algorithms,
we compared and analyzed the spectrograms of the enhanced speech of each network.
Figure 4 is a spectrum of enhanced speech samples obtained using different algorithms
under four noise conditions with an SNR of 5dB, with the horizontal axis representing time
T and the vertical axis representing the speech signal frequency F. The leftmost column of
Figure 4 is the spectrogram obtained by adding different noises to the same clean speech.
The middle column is the spectrogram of the clean speech, and the right is the enhanced
speech in our experiment. As can be seen from the spectra, the characteristics of the four
noisy speech sources are also different. Through comparative analysis of the four spectra,
it can be seen that white noise has the same interference with all frequencies of noise.
Babble noise, on the other hand, mainly interferes with the low-frequency band, possibly
because babble is mainly background noise where multiple people are talking. Factory and
destroyerops noises impact the low, mid, and high bands of speech, but they are not the
same as white noise.

Figure 4. Spectrograms of different distillation methods at different noise conditions. Figures
show the results of noisy speech, speech enhanced by AVE_S, and clean speech under four noise
conditions, respectively.
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Table 5. Average PESQs of student models on TIMIT + NoiseX92.

Noise Type White Babble Factory Destroyerops

SNR 5 10 15 5 10 15 5 10 15 5 10 15
noisy 1.3314 1.6784 2.1967 1.8224 2.321 2.8465 1.7311 2.2928 2.9016 1.6181 2.1384 2.7365

Random-S 2.4116 2.9373 3.3127 2.4754 2.9764 3.3710 2.3568 2.9448 3.3852 2.3273 2.9081 3.3567
AVE-S 2.4503 2.9564 3.3043 2.4846 3.0094 3.3901 2.3917 2.9798 3.3879 2.3875 2.9657 3.3784

Table 6. Average STOIs of student models on TIMIT + NoiseX92.

Noise Type White Babble Factory Destroyerops

SNR 5 10 15 5 10 15 5 10 15 5 10 15
noisy 0.9440 0.9767 0.9912 0.9097 0.9537 0.9782 0.9271 0.9667 0.9860 0.9022 0.9501 0.9777

Random-S 0.9475 0.9734 0.9854 0.9479 0.9702 0.9831 0.9547 0.9758 0.9867 0.9428 0.9677 0.9824
AVE-S 0.9505 0.9745 0.9853 0.9482 0.9721 0.9843 0.9578 0.9778 0.9874 0.9450 0.9701 0.9837

Both algorithms effectively processed noisy speech to a certain extent, and Random_S
methods have relatively large noise residues in the process of enhancing noisy speech.
Because of the different noise suppressions that different teacher models are good at,
a single teacher cannot provide clearer speech labels for student models, and they can
even introduce some noise or excessive enhancement. The AVE_S method guides the
use of different feature information by student models in the training process, which
can alleviate the problem of insufficient or excessive enhancement of a single model
during enhancement.

The experimental results further verify that the proposed average distillation model
can suppress various noises from the aspect of speech spectrum characteristics. Since the
AVE_S model is a symmetric unified model of the teacher model in physical space, it has
the noise reduction capability of all teachers. Because a symmetric model with the teacher
model is constructed, it enables the student model to learn more useful knowledge from
the teacher model. Additionally, we can see that even if the data lack labels, knowledge
transfer is still possible through the information interaction between the teacher model and
the student model. This further verifies that federal knowledge distillation can perform
model synthesis and is applicable in CPS industrial noise reduction scenarios that lack data
labels and source data.

5. Conclusions

To solve the problem of industrial CPS noise data being hard to combine because of
privacy and commercial copyright laws and the lack of public dataset labels, we propose
unsupervised distillation-based speech enhancement for unsourced data. In this method,
a speech enhancement model for multiple noisy environments is trained to achieve unifica-
tion of the CPS physical space through federal learning and knowledge distillation without
accessing the source data. Through a large number of comparative experiments, we verify
that the prior noise suppression performance of teacher models trained under different
noises is always due to other teacher models. We compare our average distillation and
random distillation methods. It can be seen from the experimental results that the average
distillation guides the student model to effectively utilize the feature information of differ-
ent teacher models during the training process and alleviates the problem of insufficient or
excessive enhancement of a single teacher model during the enhancement process.

Our method can eliminate or reduce the background noise in noisy speech and im-
prove the quality and intelligibility of the target speech signal. As shown in Figure 4,
speech enhancement may be successful in suppressing the noise but often distorts the
speech that is of interest. Artifacts created by speech enhancement can harm the quality
of speech recognition or other further automatic processing. However, a High-Fidelity
Generative Adversarial Network [49] consisting of one generator and two discriminators is
adversarially trained to output high-quality speech without artificial generation artifacts.
In our next work, we will use the High-Fidelity Generative Adversarial Network for speech
enhancement to eliminate generation artifacts.
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In future research, we will continue to explore the application of multi-teacher dis-
tillation in speech enhancement and train a standard model with samples representing
different noisy environments as a comparison. Although our experimental data come from
a public dataset, the coupling of noisy and clean speech is artificially synthesized from
clean speech and noise. The simulated speech may be different from recordings in a real
noise environment. In future work, we will use CHiME and other real recording datasets
to conduct knowledge distillation research in multi-noise scenarios. Further, in order to
extend the application of our method to speech signals, we aim to extend our approach to
other downstream tasks, including simultaneous speech recognition and separation.
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