
Citation: Abd-Elhameed, W.M.;

Amin, A.K. Novel Identities of

Bernoulli Polynomials Involving

Closed Forms for Some Definite

Integrals. Symmetry 2022, 14, 2284.

https://doi.org/10.3390/sym14112284

Academic Editor: Serkan Araci

Received: 1 October 2022

Accepted: 25 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Novel Identities of Bernoulli Polynomials Involving Closed
Forms for Some Definite Integrals
Waleed Mohamed Abd-Elhameed 1,∗ and Amr Kamel Amin 2,3

1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Department of Basic Sciences, Adham University College, Umm AL-Qura University,

Mecca 24382, Saudi Arabia; akgadelrab@uqu.edu.sa
3 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University,

Beni-Suef 65211, Egypt
* Correspondence: waleed@cu.edu.eg

Abstract: This paper presents new results of Bernoulli polynomials. New derivative expressions
of some celebrated orthogonal polynomials and other polynomials are given in terms of Bernoulli
polynomials. Hence, some new connection formulas between these polynomials and Bernoulli
polynomials are also deduced. The linking coefficients involve hypergeometric functions of different
arguments that can be summed in some cases. Formulas that express some celebrated numbers in
terms of Bernoulli numbers are displayed. Based on the new connection formulas between different
polynomials and Bernoulli polynomials, along with some well-known integrals involving these
polynomials, new closed forms for some definite integrals are given.
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1. Introduction

Different areas of practical mathematics, including mathematical physics and nu-
merical analysis, place great emphasis on special functions in general and orthogonal
polynomials in particular (see, for example, [1–3]). Therefore, many articles have been
devoted to investigating these functions and polynomials. The classical Jacobi polynomials
are among the most significant special functions because of their significance in numerical
analysis and approximation theory. It is well-known that Jacobi polynomials involve two
parameters, so they have several special polynomials. There are six famous special classes
of polynomials of the class of Jacobi polynomials. All these six classes of polynomials
have their parts in approximating solutions of different types of differential and integral
equations, see for example [4–8].

The connection problems between different polynomials and their related numbers
are important problems. These problems have been investigated by many authors. For
example, the connection problems between orthogonal polynomials were investigated
in [9]. Another study was presented in [10]. A comprehensive study for some formulas
concerned with the classical orthogonal polynomials involving connection formulas was
given in [11]. The authors of [12] established connection formulas between Fibonacci
polynomials and Chebyshev polynomials. In [13], the authors derived other connection
formulas between Chebyshev polynomials of the fifth kind with some other polynomials.
The authors of [14] studied a connection problem for sums of finite products of Chebyshev
polynomials of the third and fourth kinds.

The derivative formulas of different polynomials in terms of their original ones can
also be classified as connection problems. The solutions to these problems are very useful in
obtaining spectral solutions to different types of differential equations. In this direction, the
authors of [15] found explicit expressions for the derivatives for the third- and fourth-kinds
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of Chebyshev polynomials. Additionally, they utilized them to solve certain differential
equations. Additionally, the authors of [16] obtained new explicit formulas for certain
Jacobi polynomials that generalize the third-kind Chebyshev polynomials and employed
them to obtain spectral solutions for even-order BVPs. In [17], Abd-Elhameed found explicit
formulas for the derivatives of Chebyshev polynomials of the sixth-kind and employed
them to develop a numerical solution to a certain type of Burgers’ equation.

We are aware that Bernoulli polynomials and numbers are frequently used in mathe-
matics, As a result, various old and recent investigations have focused on these polynomials
and numbers. In this direction, in [18], the authors developed some integrals of products
of Bernoulli polynomials. Other identities regarding Bernoulli polynomials were devel-
oped in [19]. Relations between Fibonacci and Bernoulli numbers were displayed in [20].
In [21], the author obtained some recurrences for Bernoulli polynomials and their associ-
ated numbers. Investigations concerning the generalizations of Bernoulli polynomials and
their related numbers have also been studied by many authors. For example, the authors
of [22] found an explicit formula for the generalized Bernoulli polynomials. In [23], the
author found formulas for the sums of products of the generalized Bernoulli polynomials.
For some other contributions regarding Bernoulli polynomials and some of their related
polynomials, one can be referred to [24–28].

The principal purpose of this article is to solve connection problems between different
polynomials and the Bernoulli polynomials. In fact, we will establish new formulas for
the high-order derivatives of various polynomials including the classical orthogonal poly-
nomials, and this will yield new connection formulas between the different polynomials
with Bernoulli polynomials. We will show that several orthogonal polynomials can be
written as simple combinations of Bernoulli polynomials. In addition, and as an important
application to the connection formulas, four new general formulas for definite integrals
will be displayed. These general formulas produce a variety of new formulas for definite
integrals of different polynomials and also formulas for definite integrals of the products
of different polynomials with Bernoulli polynomials. We do believe that most of these
formulas are new and they may be useful. This motivates our interest in such a study.

The paper is organized as follows. Section 2 reviews some fundamental properties of
Bernoulli polynomials and some other celebrated polynomials including some orthogonal
polynomials. In Section 3, new expressions as combinations of Bernoulli polynomials are
given to express the derivatives of various polynomials including the classical orthogo-
nal polynomials. In addition, connection problems between different polynomials and
Bernoulli polynomials are solved in this section. Section 4 is devoted to obtaining derivative
expressions of Bernoulli polynomials in terms of different polynomials. Section 5 focuses on
utilizing the derived connection formulas to find four general formulas of certain definite
integrals of some polynomials in closed forms. Some concluding remarks are given in
Section 6.

2. An Overview of Some Celebrated Polynomials

We present in this section some fundamental properties of Bernoulli polynomials as
well as some characteristics of some celebrated polynomials.

2.1. Some Properties of Bernoulli Polynomials

Bernoulli polynomials B`(x) may be generated using the following generating func-
tion [29]:

t ex t

et − 1
=

∞

∑
`=0

B`(x)
t`

`!
, |t| < 2 π,

and their associated numbers are given by:

B` = B`(0) = (−1)`B`(1). (1)
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Bernoulli polynomials can be explicitly given by:

B`(x) =
`

∑
r=0

(
`

r

)
Brx`−r, (2)

where Br are the well-known Bernoulli numbers.
The inversion formula of Bernoulli polynomials is given explicitly by:

xi =
j

∑
r=0

(j+1
j−r)

j + 1
Bj−r(x). (3)

In many books and tables on this subject, there are numerous fascinating and useful
formulas regarding these polynomials and numbers, see, for example, [30,31].

2.2. Essential Properties of Some Celebrated Polynomials

This section is confined to presenting some properties of symmetric and non-symmetric
classes of polynomials. Let φk(x), k ≥ 0 be a symmetric polynomial of degree k and ψk(x),
k ≥ 0 be a non-symmetric polynomial of degree k. These polynomials have, respectively,
the following expressions:

φk(x) =
b k

2c
∑

m=0
Am,k xk−2m, (4)

ψk(x) =
k

∑
m=0

Bm,k xk−m. (5)

Among the most important orthogonal polynomials are the normalized Jacobi polyno-
mials [32,33]. These polynomials can be expressed in the form:

R(γ,µ)
` (x) = 2F1

(
−`, `+ γ + µ + 1

γ + 1

∣∣∣∣1− x
2

)
.

Six celebrated kinds of polynomials can be extracted from R(γ,µ)
n (x) as special cases.

In fact, the polynomials T`(x), U`(x), V`(x) and W`(x) that represent, respectively, the
first-, second-, third-, and fourth-kinds of Chebyshev polynomials, and the polynomials
P`(x), C(λ)

` (x) that represent, respectively, the Legendre and ultraspherical polynomials are
special ones of Jacobi polynomials. Furthermore, the following relations hold:

T`(x) = R(− 1
2 ,− 1

2 )
` (x), U`(x) = (`+ 1) R( 1

2 , 1
2 )

` (x),

V`(x) = R(− 1
2 , 1

2 )
` (x), W`(x) = (2`+ 1) R( 1

2 ,− 1
2 )

` (x),

P`(x) = R(0,0)
` (x), C(λ)

` (x) = R(λ− 1
2 ,λ− 1

2 )
` (x).

Note that T`(x), U`(x), P`(x) and C(λ)
` (x) are symmetric polynomials, so they can

be expressed as in (4); however, the polynomials V`(x) and W`(x) are non-symmetric
polynomials, so they can be represented as in (5).
For an extensive survey on Jacobi polynomials and their different classes, one can consult
the useful books of Andrews et al. [34] and Mason and Handscomb [35].

We denote by R̃(α,β)
j (x) the shifted Jacobi polynomials on [0, 1]. These polynomials

can be given explicitly as:
R̃(α,β)

j (x) = R(α,β)
j (2x− 1), (6)
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and therefore, six special shifted polynomials of Jacobi polynomials can be extracted as
special ones.

The shifted Jacobi polynomials defined in (6) can be explicitly represented as powers
of x in the form [36]:

R̃(α,β)
` (x) =

`! Γ(α + 1)
Γ(`+ α + 1)

`

∑
j=0

(−1)j (β + 1)` (α + β + 1)2`−j

(`− j)! j! (β + 1)`−j (1 + α + β)`
x`−j. (7)

There are other classes of non-symmetric polynomials such as the generalized Laguerre
polynomials L(α)

` (x) and Schröder polynomials Sn(x). The polynomials L(α)
j (x) have the

following expression [37]:

L(α)
j (x) =

Γ(j + α + 1)
j!

j

∑
m=0

(−1)j−m ( j
m)

Γ(j + α−m + 1)
xj−m, (8)

while the Schröder polynomials Sn(x) have the following expression ([38]):

Sj(x) =
j

∑
m=0

(2m
m )(j+m

j−m)

m + 1
xm. (9)

Here, we give examples of symmetric polynomials. Among the celebrated symmetric
polynomials are the ultraspherical and Hermite polynomials (see [37]). Additionally, the
Fibonacci and Lucas polynomials are symmetric ones (see, [39]). There are many gen-
eralizations of Fibonacci and Lucas polynomials. Recently, Abd-Elhameed et al. in [40]
investigated two generalized Fibonacci and Lucas polynomials and introduced new for-
mulas concerned with them. The generalized Fibonacci polynomials Fa,b

j (x), j ≥ 0 can be
generated using the following recurrence relation:

Fa,b
j (x) = a x Fa,b

j−1(x) + b Fa,b
j−2(x), Fa,b

0 (x) = 1, Fa,b
1 (x) = a x, j ≥ 2, (10)

while the generalized Lucas polynomials Lc,d
j (x) can be generated using the following

recurrence relation:

Lc,d
j (x) = c x Lc,d

j−1(x) + d Lc,d
j−2(x), Lc,d

0 (x) = 2, Lc,d
1 (x) = c x, j ≥ 2. (11)

It is important to note that the two generalized classes of polynomials Fa,b
j (x) and

Lc,d
j (x) involve various well-known polynomial classes (see, [40]). For instance, the Fi-

bonacci polynomials Fj+1(x) and Lucas polynomials Lj(x) can be thought of as special
cases Fa,b

j (x) and Lc,d
j (x) . In fact, we have:

Fj+1(x) = F1,1
j (x), Lj(x) = L1,1

j (x).

Additionally, the generalized polynomials Fa,b
j (x) and Lc,d

j (x) each have a power form
representation that is given as [40]:

Fa,b
j (x) =

⌊
j
2

⌋
∑
r=0

(j−r
r ) br aj−2r xj−2r, j ≥ 0,

Lc,d
j (x) = j

⌊
j
2

⌋
∑
r=0

dm ci−2m (j−r
r )

j− r
xj−2r, j ≥ 1,
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where the well-known floor function is represented by the symbol bzc.
We comment here on the generalized Fibonacci and generalized Lucas numbers

defined as:
Fa,b

j = Fa,b
j (1), Lc,d

j = Lc,d
j (1). (12)

3. New Derivative Formulas of Symmetric and Non-Symmetric Polynomials

This section focuses on establishing new Bernoulli polynomial expressions for the
high-order derivatives of a few symmetric and non-symmetric polynomials. Formulas
connecting various polynomials with Bernoulli polynomials are deduced as special cases
of the derivative expressions.

3.1. Derivative Expressions for Some Non-Symmetric Polynomials

In this section, we provide expressions for a few well-known non-symmetric polyno-
mials. To be more specific, Bernoulli polynomials will be used to express the derivatives of
the shifted Jacobi, Laguerre, and Schröder polynomials.

Theorem 1. Consider any two non-negative integers j and q such that j ≥ q. The following
is the expression of the qth derivative of the shifted Jacobi polynomials R̃(α,β)

j (x) in terms of
Bernoulli polynomials.

DqR̃(α,β)
j (x) =

j! Γ(α + 1)
Γ(j + α + 1)Γ(j + α + β + 1)

×

j−q

∑
p=0

Γ(2j− p + α + β)((−1)p Γ(j− p + α)Γ(j + β + 1) + Γ(j + α + 1)Γ(j− p + β))

(p + 1)! (j− p− q)! Γ(j− p + α) Γ(j− p + β)
Bj−q−p(x).

(13)

Proof. The well-known analytic form of the shifted Jacobi polynomials in (7) enables one
to express their derivatives in the form:

DqR̃(α,β)
j (x) =

j! Γ(α + 1)Γ(j + β + 1)
Γ(j + α + 1)Γ(j + α + β + 1)

j−q

∑
r=0

(−1)r Γ(2j− r + α + β + 1)
(j− q− r)! r! Γ(j− r + β + 1)

xj−r−q.

Thanks to the inversion formula of Bernoulli polynomials (3), the last formula turns
into the following form:

DqR̃(α,β)
j (x) =

j! Γ(α + 1)Γ(j + β + 1)
Γ(j + α + 1)Γ(j + α + β + 1)

j−q

∑
r=0

(−1)r Γ(2j− r + α + β + 1)
r! Γ(1 + j− r + β)

×

j−q−r

∑
t=0

1
(j− q− r− t)! (t + 1)!

Bj−r−q−t(x).

(14)

Performing some lengthy manipulation on (14) leads to the following formula:

DqR̃(α,β)
j (x) =

j! Γ(α + 1)
Γ(j + α + 1) Γ(j + α + β + 1)

×

j−q

∑
p=0

(−1)p (Γ(j + β + 1)Γ(2j− p + α + β) + (−1)p Γ(j− p + β) Γ(2j + α + β + 1)Mp,j
)

(p + 1)! (j− p− q)! Γ(j− p + β)
Bj−p−q(x),

with

Mp,j = 2F1

(
−p− 1,−j− β
−2j− α− β

∣∣∣∣1).



Symmetry 2022, 14, 2284 6 of 25

Based on Chu–Vandermonde identity, one has

2F1

(
−p− 1,−j− β
−2j− α− β

∣∣∣∣1) =
(j− p + α)p+1

(2j− p + α + β)p+1
,

and, consequently, the following formula can be obtained:

DqR̃(α,β)
j (x) =

j! Γ(α + 1)
Γ(j + α + 1)Γ(j + α + β + 1)

×

j−q

∑
p=0

Γ(2j− p + α + β)((−1)p Γ(j− p + α)Γ(j + β + 1) + Γ(j + α + 1)Γ(j− p + β))

(p + 1)! (j− p− q)! Γ(j− p + α) Γ(j− p + β)
Bj−q−p(x).

Six special formulas of Formula (13) can be produced by noting that the class of the
shifted Jacobi polynomials includes six well-known sub-classes. The next two corollaries
demonstrate these formulas.

Corollary 1. Consider any two non-negative integers j and q such that j ≥ q. The following
derivative formulas are valid:

DqC̃(α)
j (x) =

2 j! Γ
(

1
2 + α

)
Γ(j + 2α)

⌊
j−q

2

⌋
∑
p=0

Γ(2j− 2p + 2α− 1)

(j− 2p− q)! (2p + 1)! Γ
(

j− 2p + α− 1
2

)Bj−q−2p(x),

Dq P̃j(x) =2

⌊
j−q

2

⌋
∑
p=0

(2j− 2p− 1)!
(j− 2p− 1)! (2p + 1)!(j− 2p− q)!

Bj−q−2p(x),

DqT̃j(x) =2j
√

π

⌊
j−q

2

⌋
∑
p=0

(2j− 2p− 2)!

Γ
(
− 1

2 + j− 2p
)
(2p + 1)! (j− 2p− q)!

Bj−q−2p(x),

DqŨj(x) =
√

π

⌊
j−q

2

⌋
∑
p=0

(2j− 2p)!

Γ
(

1
2 + j− 2p

)
(2p + 1)! (j− 2p− q)!

Bj−q−2p(x).

Corollary 2. Consider any two non-negative integers j and q such that j ≥ q. The following
derivative formulas are valid:

DqṼj(x) =
1
2
√

π
j−q

∑
p=0

(−1)p+1 (−1− 2j + (−1)p (1− 2j + 2p))(2j− p− 1)!

(p + 1)! Γ
(

1
2 + j− p

)
(j− p− q)!

Bj−q−p(x),

DqW̃j(x) =
1
2
√

π
j−q

∑
p=0

(1 + 2j + (−1)p (2j− 2p− 1))(2j− p− 1)!

(p + 1)! Γ
(

1
2 + j− p

)
(j− p− q)!

Bj−q−p(x).

Performing similar procedures to those followed to derive Formula (13), several
derivative formulas of non-symmetric polynomials can be derived. The following the-
orem gives the corresponding derivative expressions of the generalized Laguerre and
Schröder polynomials.
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Theorem 2. Consider any two non-negative integers j and q such that j ≥ q. The following
derivative formulas for the generalized Laguerre and Schröder polynomials are, respectively, given
as follows:

DqL(α)
j (x) = Γ(j + α + 1)

j−q

∑
p=0

(−1)j+p+1(−1 + 1F1(−1− p; j− p + α; 1))
(p + 1)! (j− p− q)! Γ(j− p + α)

Bj−q−p(x), (15)

DqSj(x) =
1

(j + 1)!

j−q

∑
p=0

−(j + 1)!(2j− p− 1)! + (2j)!(j− p)! 2F1

(
−1− j,−1− p

−2j

∣∣∣∣− 1
)

(j− p)! (p + 1)! (j− p− q)!
×

Bj−q−p(x).

(16)

Proof. The derivation of (15) is based on the power form representation of the Laguerre
polynomials given in (8), along with the inversion Formula (3), and the derivation of (16) is
based on the power form representation of Schröder polynomials given by (9), along with
Formula (3).

3.2. Derivative Expressions for Some Symmetric Polynomials

This section focuses on finding new explicit formulas for several symmetric poly-
nomials’ derivatives in terms of Bernoulli polynomials. The derivative formulas for the
ultraspherical, Hermite, as well as the generalized Fibonacci and generalized Lucas poly-
nomials that are respectively generated by the two recurrence relations (10) and (11), will
be provided.

Theorem 3. Consider any two non-negative integers j and q such that j ≥ q, and let C(λ)
j (x) be

the ultraspherical polynomials. The derivatives of C(λ)
j (x) can be expressed in terms of Bernoulli

polynomials as:

DqC(λ)
j (x) =

j! Γ
(

λ + 1
2

)
Γ(j + 2λ)

⌊
j−q

2

⌋
∑
p=0

2−j+2p+1 Γ(2j− 2p + 2λ− 1)

(2p + 1)! (j− 2p− q)! Γ
(

j− 2p + λ− 1
2

) Bj−q−2p(x)

+
j! Γ
(

λ + 1
2

)
√

π Γ(j + 2λ)

b 1
2 (j−q−1)c

∑
p=0

2j−2p+2λ−3

(p + 1)! (2p + 2)! (j− 2p− q− 1)!
×

(
(−1)p (2p + 2)! Γ(j− p + λ− 1) +

4p+1 (p + 1)! Γ(j + λ)
(

j− 2p + λ− 3
2
)

p+1

(j− p + λ− 1)p+1

)
Bj−q−2p−1(x).

(17)

Proof. Based on the power form representation of the ultraspherical polynomials [37],
we have

DqC(λ)
j (x) =

j! Γ
(

λ + 1
2

)
√

π Γ(j + 2λ)

⌊
j−q

2

⌋
∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

r! (j− q− 2r)!
xj−2r−q.

The inversion formula of the Bernoulli polynomials in (3) converts the last equation to
the following one:

DqC(λ)
j (x) =

j! Γ
(

λ + 1
2

)
√

π Γ(j + 2λ)

⌊
j−q

2

⌋
∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

r!
×

j−2r−q

∑
t=0

1
(t + 1)! (j− q− 2r− t)!

Bj−2r−q−t(x).

(18)
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Formula (18) can be rearranged to give the following alternative form:

DqC(λ)
j (x) =

j! Γ
(

λ + 1
2

)
√

π Γ(j + 2λ)


⌊

j−q
2

⌋
∑
p=0

1
(j− 2p− q)!

p

∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

(2p− 2r + 1)! r!
Bj−q−2p(x)+

b 1
2 (j−q−1)c

∑
p=0

1
(j− 2p− q− 1)!

p

∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

(2p− 2r + 2)! r!
Bj−q−2p−1(x)

.

Noting the following two identities:

p

∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

(2p− 2r + 1)! r!
=

2j+2λ−1 Γ(j + λ)

(2p + 1)! 2F1

(
−p,−p− 1

2
1− j− λ

∣∣∣∣1),

p

∑
r=0

(−1)r 2j−2r+2λ−1 Γ(j− r + λ)

(2p− 2r + 2)! r!
= 2−3+j+2λ×

(
− 1

4

)p
Γ(j− p + λ− 1)

(p + 1)!
+

4 Γ(j + λ)

(2p + 2)! 2F1

(
−p− 1,−p− 1

2
1− j− λ

∣∣∣∣1)
,

together with the following two reductions by Chu–Vandermonde identities:

2F1

(
−p,−p− 1

2
1− j− λ

∣∣∣∣1) =

(
− 1

2 + j− 2p + λ
)

p

(j− p + λ)p
,

2F1

(
−p− 1,−p− 1

2
1− j− λ

∣∣∣∣1) =

(
− 3

2 + j− 2p + λ
)

p+1

(j− p + λ− 1)p+1
,

Formula (17) can be obtained.

Corollary 3. Consider any two non-negative integers j and q such that j ≥ q. The derivatives
of the Legendre, Chebyshev polynomials of the first and second kinds, are expressed in terms of
Bernoulli polynomials as follows:

DqPj(x) =

⌊
j−q

2

⌋
∑
p=0

21−j+2p (2j− 2p− 1)!
(j− 2p− 1)! (2p + 1)!(j− 2p− q)!

Bj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

2−2−j−2p
(

(−1)p 4j Γ(− 1
2+j−p)√

π (p+1)! + 16p+1 (2j−2p−2)!
(j−2p−2)! (2p+2)!

)
(j− 2p− q− 1)!

Bj−q−2p−1(x),

(19)

DqTj(x) =j
√

π

⌊
j−q

2

⌋
∑
p=0

21−j+2p (2j− 2p− 2)!

Γ
(
− 1

2 + j− 2p
)
(2p + 1)! (j− 2p− q)!

Bj−q−2p(x)

+ j
b 1

2 (j−q−1)c
∑
p=0

2−3−j−2p
(

(−1)p 4j (j−p−2)!
(p+1)! + 25+4p√π (2j−2p−3)!

Γ(− 3
2+j−2p) (2p+2)!

)
(j− 2p− q− 1)!

Bj−q−2p−1(x),
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DqUj(x) =
√

π

⌊
j−q

2

⌋
∑
p=0

2−j+2p (2j− 2p)!

Γ
(

1
2 + j− 2p

)
(2p + 1)! (j− 2p− q)!

Bj−q−2p(x)

+
b 1

2 (j−q−1)c
∑
p=0

2−2−j−2p
(

(−1)p 4j Γ(j−p)
(p+1)! + 23+4p√π (2j−2p−1)!

Γ(− 1
2+j−2p)(2p+2)!

)
(j− 2p− q− 1)!

Bj−q−2p−1(x).

(20)

Proof. Substitution by 1
2 , 0, 1, into (17) yields, respectively, (19) and (20).

Remark 1. Performing similar procedures to those followed to derive Formula (17), several deriva-
tive formulas of symmetric polynomials can be obtained. The following theorem displays the
corresponding derivative expressions of Hermite, and the generalized Fibonacci and generalized
Lucas polynomials that are generated respectively by the two recurrence relations (10), and (11).

Theorem 4. Consider any two non-negative integers j and q such that j ≥ q. The derivatives of
the generalized Fibonacci, generalized Lucas and Hermite polynomials are expressed in terms of
Bernoulli polynomials as follows:

DqFa,b
j (x) =aj j!

⌊
j−q

2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
−j

∣∣∣∣− 4 b
a2

)
(2p + 1)!(j− 2p− q)!

Bj−q−2p(x)

+ aj
b 1

2 (j−q−1)c
∑
p=0

− a−2 (p+1)Bp+1(j−p−1)!
(p+1)! +

j! 2F1

 −p− 1,−p− 1
2

−j

∣∣∣∣∣∣− 4 b
a2


(2p+2)!

(j− 2p− q− 1)!
Bj−q−2p−1(x),

(21)

DqLc,d
j (x) =cj j!

⌊
j−q

2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
1− j

∣∣∣∣− 4 d
c2

)
(2p + 1)!(j− 2p− q)!

Bj−q−2p(x)

+ cj j
b 1

2 (j−q−1)c
∑
p=0

− c−2(p+1)dp+1(j−p−2)!
(p+1)! +

(j−1)! 2F1

 −p− 1,−p− 1
2 ,−p

1− j

∣∣∣∣∣∣− 4 d
c2


(2p+2)!

(j− 2p− q− 1)!
Bj−q−2p−1(x),

Dq Hj(x) =2j j!

⌊
j−q

2

⌋
∑
p=0

U
(
−p, 3

2 , 1
)

(2p + 1)! (j− 2p− q)!
Bj−q−2p(x)

+ j!
b 1

2 (j−q−1)c
∑
p=0

(−1)p+1 2j−2p−2
(
−1 + 1F1

(
−p− 1; 1

2 ; 1
))

(p + 1)!(j− 2p− q− 1)!
Bj−q−2p−1(x),

(22)

where U(a, b; z) represents the confluent hypergeometric function ([37]).

Proof. Similar to the proof of Theorem 3.

3.3. Some Connection Formulas between Different Polynomials and Bernoulli Polynomials

This section is limited to providing some connection formulas between various symmetric
and non-symmetric polynomials. For q = 0, the formulas found in Sections 3.1 and 3.2 that
express the q-th derivative for various polynomials are valid. This means that every
derivative formula for a particular polynomial expressed in terms of Bernoulli polynomials
produces a connection formula between this polynomial and Bernoulli polynomials.
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Corollary 4. For every non-negative integer j, the ultraspherical-Bernoulli connection formula is

C(λ)
j (x) =

j! Γ
(

λ + 1
2

)
Γ(j + 2λ)

( ⌊
j
2

⌋
∑
p=0

2−j+2p+1 Γ(2j− 2p + 2λ− 1)

(2p + 1)! (j− 2p)! Γ
(
− 1

2 + j− 2p + λ
) Bj−2p(x)+

1√
π

⌊
j−1

2

⌋
∑
p=0

2j−2p+2λ−3
(
(−1)p (2p + 2)! Γ(j− p + λ− 1) +

4p+1 (p+1)! Γ(j+λ) (− 3
2+j−2p+λ)p+1

(j−p+λ−1)p+1

)
(p + 1)! (2p + 2)! (j− 2p− 1)!

×

Bj−2p−1(x)

)
.

(23)

Proof. simple by setting q = 0 in Formula (17).

As special cases of the connection Formula (23), three particular connection formulas
can be deduced.

Corollary 5. For every non-negative integer j, the following are the Legendre–Bernoulli, first kind
Chebyshev–Bernoulli, and second kind Chebyshev–Bernoulli connection formulas:

Pj(x) =

⌊
j
2

⌋
∑
p=0

2−j+2p+1 (2j− 2p− 1)!
(j− 2p− 1)! (j− 2p)! (2p + 1)!

Bj−2p(x)

+

⌊
j−1

2

⌋
∑
p=0

2−j−2p−2
(

16p+1 (2j−2p−2)!
(j−2p−2)! (2p+2)! +

(−1)p 4j Γ(− 1
2+j−p)√

π (p+1)!

)
(j− 2p− 1)!

Bj−2p−1(x), j ≥ 1,

(24)

Tj(x) =j
√

π

⌊
j
2

⌋
∑
p=0

2−j+2p+1 (2j− 2p− 2)!

(j− 2p)! (2p + 1)! Γ
(
− 1

2 + j− 2p
) Bj−2p(x)

+ j

⌊
j−1

2

⌋
∑
p=0

2−j−2p−3
(

(−1)p 4j (j−p−2)!
(p+1)! + 24p+5√π (−3+2j−2p)!

(2p+2)! Γ(− 3
2+j−2p)

)
(j− 2p− 1)!

Bj−2p−1(x), j ≥ 2,

(25)

Uj(x) =
√

π

⌊
j
2

⌋
∑
p=0

2−j+2p(2j− 2p)!

(j− 2p)! (2p + 1)!Γ
(

1
2 + j− 2p

) Bj−2p(x)

+

⌊
j−1

2

⌋
∑
p=0

2−j−2p−2
(

24p+3√π (2j−2p−1)!
(2+2p)! Γ(− 1

2+j−2p)
+ (−1)p 4j (j−p−1)!

(p+1)!

)
(j− 2p− 1)!

Bj−2p−1(x).

(26)

Proof. Formulas (24)–(26) can be immediately obtained by setting, respectively, λ = 1
2 , 0, 1,

in Formula (23).

Remark 2. The two connection Formulas (25) and (26) lead to two trigonometric identities. The
following corollary exhibits these identities.

Corollary 6. The following two trigonometric identities hold:



Symmetry 2022, 14, 2284 11 of 25

j
√

π

⌊
j
2

⌋
∑
p=0

2−j+2p+1 (2j− 2p− 2)!

(j− 2p)! (2p + 1)! Γ
(
− 1

2 + j− 2p
) Bj−2p(cos(θ))

+ j

⌊
j−1

2

⌋
∑
p=0

2−j−2p−3
(

(−1)p 4j (j−p−2)!
(p+1)! + 24p+5√π(−3+2j−2p)!

(2p+2)! Γ(− 3
2+j−2p)

)
(j− 2p− 1)!

Bj−2p−1(cos(θ)) = cos(j θ), j ≥ 2,

(27)

√
π

⌊
j
2

⌋
∑
p=0

2−j+2p (2j− 2p)!

(j− 2p)! (2p + 1)!Γ
(

1
2 + j− 2p

)Bj−2p(cos(θ))

+

⌊
j−1

2

⌋
∑
p=0

2−j−2p−2
(

24p+3√π (2j−2p−1)!
(2p+2)! Γ(− 1

2+j−2p)
+ (−1)p 4j (j−p−1)!

(p+1)!

)
(j− 2p− 1)!

Bj−2p−1(cos(θ)) =
sin((j + 1)θ)

sin(θ)
, j ≥ 0.

(28)

Proof. Formulas (27) and (28) are direct consequences of Formulas (25) and (26) together
with the two well-known trigonometric definitions for Tj(x) and Uj(x):

Tj(x) = cos(j θ), Uj(x) =
sin((j + 1) θ)

sin θ
,

with θ = cos−1(x).

The following corollary exhibits three connection formulas between three symmetric
polynomials and Bernoulli polynomials.

Corollary 7. For every non-negative integer j, the following are the generalized Fibonacci–Bernoulli,
generalized Lucas– Bernoulli, and Hermite–Bernoulli connection formulas:

Fa,b
j (x) =aj j!

⌊
j
2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
−j

∣∣∣∣− 4 b
a2

)
(2p + 1)!(j− 2p)!

Bj−2p(x)

+ aj

⌊
j−1

2

⌋
∑
p=0

− a−2(p+1)bp+1(j−p−1)!
(p+1)! +

j! 2F1

 −p− 1,−p− 1
2

−j

∣∣∣∣∣∣− 4 b
a2


(2p+2)!

(j− 2p− 1)!
Bj−2p−1(x),

(29)

Lc,d
j (x) =cj j!

⌊
j
2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
1− j

∣∣∣∣− 4 d
c2

)
(2p + 1)!(j− 2p)!

Bj−2p(x)

+ cj j

⌊
j−1

2

⌋
∑
p=0

− c−2(p+1)dp+1(j−p−2)!
(p+1)! +

(j−1)! 2F1

 −p− 1,−p− 1
2

1− j

∣∣∣∣∣∣− 4 d
c2


(2p+2)!

(j− 2p− 1)!
Bj−2p−1(x),

(30)

Hj(x) =2j j!

⌊
j
2

⌋
∑
p=0

U
(
−p, 3

2 , 1
)

(2p + 1)! (j− 2p)!
Bj−2p(x)

+ j!

⌊
j−1

2

⌋
∑
p=0

(−1)p+12j−2p−2
(
−1 + 1F1

(
−p− 1; 1

2 ; 1
))

(p + 1)! (j− 2p− 1)!
Bj−2p−1(x).

(31)
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Proof. Formulas (29)–(31) are direct special cases of, respectively, Formulas (21) and (22)
for q = 0.

Now, we are going to write connection formulas between some non-symmetric poly-
nomials and Bernoulli polynomials.

Corollary 8. For every non-negative integer j, the shifted Jacobi–Bernoulli connection formula is:

R̃(α,β)
j (x) =

j! Γ(α + 1)
Γ(j + α + 1)Γ(j + α + β + 1)

×

j

∑
p=0

Γ(2j− p + α + β) ((−1)p Γ(j− p + α) Γ(j + β + 1) + Γ(j + α + 1)Γ(j− p + β))

(p + 1)! (j− p)! Γ(j− p + α) Γ(j− p + β)
Bj−p(x).

(32)

Proof. Formula (32) is a direct special case of Formula (13) for q = 0.

The following are six special connection formulas of Formula (32).

Corollary 9. Let j be a non-negative integer. The following six connection formulas hold:

C̃(α)
j (x) =

2j! Γ
(

α + 1
2

)
Γ(j + 2α)

⌊
j
2

⌋
∑
p=0

Γ(2j− 2p + 2α− 1)

(2p + 1)! (j− 2p)! Γ
(

j− 2p + α− 1
2

)Bj−2p(x),

P̃n(x) =2

⌊
j
2

⌋
∑
p=0

(2j− 2p− 1)!
(2p + 1)! (j− 2p− 1)! (j− 2p)!

Bj−2p(x),

T̃n(x) =2j
√

π

⌊
j
2

⌋
∑
p=0

(2j− 2p− 2)!

(2p + 1)! (j− 2p)! Γ
(

j− 2p− 1
2

)Bj−2p(x),

Ũn(x) =
√

π

⌊
j
2

⌋
∑
p=0

(2j− 2p)!

(2p + 1)! (j− 2p)!Γ
(

j− 2p + 1
2

)Bj−2p(x),

Ṽn(x) =
1
2
√

π
j

∑
p=0

(−1)p+1 (2j− p− 1)! (−1− 2j + (−1)p (−2j + 2p + 1))

(p + 1)! (j− p)! Γ
(

j− p + 1
2

) Bj−p(x),

W̃n(x) =
1
2
√

π
j

∑
p=0

(2j− p− 1)! (1 + 2j + (−1)p (2j− 2p− 1))

(p + 1)! (j− p)! Γ
(

j− p + 1
2

) Bj−p(x).

Proof. The results of Corollary 9 are special ones of Formula (32) by choosing the two
parameters α and β suitably.

Corollary 10. The following are, respectively, the generalized Laguerre–Bernoulli and Schröder–
Bernoulli connection formulas:

L(α)
j (x) =

j

∑
p=0

(−1)j+p+1Γ(j + α + 1)(−1 + 1F1(−p− 1; j− p + α; 1))
(p + 1)! (j− p)! Γ(j− p + α)

Bj−p(x), (33)

Sj(x) =
1

(j + 1)!

j

∑
p=0

−(j + 1)! (2j− p− 1)! + (2j)! (j− p)! 2F1

(
−p− 1,−1− j

−2j

∣∣∣∣− 1
)

(j− p)! (p + 1)! (j− p)!
×

Bj−p(x).

(34)
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Proof. Formulas (33) and (34) are special ones of (15) and (16) for q = 0.

3.4. Connections between Some Celebrated Numbers

In this section, we account for some formulas that express some celebrated numbers
in terms of Bernoulli numbers. In fact, if we set x = 1 in the connection formulas that are
derived in Section 3.3, some new expressions between these numbers can be deduced. In
the following, we give some of these expressions. Other expressions can be also deduced.

Corollary 11. For every non-negative integer j, the generalized Fibonacci numbers that are given
in (12) are expressed in terms of the Bernoulli numbers as:

Fa,b
j =(−a)j j!

⌊
j
2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
−j

∣∣∣∣− 4 b
a2

)
(2p + 1)!(j− 2p)!

Bj−2p

+ (−a)j

⌊
j−1

2

⌋
∑
p=0

a−2(p+1)bp+1(j−p−1)!
(p+1)! −

j! 2F1

 −p− 1,−p− 1
2

−j

∣∣∣∣∣∣− 4 b
a2


(2p+2)!

(j− 2p− 1)!
Bj−2p−1,

(35)

and in particular

Fj =(−1)j j!

⌊
j
2

⌋
∑
p=0

2F1

(
−p,−p− 1

2
−j

∣∣∣∣− 4
)

(2p + 1)!(j− 2p)!
Bj−2p

+ (−1)j

⌊
j−1

2

⌋
∑
p=0

(j−p−1)!
(p+1)! −

j! 2F1

 −p− 1,−p− 1
2

−j

∣∣∣∣∣∣−4


(2p+2)!

(j− 2p− 1)!
Bj−2p−1.

(36)

Proof. Formula (35) is a direct consequence of Formula (29) by setting x = 1 and noting
the two identities (12) and (1). The particular case (36) is a special case of (35) for the case
corresponds to a = b = 1.

4. Expressions for the Derivatives of Bernoulli Polynomials in Terms of
Different Polynomials

This section is devoted to explaining how to derive the derivative expressions for Bernoulli
polynomials in terms of other polynomials; that is, we describe how to obtain the inversion
formulas to the connection formulas derived in Section 3. We give here one of these expressions.
We will give the formula that expresses the derivatives of Bernoulli polynomials in terms of the
shifted Jacobi polynomials. Other expressions can be similarly obtained.

Theorem 5. For all non-negative integers j and q with j ≥ q. The following expression for the
derivatives of Bernoulli polynomials holds:

DqBj(x) =
j! Γ(1 + α)

Γ(1 + 2α)

⌊
j−q

2

⌋
∑

m=0

(j− 2m− q + α) Γ(j− 2m− q + 2α)

(j− 2m− q)!
×

m

∑
r=0

2−j+q+2r+1

(m− r)! (2r)! Γ(1 + j−m− q− r + α)
B2r C(α)

j−q−2m(x)

− 2−j+q+1 j! Γ(1 + α)

Γ(1 + 2α)

b 1
2 (j−q−1)c

∑
m=0

(j− 2m− q + α− 1) Γ(j− 2m− q + 2α− 1)
m! (j− 2m− q− 1)! Γ(j−m− q + α)

C(α)
j−q−2m−1(x),

(37)
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where Br are the well-known Bernoulli numbers.

Proof. We start with the power form representation of Bernoulli polynomials in (2) to write:

DqBj(x) =
j−q

∑
r=0

(
j
r

)
(j− q− r + 1)q Br xj−r−q.

In virtue of the inversion formula of the ultraspherical polynomials [37], one gets:

DqBj(x) =
j! Γ(1 + α)

Γ(1 + 2α)

j−q

∑
r=0

2−j+q+r+1 Br

r!
×

b 1
2 (j−r−q)c

∑
t=0

(j− q− r− 2t + α) Γ(j− q− r− 2t + 2α)

(j− q− r− 2t)! t! Γ(j− q− r− t + α + 1)
C(α)

j−r−q−2t(x),

which can be written again in the form:

DqBj(x) = =
j! Γ(1 + α)

Γ(1 + 2α)

⌊
j−q

2

⌋
∑

m=0

(j− 2m− q + α) Γ(j− 2m− q + 2α)

(j− 2m− q)!
×

m

∑
r=0

2−j+q+2r+1

(m− r)! (2r)! Γ(j−m− q− r + α + 1)
B2r C(α)

j−q−2m(x)

+
j! Γ(1 + α)

Γ(1 + 2α)

b 1
2 (j−q−1)c

∑
m=0

(j− 2m− q + α− 1) Γ(j− 2m− q + 2α− 1)
(j− 2m− q− 1)!

×

m

∑
r=0

2−j+q+2r+2

(m− r)! (2r + 1)! Γ(j−m− q− r + α)
B2r+1 C(α)

j−q−2m−1(x).

(38)

Now, regarding the following summation:

Um,j,q,α =
m

∑
r=0

2−j+q+2r+2 B2r+1

(m− r)! (2r + 1)! Γ(j−m− q− r + α)
,

can be summed. In fact, the employment of Zeilberger’s algorithm [41] leads to the
following recurrence relation:

Um+1,j,q,α −
−m + j− q + α− 1

m + 1
Um,j,q,α = 0, U0,j,q,α = 1.

Since the last recurrence relation is of order one, it can be immediately solved to give:

Um,j,q,α =
−2−j+q+1

m! Γ(j−m− q + α)
.

Based on the above reduction, Formula (38) turns into Formula (37). This proves
Theorem 5.

5. New Closed Forms for Some Definite Integrals

This section is interested in the evaluation of some new definite integrals of some
polynomials based on the connection formulas between different polynomials and Bernoulli
polynomials. To be more precise, we will present two applications to the connection
formulas derived in this paper. The following definite integrals will be computed:

• The definite integral for different polynomials on the interval [0, 1];
• The definite integral for the product of different polynomials with Bernoulli polyno-

mials on [0, 1].
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In this regard, four theorems concerned with the above two mentioned applications
will be stated and proved. Furthermore, these theorems will be utilized to compute definite
integrals for different polynomials.

5.1. First Application to the Connection Formulas

This section concerns the first application to the connection formulas that are stated in
Section 3.3. We will present two theorems in this respect to compute the definite integrals∫ 1

0
φj(x) dx and

∫ 1

0
ψj(x) dx, where φj(x) is any symmetric polynomial that takes the form

in (4), and ψj(x) is any non-symmetric polynomial that takes the form in (5).

Theorem 6. Let ψi(x) by any non-symmetric polynomial whose power form can be written as
in (5), and let it have the following connection formula with Bernoulli polynomials:

ψj(x) =
j

∑
p=0

Ap,j. Bj−p(x). (39)

The following integral formula applies:∫ 1

0
ψj(x) dx = Aj,j.

Proof. Starting from the connection formula (39), we integrate both sides from 0 to 1, to get

∫ 1

0
ψj(x) dx =

j

∑
p=0

Ap,j

∫ 1

0
Bj−p(x) dx. (40)

If we make use of the well-known identity [29]:∫ 1

0
Bn(x) dx = δ0,n, n ≥ 0, (41)

where δi,j is the well-known Kronecker delta function, then Formula (40) reduces to the
following formula: ∫ 1

0
ψj(x) dx = Aj,j.

This ends the proof of Theorem 6.

The following theorem exhibits closed forms for the definite integrals of three non-
symmetric polynomials.

Corollary 12. The following integral formulas hold for every non-negative integer j:

∫ 1

0
R̃(α,β)

j (x) dx =
αΓ(j + α + 1) Γ(β) + (−1)j Γ(α + 1) Γ(j + β + 1)

(j + 1) (j + α + β) Γ(j + α + 1) Γ(β)
, (42)∫ 1

0
L(α)

j (x) dx =
Γ(j + α + 1)(1− 1F1(−1− j; α; 1))

(j + 1)! Γ(α)
,

∫ 1

0
Sj(x) dx =

−(j− 1)! (j + 1)! + (2j)! 2F1

(
−j− 1,−j− 1

−2j

∣∣∣∣− 1
)

((j + 1)!)2 . (43)

Proof. Formulas (42) and (43) can be obtained by the application to Theorem 6 together
with the three connection Formulas (32)–(34).
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Theorem 7. Let φj(x) be any symmetric polynomial whose power form can be written as in (4),
and let it have the following connection formula with Bernoulli polynomials:

φj(x) =

⌊
j
2

⌋
∑
p=0

Gp,j Bp−2j(x) +

⌊
j−1

2

⌋
∑
p=0

Ḡp,j Bp−2j−1(x). (44)

The following integral formula applies:

∫ 1

0
φj(x) dx =

G j
2 ,j

, j even,

Ḡ j−1
2 ,j

, j odd.

Proof. If we start from the connection Formula (44) and integrate both sides from 0 to 1,
then the following formula is obtained:

∫ 1

0
φj(x) dx =

⌊
j
2

⌋
∑
p=0

Gp,j

∫ 1

0
Bp−2j(x) dx +

⌊
j−1

2

⌋
∑
p=0

Ḡp,j

∫ 1

0
Bp−2j−1(x) dx. (45)

The utilization of Identity (41) transforms (45) into:

∫ 1

0
φj(x) dx =

⌊
j
2

⌋
∑
p=0

Gp,j δj−2p,0 +

⌊
j−1

2

⌋
∑
p=0

Ḡp,j δj−2p−1,0, (46)

where δi,j is the well-known Kronecker delta function.
It is evident from (46) that the following integral formula can be obtained:

∫ 1

0
φj(x) dx =

G j
2 ,j

, j even,

Ḡ j−1
2 ,j

, j odd.

Now, and as an application of Theorem 7, several new formulas for definite integrals
to some symmetric polynomials can be deduced. The following corollaries provide some
of these results.

Corollary 13. The following integral formula holds for every non-negative integer j:

∫ 1

0
C(λ)

j (x) dx =


2λ− 1

(j + 1) (j + 2λ− 1)
, j even,

2λ− 1
(j + 1)(j + 2λ− 1)

+
(−1)

j−1
2 4λ−1 j! Γ

(
λ + 1

2

)
Γ
(

1
2 (j− 1) + λ

)
√

π
(

j+1
2

)
! Γ(j + 2λ)

, j odd.
(47)

Proof. Formula (47) can be obtained by the application to Theorem 7 together with the
connection Formula (23).

The three formulas that follow are particular ones of Formula (47).
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Corollary 14. Let j be a non-negative integer. The following identities hold:

∫ 1

0
Pj(x) dx =


0, j even,

(−1)
j+3

2 Γ
(

j
2

)
2
√

π
(

j+1
2

)
!

, j odd,
, j ≥ 1, (48)

∫ 1

0
Tj(x) dx =

1
(1− j)(1 + j)

{
1, j even,

1 + j(−1)
j+1

2 , j odd,
, j ≥ 0, j 6= 1,

∫ 1

0
Uj(x) dx =

1
j + 1

{
1, j even,

1 + (−1)
j+3

2 , j odd,
, j ≥ 0. (49)

Proof. Formulas (48) and (49) are direct special cases of Formula (47) setting, respectively
λ = 1

2 , 0, 1.

Corollary 15. The following integral formulas hold for every non-negative integer j:

∫ 1

0
Fa,b

j (x) dx =



aj
2F1

(
− 1

2 −
j
2 ,− j

2

−j

∣∣∣∣∣− 4 b
a2

)
j + 1

, j even,

− 2 b
j+1

2

a (j + 1)
+

aj
2F1

(
− 1

2 −
j
2 ,− j

2

−j

∣∣∣∣∣− 4 b
a2

)
j + 1

, j odd,

(50)

∫ 1

0
Lc,d

j (x) dx =



c
2

, j = 1,

cj
2F1

(
− 1

2 −
j
2 ,− j

2

1− j

∣∣∣∣∣− 4 d
c2

)
j + 1

, j even,

−4 d
1+j

2 j + cj+1 (j− 1) 2F1

(
− 1

2 −
j
2 ,− j

2

1− j

∣∣∣∣∣− 4 d
c2

)
r(j2 − 1)

, j odd, j 6= 1,

∫ 1

0
Hj(x) dx =



2j U
(
− j

2 , 3
2 , 1
)

j + 1
, j even,

(−1)
j+1

2 j!
(
−1 + 1F1

(
− 1

2 −
j
2 ; 1

2 ; 1
))

2
(

j+1
2

)
!

, j odd.

(51)

Proof. Formulas (50) and (51) can be directly obtained by application to Theorem 7 using
the three connection formulas, (29)–(31).

5.2. Second Application to the Connection Formulas

In this section, we present another application for the connection formulas between
the different polynomials with Bernoulli polynomials. Two theorems will be stated and
proved in this regard.

Theorem 8. Let ψj(x) by any non-symmetric polynomial whose power form is as in (5), and let it
have the connection formula with Bernoulli polynomials as in (39). Further, assume that j and m
are positive integers. The following integral formula holds:

∫ 1

0
φj(x) Bm(x) dx = m!

j−1

∑
p=0

(−1)j−p+1 (j− p)!
(j + m− p)!

Bj+m−p Ap,j,
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where Ap,j are the connection coefficients in (39).

Proof. If we make use of the connection Formula (39), then:

∫ 1

0
φj(x) Bm(x) dx =

j

∑
p=0

Ap,j

∫ 1

0
Bj−p(x)Bm(x) dx. (52)

Based on the well-known identity:

∫ 1

0
Bm(x) Bn(x) dx =

(−1)n−1 n! m!
(m + n)!

Bm+n, m ≥ 1, n ≥ 1, (53)

and the simple identity ∫ 1

0
B0(x) Bm(x) dx = 0, m ≥ 1, (54)

Formula (52) turns into:

∫ 1

0
φj(x) Bm(x) dx = m!

j−1

∑
p=0

(−1)j−p+1 (j− p)!
(j + m− p)!

Bj+m−p Ap,j.

In the following, we show how to utilize Theorem 8 to obtain closed forms for some
definite integrals.

Corollary 16. For all positive integers j and m, the following integral formula holds:

∫ 1

0
R̃(α,β)

j (x) Bm(x) dx =
(−1)j+1 j! m! Γ(α + 1)

Γ(j + α + 1) Γ(j + α + 1 + β)
×

j−1

∑
p=0

Γ(2j− p + α + β) (Γ(j− p + α) Γ(j + β + 1) + (−1)p Γ(j + α + 1) Γ(j− p + β))

(p + 1)! (j + m− p)! Γ(j− p + α) Γ(j− p + β)
Bj+m−p.

(55)

Proof. Identity (55) can be obtained by application to Theorem 8 together with the connec-
tion Formula (32).

Remark 3. Since the shifted Jacobi polynomials have six well-known shifted polynomials, then six
special integrals can be obtained as special cases of Formula (55).

Corollary 17. For all positive integers j and m, the following integral formulas hold:

∫ 1

0
C̃(α)

j (x) Bm(x) dx =
2 (−1)j+1 j! m! Γ

(
1
2 + α

)
Γ(j + 2α)

×
⌊

j−1
2

⌋
∑
p=0

Γ(2j− 2p + 2α− 1)

(2p + 1)! (j + m− 2p)! Γ
(
− 1

2 + j− 2p + α
) Bj+m−2p,

∫ 1

0
P̃j(x) Bm(x) dx = 2 (−1)j+1 m!

⌊
j−1

2

⌋
∑
p=0

(2j− 2p− 1)!
(2p + 1)! (j− 2p− 1)! (j + m− 2p)!

Bj+m−2p,

∫ 1

0
T̃j(x) Bm(x) dx = 2 (−1)j+1 j

√
π m!

⌊
j−1

2

⌋
∑
p=0

(2j− 2p− 2)!

(2p + 1)! Γ
(
− 1

2 + j− 2p
)
(j + m− 2p)!

Bj+m−2p, ,
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∫ 1

0
Ũj(x) Bm(x) dx = (−1)j+1√π m!

⌊
j−1

2

⌋
∑
p=0

(2j− 2p)!

(2p + 1)! Γ
(

1
2 + j− 2p

)
(j + m− 2p)!

Bj+m−2p,

∫ 1

0
Ṽj(x) Bm(x) dx =

1
2
(−1)j+1√π m!×

j−1

∑
p=0

(2j− p− 1)! (1 + 2j + (−1)p(2j− 2p− 1))

(p + 1)! Γ
(

1
2 + j− p

)
(j + m− p)!

Bj+m−p,

∫ 1

0
W̃j(x) Bm(x) dx =

1
2
(−1)j+1√π m!×

j−1

∑
p=0

(2j− p− 1)! (−1 + (−1)p + 2(1 + (−1)p)j− 2p)

(p + 1)! Γ
(

1
2 + j− p

)
(j + m− p)!

Bj+m−p.

Proof. The results of Corollary 17 are specific cases of the result of Corollary 16 taking into
consideration the suitable choices of the two parameters α and β.

Corollary 18. For all positive integers j and m, the following integral formulas hold:

∫ 1

0
L(α)

j (x)Bm(x) dx =m! Γ(j + α + 1)
j−1

∑
p=0

(−1 + 1F1(−p− 1; j− p + α; 1))
(p + 1)! (j + m− p)! Γ(j− p + α)

Bj+m−p, (56)

∫ 1

0
Sj(x) Bm(x) dx =m!

j−1

∑
p=0

(−1)j−p((j + 1)! (2j− p− 1)! − (2j)!(j− p)!)
(j + 1)! (j− p)! (j + m− p)! (p + 1)!

×

2F1

(
−p− 1,−j− 1

−2j

∣∣∣∣− 1
)

Bj+m−p.

(57)

Proof. Identities (56) and (57) can be obtained by the application of Theorem 8 together
with the connection Formulas (33) and (34).

Now, we are going to prove a corresponding result for Corollary 8, but for any
symmetric polynomial. The next theorem exhibits this result.

Theorem 9. Let φj(x) by any symmetric polynomial of degree j that can be represented as in (44),
and let it have the connection formula with Bernoulli polynomials given as in (44). The following
integral formula applies for every non-negative integer j and m:

∫ 1

0
φj(x) Bm(x) dx =



j
2−1

∑
p=0

Lp,j,m, j even,

j−1
2

∑
p=0

Zp,j,m +

j−3
2

∑
p=0

Z̄p,j,m, j odd,

(58)

where the coefficients Lp,j,m, Zp,j,m and Z̄p,j,m are respectively given by

Lp,j,m =
(−1)j m! (j− 2p− 1)!

(
−(j− 2p) Bj+m−2pGp,j + (j + m− 2p) Bj+m−2p−1 Ḡp,j

)
(j + m− 2p)!

,

Zp,j,m =
(−1)j+1 m! (j− 2p)!

(j + m− 2p)!
Bj+m−2p Gp,j,

Z̄p,m,j =
(−1)j m! (j− 2p− 1)!
(j + m− 2p− 1)!

Bj+m−2p−1 Ḡp,j,

where the coefficients Gp,j and Ḡp,j are the connection coefficients in (44).
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Proof. Starting from the connection Formula (44), we integrate both sides from 0 to 1,
to obtain:

∫ 1

0
φj(x) Bm(x) dx =

⌊
j
2

⌋
∑
p=0

Gp,j

∫ 1

0
Bm(x) Bj−2p(x) dx +

⌊
j−1

2

⌋
∑
p=0

Ḡp,j

∫ 1

0
Bm(x) Bj−2p−1(x) dx.

Now, we consider the following two cases:
(i) The case corresponds to j odd. In this case, we have:

∫ 1

0
φ2j+1(x) Bm(x) dx =

j

∑
p=0

Gp,2j+1

∫ 1

0
Bm(x) B2j−2p+1(x) dx +

j

∑
p=0

Ḡp,2j+1

∫ 1

0
Bm(x) B2j−2p(x) dx. (59)

Making use of the two Identities (53) and (54) turns Formula (59) into the following
one: ∫ 1

0
φ2j+1 Bm(x) dx =

j

∑
p=0

Gp,2j+1 Fm,2j−2p+1 +
j−1

∑
p=0

Ḡp,2j+1Fm,2j−2p, (60)

where Fm,n are given by

Fm,n =
(−1)n−1 n! m!

(m + n)!
Bm+n.

Formula (60) can be written as:

∫ 1

0
φ2j+1(x) Bm(x) dx =

j

∑
p=0

Sp,j,m +
j−1

∑
p=0

S̄p,j,m, (61)

with the coefficients Sp,j,m and S̄p,j,m are given as:

Sp,j,m = Gp,2j+1 Fm,2j−2p+1, S̄p,j,m = Ḡp,2j+1 Fm,2j−2p.

(ii) The case corresponds to j even. In such a case, we have:

∫ 1

0
φ2j(x) Bm(x) dx =

j

∑
p=0

Gp,2j

∫ 1

0
Bm(x)B2j−2p(x) dx +

j−1

∑
p=0

Ḡp,2j

∫ 1

0
Bm(x)B2j−2p−1(x) dx,

which gives after using identity (53), the following formula

∫ 1

0
φ2j(x) Bm(x) dx =

j−1

∑
p=0

Gp,2j Fm,2j−2p +
j−1

∑
p=0

Ḡp,2jFm,2j−2p−1,

which can be written as ∫ 1

0
φ2j(x) Bm(x) dx =

j−1

∑
p=0

Wp,j,m, (62)

where Wp,j,m are given by

Wp,j,m = Gp,2j Fm,2j−2p + Ḡp,2j Fm,2j−2p−1.

Now, merging the two integrals in (62) and (61) yields the following identity:

∫ 1

0
φj(x) Bm(x) dx =



j
2−1

∑
p=0

Lp,j,m, j even,

j−1
2

∑
p=0

Zp,j,m +

j−3
2

∑
p=0

Z̄p,j,m, j odd,
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where the coefficients Lp,j,m, Zp,j,m and Z̄p,j,m are, respectively, given by

Lp,j,m =
(−1)j m! (j− 2p− 1)!

(
−(j− 2p) Bj+m−2pGp,j + (j + m− 2p) Bj+m−2p−1 Ḡp,j

)
(j + m− 2p)!

,

Zp,j,m =
(−1)j+1 m! (j− 2p)!

(j + m− 2p)!
Bj+m−2p Gp,j,

Z̄p,m,j =
(−1)j m! (j− 2p− 1)!
(j + m− 2p− 1)!

Bj+m−2p−1 Ḡp,j,

where the coefficients Gp,j and Ḡp,j are the connection coefficients in (44).

Remark 4. Formula (58) can be split into the following two formulas:

∫ 1

0
φ2j(x) Bm(x) dx =m!

( j−1

∑
p=0

(2j− 2p− 1)!
(2j + m− 2p)!

×

(
2(p− j) Gp,2j B2j+m−2p + (2j + m− 2p) Ḡp,2j B2j+m−2p−1

))
,

(63)

∫ 1

0
φ2j+1(x) Bm(x) dx =m!

(
j

∑
p=0

(2j− 2p + 1)!
(2j + m− 2p + 1)!

Gp,2j+1 B2j+m−2p+1

−
j−1

∑
p=0

(2j− 2p)!
(2j + m− 2p)!

Ḡp,2j+1 B2j+m−2p

)
.

(64)

Corollary 19. For all positive integers j and m, the following integral formulas hold:

∫ 1

0
C(α)

2j (x) Bm(x) dx =
(2j)! m! Γ

(
1
2 + α

)
Γ(2(j + α))

j−1

∑
p=0

2−2(j+p)−3×((
(−1)p 42j+α Γ(2j− p + α− 1)√

π (p + 1)!
+

24p+5 Γ(4j− 2p + 2α− 2)
(2p + 2)! Γ

(
− 3

2 + 2j− 2p + α
)) B2j+m−2p−1

(2j + m− 2p− 1)!

− 16p+1 Γ(4j− 2p + 2α− 1)

(2j + m− 2p)! (2p + 1)! Γ
(
− 1

2 + 2j− 2p + α
) B2j+m−2p

,

(65)

∫ 1

0
C(α)

2j+1(x)Bm(x) dx = (2j + 1)! Γ
(

1
2
+ α

)
m!× j

∑
p=0

2−2 (j−p) Γ(1 + 4j− 2p + 2α)

(2p + 1)! (2j + m− 2p + 1)! Γ
(

1
2 + 2j− 2p + α

)
Γ(2j + 2α + 1)

B2j+m−2p+1

−
j−1

∑
p=0

22(j−p+α−1)
√

π (2j + m− 2p)! (p + 1)! (2p + 2)! Γ(2j + 2α + 1)
B2j+m−2p×(−1)p (2p + 2)! Γ(2j− p + α) +

4p+1 (p + 1)! Γ(2j + α + 1)
(
− 1

2 + 2j− 2p + α
)

p+1

(2j− p + α)p+1


.

(66)

Proof. Formulas (65) and (66) can be obtained by the application of Formulas (63) and (64)
making use of the connection Formula (23).

Corollary 20. For all positive integers j and m, the following integral formulas hold:
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∫ 1

0
Fa,b

2j (x) Bm(x) dx =

a2j m!
j−1

∑
p=0


− a−2(p+1) bp+1(2j− p− 1)!

(p + 1)!
+

(2j)! 2F1

(
−p− 1,−p− 1

2
−2j

∣∣∣∣− 4 b
a2

)
(2p + 2)!

 B2j+m−2p−1

(2j + m− 2p− 1)!

−
(2j)! 2F1

(
−p,−p− 1

2
−2j

∣∣∣∣− 4 b
a2

)
(2p + 1)! (2j + m− 2p)!

B2j+m−2p

,

(67)

∫ 1

0
Fa,b

2j+1(x) Bm(x) dx = m! a2j+1×(2j + 1)!
j

∑
p=0

2F1

(
−p,−p− 1

2
−2j− 1

∣∣∣∣− 4 b
a2

)
(2j + m− 2p + 1)! (2p + 1)!

B2j+m−2p+1

−
j−1

∑
p=0

− a−2(p+1)bp+1(2j− p)!
(p + 1)!

+

(2j + 1)! 2F1

(
−p− 1,−p− 1

2
−2j− 1

∣∣∣∣− 4 b
a2

)
(2p + 2)!

 B2j+m−2p

(2j + m− 2p)!

.

(68)

Proof. Formulas (67) and (68) can be obtained by the application to Formulas (63) and (64)
making use of the connection Formula (29).

Corollary 21. For all positive integers j and m, the following integral formulas hold:∫ 1

0
Lc,d

2j (x) Bm(x) dx = c2jm!×

j−1

∑
p=0


−2 j c−2(p+1) dp+1(2j− p− 2)!

(p + 1)!
+

(2j)! 2F1

(
−p− 1,−p− 1

2
1− 2j

∣∣∣∣− 4 d
c2

)
(2p + 2)!

 B2j+m−2p−1

(2j + m− 2p− 1)!

−
(2j)! 2F1

(
−p,−p− 1

2
1− 2j

∣∣∣∣− 4 d
c2

)
(2p + 1)! (2j + m− 2p)!

B2j+m−2p

,

(69)

∫ 1

0
Lc,d

2j+1(x) Bm(x) dx = m! c2j+1

(2j + 1)!
j

∑
p=0

2F1

(
−p,−p− 1

2
−2j

∣∣∣∣− 4 d
c2

)
(2p + 1)! (2j + m− 2p + 1)!

B2j+m−2p+1

− (2j + 1)
j−1

∑
p=0

B2j+m−2p

(2j + m− 2p)!

− c−2(p+1) dp+1 (2j− p− 1)!
(p + 1)!

+

(2j)! 2F1

(
−p− 1,−p− 1

2
−2j

∣∣∣∣− 4 d
c2

)
(2p + 2)!


.

(70)

Proof. Formulas (69) and (70) can be obtained by the application of Formulas (63) and (64),
making use of the connection Formula (30).

Corollary 22. For all positive integers j and m, the following integral formulas hold:
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∫ 1

0
H2j(x)Bm(x) dx =4j−1 (2j)! m!×

j−1

∑
p=0

 (−1)p+1 4−p
(
−1 + 1F1

(
−p− 1; 1

2 ; 1
))

(p + 1)! (2j + m− 2p− 1)!
B2j+m−2p−1

−
4 U

(
−p, 3

2 , 1
)

(2p + 1)! (2j + m− 2p)!
B2j+m−2p

)
,

(71)

∫ 1

0
H2j+1(x) Bm(x) dx =22j+1 m!

(
22j+1

j

∑
p=0

U
(
−p, 3

2 , 1
)

(2p + 1)! (2j + m− 2p + 1)!
B2j+m−2p+1 (72)

+
j−1

∑
p=0

(−1)p 22j−2p−1
(
−1 + 1F1

(
−p− 1; 1

2 ; 1
))

(p + 1)! (2j + m− 2p)!
B2j+m−2p

.

Proof. Formulas (71) and (72) can be obtained by the application of Formulas (63) and (64)
making use of the connection Formula (31).

6. Concluding Remarks

This paper presented new identities involving Bernoulli polynomials. The associated
identities of Bernoulli numbers can be deduced as direct special cases. As combinations of
Bernoulli polynomials, we could express different polynomials. This yielded new formulas
that connect different polynomials with Bernoulli polynomials. The inversion formulas
to these formulas can be also obtained but the linking coefficients in them can involve
Bernoulli numbers. Furthermore, we presented two applications to compute definite
integrals for different polynomials and also for products of different polynomials with
Bernoulli polynomials. As future work, the ideas in this article can be extended to obtain
several identities for other types of polynomials and their associated numbers. Other
important definite integrals can also be computed based on the formulas established in
this paper.
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