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Abstract: This paper aims to define the set of unital positive maps on M2(C) by means of quantum
Lotka–Volterra operators which are quantum analogues of the classical Lotka–Volterra operators.
Furthermore, a quantum control problem within the class of quantum Lotka–Volterra operators
are studied. The proposed approach will lead to the understanding of the behavior of the classical
Lotka–Volterra systems within a quantum framework.
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1. Introduction

The present paper is closely related to the problem of controlling a two-level quantum
system [1,2]. Let us consider a system for which the influence of the environment does not
affect it [3,4]. Then, its dynamics under the action of the control f (t) is governed by

iU f
t = (H0 + f (t)V)U f

t , U f
t=0 = I,

where f ∈ L1([0, T];R) and H0, V are Hermitian matrices in M2(C). In many physical
systems, it appears several problems of maximizing of an objective functional of the form

J[ f ] = Tr(ρT A) (1)

which presents the quantum average of an observable A at a fixed time T > 0. Here
ρT = UTρ0U∗T, where ρ0 is the initial density matrix. By defining a mapping ΦT(ρ0) = UTρ0U∗T,
then (1) can be rewritten as follows

J[ f ] = Tr(ΦT(ρ0)A). (2)

Notice that the potential of unitary control ΦT to find extremum values of the target
operator are limited, since such operators can only connect states with the same spectrum
(see, for example, [5,6]). Therefore, the dynamics may be extended to non-unitary evolution
by involving the set of unital positive maps. Afterwards, a more general problem can be
observed: assume that a set of unital positive maps from M2(C) to itself is given, say Σ.
Consider the objective functional:

J[Φ] = Tr(Φ(ρ0)A). (3)

The control goal is to find, for given ρ0 and A, optimal map Φ in Σ which maximize the
objective functional J. The formulated problem is a common goal in quantum control [7,8].
In [9,10], the most general physically allowed transformations of states of quantum open
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systems are investigated where Σ is taken as the set of all completely positive trace preserv-
ing maps. General mathematical definitions for the controlled Markov dynamics can be
found in [11].

In the present paper, the set Σ is considered consisting of unital positive maps of
M2(C) associated with quantum Lotka–Volterra operators. Such types of maps have been
introduced in [12] as a quantum analogue of the classical Lotka–Volterra operators [13].
Notice that set of positive maps (defined on some matrix algebra) has certain applications
in quantum information theory [14–17] and entanglement witnesses [18–20].

In this paper, we define a class of quantum Lotka–Volterra operators which contains
as a particular case those that were studied in [12]. We point out that construction of
such types of operators are highly non-trivial, since they map M2(C) into M2(C)⊗M2(C),
and checking their positivity condition is tricky. By considering conditional expectations
(depending on states) from M2(C) ⊗M2(C) to M2(C), and using the quantum Lotka–
Volterra operators, a family of unital positive maps is introduced which depends on several
parameters. If the state is taken as a trace, then the family is reduced to earlier studied maps
in [12]. However, the presence of non-trivial states in the expectation makes the family very
complicated for checking its positivity. For this family of positive maps, in the last section,
a quantum control problem is explored. Although the investigated problem does not have
physical application, the proposed approach will lead to the understanding of behavior of
the classical Lotka–Volterra systems within a quantum framework.

2. Preliminaries

This section is devoted to recalling necessary definitions which will be used later on.
An algebra of 2× 2 matrices over the complex field C is denoted as M2(C). Further-

more, M2(C)M2(C) denotes the tensor product of M2(C) into itself. The symbol 1I stands
for an identity matrix. In the sequel, by M2(C)†

+ we denote the set of all positive functionals
defined on M2(C). The set of all states (i.e., linear positive functionals which take value 1
at 1I) defined on M2(C) is denoted by S(M2(C)).

It is well known that the identity 1I and Pauli matrices {σ1, σ2, σ3} form a basis for
M2(C), where

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Therefore, any x ∈ M2(C) can be written as x = w01I + wœ with w0 ∈ C, w =
(w1, w2, w3) ∈ C3, where wσ = w1σ1 + w2σ2 + w3σ3.

By DM2(C), we denote a commutative subalgebra of M2(C) generated by {1I, σ3}. In
this setting, every element x ∈ DM2(C) can be written as follows: x = ω01I + ω3σ3, where
ω0, ω3 ∈ C.

Lemma 1 ([21]). Let x ∈M2(C). Then the following assertions hold:

(a) x is self-adjoint iff w0, w are real;
(b) x ≥ 0 iff ‖w‖ ≤ w0, where ‖w‖ =

√
|w1|2 + |w2|2 + |w3|2;

(c) A linear functional ϕ on M2(C) is a state iff it can be represented by

ϕ(w01I + wσ) = w0 + 〈w, f〉, (4)

where f = ( f1, f2, f3) ∈ R3 such that ‖f‖ ≤ 1. Here as before 〈·, ·〉 stands for the scalar
product in C3.

Notice that a basis of M2(C)⊗M2(C) is formed by the system

{1I⊗ 1I, σi ⊗ 1I, 1I⊗ σi, σi ⊗ σj}3
i,j=1.
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A linear operator U : M2(C)⊗M2(C)→M2(C)M2(C) such that U(xy) = yx for all
x, y ∈M2(C) is called a flipped operator.

Definition 1 ([22]). A linear mapping ∆ : M2(C)→M2(C)M2(C) is said to be

(a) A quasi quantum quadratic operator (quasi q.q.o) if it is unital (i.e., ∆1I = 1I1I), *-preserving
(i.e., ∆(x∗) = ∆(x)∗, ∀x ∈M2(C)) and

V∆(ϕ) := ∆∗(ϕϕ) ∈M2(C)†
+ whenever ϕ ∈M2(C)†

+;

(b) A quantum quadratic operator (q.q.o.) if it is unital and positive (i.e., ∆x ≥ 0 whenever
x ≥ 0);

(c) Symmetric if one has U∆ = ∆.

It is evident that if ∆ is q.q.o., then it is a quasi q.q.o. Moreover, the unitality of ∆
implies any quasi q.q.o. V∆ maps S(M2(C)) into itself.

Remark 1. We notice that symmetric q.q.o.s have been studied in [23], which were called quantum
quadratic stochastic operators. We refer the reader to [24] for recent reviews on quadratic operators.

We mention that quasi quadratic quantum operators have been studied in [25]. In
this regard, there is a natural question: for what sort of operators do the quasiness and the
positivity coincide? This question is related to providing simpler examples of block-positive
operators which have potential applications in detection of entangled witness [26].

Any unital linear map ∆ : M2(C)→M2(C)⊗M2(C) can be represented as follows:

∆(x) = (w0 + 〈b, w〉)1I⊗ 1I + 1I⊗ B(1)w · σ + B(2)w · σ⊗ 1I +
3

∑
m,l=1
〈bml , w〉σm ⊗ σl , (5)

where b = (b1, b2, b3), bml = (bml,1, bml,2, bml,3), and B(k) = (b(k)ij )3
i,j=1, k = 1, 2 are real for

every i, j, k ∈ {1, 2, 3}. Here as before 〈·, ·〉 stands for the standard dot product in C3.

3. Quantum Lotka–Volterra Operators on M2(C)M2(C)M2(C)
In this section, we define a quantum analogue of Lotka–Volterra operators on M2(C).

Recall that the Lotka–Volterra operator on M2(C) is defined as follows [12,27]:

∆a(w01I + wσ) = ω01I⊗ 1I +
1
2

ω3(1I⊗ σ3 + σ3 ⊗ 1I) +
a
2

ω3(1I⊗ 1I− σ3 ⊗ σ3). (6)

where |a| ≤ 1. One can see that ∆a maps M2(C) to DM2(C)⊗ DM2(C).
By Ẽ : M2(C)→ DM2(C), we denote the standard projection defined by

Ẽ(w01I + wσ) = w01I + ω3σ3.

Denote E = Ẽ Ẽ .

Definition 2. A symmetric q.q.o. ∆ : M2(C) → M2(C)M2(C) is called Quantum Lotka–
Volterra operator, if

E ◦ ∆ = ∆a, (7)

for some a ∈ [−1, 1].

In what follows, we will need the following auxiliary fact.

Lemma 2. Consider the function f (x) = ax + b
√

1− x2 where x ∈ [−1, 1], a, b > 0 Then

1. The minimum value of f is −a;
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2. The maximum value of f is
√

a2 + b2.

Lemma 3 ([12]). Let f (x) = ax2 + bx + c. Then the following conditions are equivalent

(i) f (x) ≥ 0 for all x ∈ [0, 1];
(ii) c ≥ 0, a + b + c ≥ 0 and one of the following conditions is satisfied:

I. a > 0,

(a) b > 0;
(b) −b > 2a;
(c) b2 − 4ac ≤ 0;

II. a < 0.

The next theorem is the main result of this section.

Theorem 1. Let ∆λ,µ,γ,a : M2(C)→M2(C)M2(C) be given as follows:

∆λ,µ,γ,a(w01I + wσ) =(w0 +
a
2

ω3)1I⊗ 1I + λω1(σ11I + 1I⊗ σ1) + µω2(σ21I + 1I⊗ σ2)

+
ω3

2
(σ31I + 1I⊗ σ3)−

a
2

ω3(σ3σ3) + γω1(σ1 σ1),
(8)

where λ, µ, γ ∈ R and a ∈ [−1, 1]. Then the following statements hold true:

(i) ∆λ,µ,γ,a is a quantum Lotka–Volterra operator if

|γ| ≤
√

1− a2, max{λ2, µ2} ≤ (1− |a|)− γ2(1 +
√

a2 + γ2)

4(1 + |γ|) . (9)

(ii) ∆λ,µ,γ,a is a quasi quantum quadratic operator if

M ≤ 1− |a| − (4γ + γ2)

4
. (10)

Proof.

(i) Let x ∈M2(C), x ≥ 0, i.e., x = w01I + wσ. Without loss of generality we may assume
that w0 = 1. The positivity of x implies ‖w‖ ≤ 1. From (8), one finds

∆(x) =


1 + w3 y y γw1

y aw3 + 1 γw1 y

y γw1 aw3 + 1 y

γw1 y y 1− w3

,

where y = λw1 − iµw2.
To check the positivity of the above matrix, we use the Silvester criterion, i.e., ∆k ≥ 0,
k ∈ {1, 2, 3, 4}, where

∆1 = 1 + w3

∆2 = (1 + w3)(1 + aw3)− |y|2

∆3 = (1 + aw3 − γw1)((1 + w3)(1 + aw3 + γw1)− 2|y|2)
∆4 = (1 + aw3 − γw1)((1 + aw3 + γw1)(1− w2

3 − γ2w2
1)− 4|y|2 + 2γw1(y2 + y2)).

Clearly, 1 + w3 ≥ 0.
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On the other hand, we can compute that 1 + aw3 − γw1 is an eigenvalue of ∆(x).
Therefore, 1 + aw3 − γw1 should be non-negative, i.e.,

γw1 − aw3 ≤ 1. (11)

Using Lemma 2, we infer that the maximum value of the left hand side of (11) is√
a2 + γ2. So,

|γ| ≤
√

1− a2.

Now, let us consider ∆2, then the positivity is satisfied if and only if (1 + w3)(1 +
aw3) ≥ |y|2. This holds if

(1 + w3)(1 + aw3) ≥ M(1− w3)(1 + w3),

where M = max{λ2, µ2}, then (a + M)w3 ≥ M− 1. If a ≥ 0, then the left hand side
of the last inequality has its minimum value at w3 = −1. Using the same argument
for the case a < 0, we arrive at

M ≤ 1− |a|
2

.

Now, let us check the positivity of ∆3. Keeping in mind 1 + aw3 − γw1 ≥ 0, the
positivity of ∆3 is satisfied if (1 + w3)(1 + aw3 + γw1) ≥ 2|y|2 which is equivalent to

(a + 2M)w3 + γw1 ≥ 2M− 1.

If a ≥ 0, by Lemma 2 the minimum value of the left hand side of the last inequality is
−(a + 2M). Hence, a + 2M ≤ 1− 2M. Therefore,

M ≤ 1− |a|
4

. (12)

Finally, we have to check the positivity of ∆4, i.e., we need to show that

(1− w2
3 − γ2w2

1)(1 + aw3 + γw1) ≥ 4M(1− w2
3)(1 + |γw1|).

Rewriting the last inequality, one has

(1− w2
3)(1 + aw3 + γw1 − 4M(1 + |γw1|)) ≥ γ2w2

1(1 + aw3 + γw1). (13)

By Lemma 2, we infer that max(aw3 + γw1) =
√

a2 + γ2, min(aw3 + γw1) = −|a|.
Hence, from (13) it follows that

(1− |a| − 4M(1 + |γw1|) ≥
γ2w2

1
1− w2

3
(1 +

√
a2 + γ2). (14)

Define

f (w1, w3) :=
w2

1
1− w2

3

over the region w2
1 + w2

3 ≤ 1. It is clear that the critical point is (0, w3). Thus, the
maximum value will be at the boundary, i.e., w2

1 = 1− w2
3. Hence, the maximum

value of f (w1, w3) is 1. Therefore,

(1− |a| − 4M(1 + |γw1|) ≥ γ2(1 +
√

a2 + γ2). (15)

Due to |w1| ≤ 1, one has

M ≤ (1− |a|)− γ2(1 +
√

a2 + γ2)

4(1 + |γ|) . (16)
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By
(1− |a|)− γ2(1 +

√
a2 + γ2)

4(1 + |γ|) ≤ 1− |a|
4

one obtains the positivity of ∆4, which implies the positivity of ∆3 as well.
(ii) From (8), for every state ϕ (which corresponds to the vector f = ( f1, f2, f3) ∈ R3),

one finds

(V∆λ,µ,γ,a(ϕ))(x) = ω0 + (2λ f1 + γ f 2
1 )ω1 + 2µ f2ω2 +

(
f3 +

a
2
(1− f 2

3 )
)
ω3.

Hence, the quasiness condition for ∆λ,µ,γ,a is equivalent to

(2λ f1 + γ f 2
1 )

2 + (2µ f2)
2 +

(
f3 +

a
2
(1− f 2

3 )
)2 ≤ 1, for all ‖f‖ ≤ 1.

Rewriting the last inequality, we find

4λ2 f 2
1 + 4µ2 f 2

2 + 4λγ f 3
1 + γ2 f 4

1 + f 2
3 − 1 + a f3(1− f 2

3 ) +
a2

4
(1− f 2

3 )
2 ≤ 0.

This inequality is satisfied if

4M(1− f 2
3 ) + (4|γ|+ |γ2|)(1− f 2

3 ) + f 2
3 − 1 + |a|| f3|(1− f 2

3 ) +
a2

4
(1− f 2

3 )
2 ≤ 0

which is equivalent to

(1− f 2
3 )(4M + 4|γ|+ γ2 − 1 + |a|| f3|+

a2

4
(1− f 2

3 )) ≤ 0.

Then

a2

4
f 2
3 − |a|| f3|+ 1− (4|γ|+ γ2)− 4M− a2

4
≥ 0

So, by Lemma 3

1− (4|γ|+ γ2)− 4M− a2

4
≥ 0, and 1− |a| − (4|γ|+ γ2)− 4M ≥ 0.

Hence,

M ≤ min
{

1− a2

4 − (4γ + γ2)

4
,

1− |a| − (4γ + γ2)

4

}
=

1− |a| − (4γ + γ2)

4
.

This completes the proof.

Remark 2. We stress that if γ = 0, then from the proved theorem we infer that the quasiness
implies the positivity of ∆λ,µ,0,a. This type of results was established in [12].

4. A Class of Positive Operators Corresponding to ∆λ,µ,γ,a

In this section, we define a class of positive operators associated with ∆λ,µ,γ,a. To do
so, given a state ϕ on M2(C), let us define a mapping Eϕ : M2(C)M2(C)→M2(C) by

Eϕ(xy) = xϕ(y), x, y ∈M2(C). (17)

It is known that Eϕ is a conditional expectation.
By means of ∆λ,µ,γ,a, let us define a mapping Φλ,µ,γ,a,ϕ : M2(C)→M2(C) by

Φλ,µ,γ,a,ϕ := Eϕ ◦ ∆λ,µ,γ,a. (18)
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By (8) we find

Φλ,µ,γ,a,ϕ(w01I + wσ) =

(
w0 + λ f1ω1 + µ f2ω2 +

a + f3

2
ω3

)
1I

+(λ + γ f1)ω1σ1 + µω2σ2 +
1− a f3

2
w3σ3. (19)

We stress that if ϕ is taken as the normalized trace, i.e., f1 = f2 = f3 = 0, then the
mapping Φλ,µ,γ,a,ϕ reduces to

Φλ,µ,a(w01I + wσ) =

(
w0 +

a
2

ω3

)
+ λω1σ1 + µω2σ2 +

w3

2
σ3, (20)

which was investigated in [12]. Clearly, from (19) one sees that the structure of Φλ,µ,γ,a,ϕ is
much complex than (20).

Theorem 2. Let Φλ,µ,γ,a,ϕ be given by (19). Then Φλ,µ,γ,a,ϕ is positive if

max(|µ|, |γ f1 + λ|) ≤
2−

√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

2
.

where f = ( f1, f2, f3) ∈ R3 corresponds to ϕ.

Proof. Let x ∈M2(C) be as in Theorem 1. Then, the matrix form of Φλ,µ,γ,a,ϕ(x) is given by

Φλ,µ,a,ϕ(x) =

[
W + 1

2 w3(1 + f3)− 1
2 aw3 f3 γ w1 f1 + ȳ

γ w1 f1 + y W + 1
2 w3(−1 + f3) +

1
2 aw3 f3

]

where W = 1 + 1
2 aw3 + λ f1w1 + µ f2w2, y = λw1 + µiw2.

The eigenvalues of Φλ,µ,γ,a,ϕ(x) are

Λ1 = λ f1w1 + µ f2w2 +
1
2
(a + f3)w3 + 1− 1

2

√
(a f3 − 1)2w2

3 + 4(γ f1 + λ)2w2
1 + 4µ2w2

2

Λ2 = λ f1w1 + µ f2w2 +
1
2
(a + f3)w3 + 1 +

1
2

√
(a f3 − 1)2w2

3 + 4(γ f1 + λ)2w2
1 + 4µ2w2

2

To show the positivity of Φλ,µ,γ,a,ϕ it is enough to establish the positivity of Λ1. So,

λ f1w1 + µ f2w2 +
1
2
(a + f3)w3 + 1− 1

2

√
(a f3 − 1)2w2

3 + 4(γ f1 + λ)2w2
1 + 4µ2w2

2 ≥ 0

which is equivalent to

λ f1w1 + µ f2w2 +
1
2
(a + f3)w3 + 1 ≥ 1

2

√
(a f3 − 1)2w2

3 + 4(γ f1 + λ)2w2
1 + 4µ2w2

2 (21)

The inequality (21) holds if the following inequality is satisfied

f1w1 + µ f2w2 +
1
2
(a + f3)w3 ≥

1
2

√
(a f3 − 1)2w2

3 + 4M̃(1− w2
3)− 1, (22)

where M̃ = max{(γ f1 + λ)2, µ2}. Assume that

F(w1, w2, w3) := λ f1w1 + µ f2w2 +
1
2
(a + f3)w3.
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Therefore, we have to find the absolute minimum value of F subject to the constrain
G(w1, w2, w3) := w2

1 + w2
2 + w2

3− 1. Using Lagrange multiplier∇(F) = p∇(G) one obtains

λ f1~i + µ f2~j +
1
2
(a + f3)~k = 2pw1~i + 2pw2~j + 2pw3~k

Then

p =
λ f1

2w1
=

µ f2

2w2
=

(a + f3)

4w3

Thus, w2 =
(

µ f2
λ f1

)
w1, w3 =

(
(a+ f3)

2λ f1

)
w1. Plugging these values into w2

1 +w2
2 +w2

3 = 1,
one finds

w1 = ± 2λ f1√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

,

w2 = ± 2µ f1√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

,

w3 = ± (a + f3)√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

substituting these value into F(w1, w2, w3), we obtain

min
w2

1+w2
2+w2

3=1
F(w1, w2, w3) = −

1
2

√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

Hence, by (22), one has√
((a f3 − 1)2 − 4M̃)w2

3 + 4M̃ ≤ −
√

4λ2 f 2
1 + 4µ2 f 2

2 + (a + f3)2 + 2

Now, if (a f3 − 1)2 > 4M̃ then

|a f3 − 1| ≤ 2−
√

4λ2 f 2
1 + 4µ2 f 2

2 + (a + f3)2.

If (a f3 − 1)2 ≤ 4M̃ then

max(|µ|, |γ f1 + λ|) ≤
2−

√
4λ2 f 2

1 + 4µ2 f 2
2 + (a + f3)2

2
.

This completes the proof.

5. Controlling a Two-Level Quantum System

In this section, we investigate the problem of controlling a qubit, i.e., a two-level
quantum system associated with Φλ,µ,γ,a,ϕ.

By Σa we denote the set of all Φλ,µ,γ,a,ϕ which is positive. One can check that Σa is a
convex set. Denote ϑ =

⋃
−1≤a≤1

Σa. Define

J (Φ) = Tr(Φ(ρ0)O), Φ ∈ ϑ, (23)

where ρ0 ≥ 0, O ∈M2(C), O∗ = O.
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The main aim of this section is to maximize J
Φ∈ϑ

(Φ). Let us first observe that any

Hermitian operator O ∈M2(C) can be diagonalized as

Ō =

(
λ1 0
0 λ2

)
= λ̃11I + λ̃2σ3. (24)

where λ̃1 = λ1+λ2
2 , λ̃1 = λ1−λ2

2 . For the sake of simplicity, we choose λ1 = 1, λ2 = 0. Now,
substituting Φλ,µ,γ,a,ϕ and Ō into (23) one finds

J (Φλ,µ,γ,a,φ) = Tr(Φλ,µ,γ,a,φ(ρ0)Ō) = λ f1w1 + µ f2w2 +
1
2
(a + 1 + (1− a) f3)w3, (25)

here ρ0 = 1I + w ·œ is the initial density matrix with ||w|| ≤ 1. The next theorem is the
main result of this section.

Theorem 3. Let J (Φλ,µ,γ,a,φ) be given by (25), then the following statements hold true:

(i) If w1w3 6= 0, then

maxJ (Φλ,µ,γ,a,φ) = K

(
1
2

√
1 + (3−

√
6)
√

4−
√

6 +
1
8
(3 +

√
6)
√

4−
√

6−
√

6
4

+
7
8

)
,

where K = max{|w1|, |w3|}.
(ii) If w1 = 0, w3 6= 0, then maxJ (Φλ,µ,γ,a,φ) =

(
2
√

2+1
4

)
|w3|.

(iii) If w1 6= 0, w3 = 0, then maxJ (Φλ,µ,γ,a,φ) =
1√
2
|w1|.

(iv) If w1 = 0, w3 = 0, then maxJ (Φλ,µ,γ,a,φ) = 0.

Proof. Let us first denote J (Φλ,µ,γ,a,φ) by F(λ, µ, γ, a, φ). Therefore, we have to find the
maximum value of

F(λ, µ, γ, a, φ) := λ f1 A + µ f2B +
1
2
(a + 1 + (1− a) f3)C,

where w1 = A, w2 = B, and w3 = C subject to the constrain

G(λ, µ, γ, a, φ) := 4λ2 f 2
1 + 4µ2 f 2

2 + (a + f3)
2 − (2− 2µ)2 ≤ 0. (26)

Using Lagrange multiplier, one has

∇F(λ, µ, γ, a, φ) = p∇G(λ, µ, γ, a, φ).

Then we obtain the following system of equations:

2(a + f3)p = 1
2 (1− f3)C

8λ f 2
1 p = f1 A

(8µ f 2
2 − 8µ + 8)p = f2B

8λ2 f1 p = λA
8µ2 f2 p = µB
2(a + f3)p = 1

2 (1− a)C

(27)

Now, we analyze the system (27). Suppose that µ f2 6= 0 then, from the fifth equation of
(27), one has p = B

8µ f2
, and, inserting this value into the third equation of (27), we arrive at

µ = 1, but it contradicts the constrain (26). Therefore, µ f2 = 0. Consequently, our problem
is reduced to

F(λ, γ, a, φ) = λ f1 A +
1
2
(a + 1 + (1− a) f3)C
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subject to the constrain

G(λ, γ, a, φ) = 4λ2 f 2
1 + (a + f3)

2 − 2 ≤ 0.

Now, we consider the following cases with respect to values of A and C.

(i) Assume that AC 6= 0, then from the first and the last equation of (27) we obtain that
f3 = a. Next, assume that λ f1 = 0, then we have critical points at f3 = ± 1√

2
. Plugging

it into F, we obtain max F =
(

2
√

2+1
4

)
|C|. Now, let us suppose λ f1 6= 0, then from

the second equation of (27) one finds p = A
8λ f1

, then inserting this value into the first

equation, we obtain λ f1 = A
C

f3
1− f3

. Then plugging the obtained ones into G yields

4
A2

C2

(
f3

1− f3

)2

+ 4 f 2
3 − 2.

Rewriting the last expression gives

(
f3

1− f3

)
= ±

C
√

2− 4 f 2
3

2A
, | f3| ≤

1√
2

.

Now, plugging the value
(

f3
1− f3

)
into F yields

F = A

√
2− 4 f 2

3

2
− 1

2
C(1− f3)

2 + C.

Let K = max{|A|, |C|}, then

F ≤ K
(√2− 4 f 2

3

2
− 1

2
(1− f3)

2 + 1
)

.

Now, let us find the maximum value of
√

2−4 f 2
3

2 − 1
2 (1− f3)

2 + 1 over the interval
[− 1√

2
, 1√

2
]. The last function’s critical points are:

X = ± 1√
2

, Y =
1
2
− 1

4

√
6 +

1
4

√
−6 + 4

√
6.

One can easily check that the maximum value reaches at Y, and its value is

K

1
2

√√√√−4

(
1
2
−
√

6
4

+

√
−6 + 4

√
6

4

)2

+ 2 +
1

16
(
√

6 + 2)
√
−6 + 4

√
6−
√

6
4

+
7
8

.

Simplifying the last expression, we arrive at the required assertion.
(ii) Let A = 0, C 6= 0. Then, F = 1

2 (1 + 2 f3 − f 2
3 ) and G = 4 f 2

3 − 2. So, one has that the

critical points at f3 = ± 1√
2

. Hence, the maximum value is
(

2
√

2+1
4

)
|C|.

(iii) Assume that A 6= 0, C = 0. Then F = λ f1 A and G = 4λ2 f 2
1 − 2. Similarly, the

maximum value of F is 1√
2
|A|.

(iv) Let A = 0, C = 0. In this case F = G = 0. So, the maximum value is 0. This completes
the proof.
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6. Conclusions

In the present paper, we have introduced a class of quantum Lotka–Volterra operators
which contains as a particular case those that were studied in [12]. The provided construc-
tion of such types of maps is highly non-trivial, since they map M2(C) into M2(C)⊗M2(C),
and checking their positivity condition is tricky. Moreover, considering conditional expecta-
tions (depending on states) from M2(C)⊗M2(C) to M2(C), and using the introduced class
of maps, a family of unital positive maps is defined which depends on several parameters.
We stress that if the state is taken as a trace, then the family is reduced to earlier studied
maps in [12]. However, the presence of non-trivial states makes the family very compli-
cated for checking its positivity, which has been done in Section 4. Within such a family of
positive maps, in the last section, a quantum control problem is explored. The proposed
approach will lead to the understanding of the behavior of the classical Lotka–Volterra
systems within a quantum framework. The constructed unital positive maps will also serve
to be entangled witnesses. Moreover, it would be interesting to find conditions on the
parameters for which the considered family satisfies the Kadison–Schwarz property, which
has certain applications in the approximation of positive maps [28].
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