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Abstract: Over the past decade, neurorobotics-integrated machine learning has emerged as a new
methodology to investigate and address related problems. The combined use of machine learning and
neurorobotics allows us to solve problems and find explanatory models that would not be possible
with traditional techniques, which are basic within the principles of symmetry. Hence, neuro-robotics
has become a new research field. Accordingly, this study aimed to classify existing publications on
neurorobotics via content analysis and knowledge mapping. The study also aimed to effectively
understand the development trend of neurorobotics-integrated machine learning. Based on data
collected from the Web of Science, 46 references were obtained, and bibliometric data from 2013 to
2021 were analyzed to identify the most productive countries, universities, authors, journals, and
prolific publications in neurorobotics. CiteSpace was used to visualize the analysis based on co-
citations, bibliographic coupling, and co-occurrence. The study also used keyword network analysis
to discuss the current status of research in this field and determine the primary core topic network
based on cluster analysis. Through the compilation and content analysis of specific bibliometric
analyses, this study provides a specific explanation for the knowledge structure of the relevant
subject area. Finally, the implications and future research context are discussed as references for
future research.

Keywords: machine learning; robotics; bibliometric analysis; visualized analysis; neurorobotics-integrated
machine learning

1. Introduction

In the late 1980s, Kawato and Gomi [1] and Miyamoto et al. [2] first proposed an
approach using neurorobotics to construct a series of robotic devices that investigated the
adaptation of the cerebellum to motion. Since the mid-twentieth century, neuroscience has
proven the significance of neurorobotics in several fields (for example, computer vision)
based on its development in robot learning [3]. Notably, artificial intelligence (AI) is vital
to computer vision because it facilitates deep learning [4]. AI research tools include ma-
chine learning (ML), artificial neural networks, fuzzy logic, adaptive-network-based fuzzy
inference systems, genetic algorithms, pattern recognition, clustering, deep learning, and
particle swarm optimization [5], which are closely associated with computer vision. For
example, in automatic driving, combining deep learning technology with visual sensing
makes the relevant systems more intelligent [3]. Moreover, models, algorithms, and tech-
nologies for ML have been developed and applied in numerous fields, such as data mining,
pattern recognition, signal processing, and robot control. For example, Li [6] investigated
the combination of ML and radar signal recognition; this approach significantly improved
the accuracy of radar signal recognition and demonstrated good stability. Meanwhile,
Ge et al. [7] suggested that “as a computational engine for data mining and analytics, ML
serves as a basic tool for information extraction, data pattern recognition, and predictions”.
Owing to its significant potential, ML is essential for executing challenging robotic tasks [8].
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Therefore, in the current study on ML, previous developments in computer vision were
reviewed further to understand the overall changes and history of the field to facilitate
future studies.

Currently, AI is widely used in medicine, calculations, engineering, science, finance,
education, economics, and agriculture [9–13]. Notably, previous studies on intelligent
robots based on ML have been extensively applied to medicine. For example, as a robot
“with diabetes”, Robin offers dual benefits of therapeutic effects and emotional support
when managing children with diabetes [14]. Meanwhile, NEUROExos, a rehabilitation
robot, can aid in physical rehabilitation and has been proposed to facilitate high-intensity
therapy, including repetitive motions of damaged limbs. Thus, robots can help patients
undergo more effective and stable rehabilitation processes and reduce the workload of ther-
apists [15]. Basílio et al. [16] used bibliometrics to analyze 23,494 studies on multi-standard
methods from 131 countries over the past 44 years to help understand the global evolution
of the creation and use of multi-standard decision-making methods. In addition, an artificial
electronic synapse has to be designed to imitate the behavior of the nervous system, owing
to its essential features, which can receive excitatory signals and return informative synaptic
reactions to the motor system. Therefore, such imitation can fundamentally broaden the
horizons of artificial neurorobotics and learning systems [17]. The combination of neural
robots and ML completely subverts traditional ML. Generally, ML-based methods are used
to understand information processing in parallel and distributed neural architectures to
effectively integrate the application of computational biology, natural language processing,
and AI.

Neurorobotics is an emerging field that integrates neuroscience, AI, and interdisci-
plinary techniques. Among the traditional research topics related to robots, only topics
related to robot path planning [18] and research on the trends and hotspot analysis of reha-
bilitation robots are available [19]. However, robotics and ML are topics of interest that have
gradually received attention from several journals in recent years, including the special
issue “Artificial Intelligence & Robotics” of the Advanced Robotics journal in 2019, Fron-
tiers in Neurorobotics 2022 Special Issues “Robust Artificial Intelligence for Neurorobotics”
and “Robust Artificial Intelligence for Neurorobotics”, and a Special Issue of Sensors in
2022 “Neuro-Robotics Systems: Sensing, Cognition, Learning, and Control”. Therefore,
in this field, the application of neurorobotics has also received increasing attention in
recent years; however, the research on comprehensive related topics and bibliometrics has
not been systematically analyzed, and the processes adopted in the field have not been
discussed. Therefore, herein, to better understand the development of ensemble ML for
neural robots and to comprehensively explore its trends, bibliometric data references in
science citation index (SCI) journals from 2013 to 2021 and key information from these aca-
demic publications were analyzed. This study further analyzed the current development of
neurorobotics-integrated ML and the research methods applied in the field. This research
used bibliometric methods and CiteSpace software to study and analyze the research topic
and trends in this field, hoping to address the following questions: (1) What is the current
state of ML and neurorobotics research and the status of journal publications? (2) What is
the status quo of highly cited neurorobotics and ML research, and how have the related
keywords, research areas, and authors evolved? Through research in important journals,
we developed a preliminary understanding of the research on neurorobotics and ML and
the prospects of the field.

Specifically, this study has the following three main contributions: (1) Through a
literature review, the basic statistical characteristics of machine learning and neurorobotics,
including the annual publication of papers, the publication of journals, and highly cited
papers, are reflected; (2) keywords are searched on the Internet to find relevant published
papers; these papers are discussed and analyzed to identify the topics of a specific field
and the trend of changes in such topics over time; (3) lastly, through the analysis of content
and topics, we learn about the preferred research directions and relevant applications of
machine learning and neurorobotics.
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The remainder of this paper is arranged below: Section 2 centers on the application of
bibliometrics in past research. Section 3 explores data analysis and methodology, includ-
ing data collection methods and the algorithms employed. Data results are discussed in
Section 4, including basic characteristics, highly cited research, institutional cooperation
networks, the results of analysis of keywords on the Internet, as well as content analy-
sis. Lastly, Section 5 concludes the research, including research results, future research
directions, and limitations.

2. Literature Review

Typically, bibliometrics is used for quantitative research and evaluating academic
achievements, groups, and individuals involved in scientific research [20]. Bibliometric
indicators enable readers to organize data [21] and more conveniently analyze the distribu-
tion, structure, and evolutionary history of disciplines [22]. Notably, the current tools used
in bibliometric studies include CitNetExplorer, CiteSpace, HistCite, SciMAT, Sci 2, and
VOSviewer [23]. In this study, CiteSpace was employed owing to its simple operation and
multiple advantageous features, including the generation of mutation-detection algorithms
and time-trend graphs based on time changes, trend prediction, and the exploration of
more mutational hotspots [24].

To date, bibliometrics has been widely used. For instance, Koseoglu et al. [25] inves-
tigated the current status of tourism research based on tourism and hospitality journals;
Dabbagh et al. [26] investigated the development trend and current status of blockchain
research papers and identified the latest achievements and challenges in the blockchain
technology. Basilio et al. [27] explored and summarized the research conducted on various
aspects of domestic violence over the past five decades based on bibliometric analysis, pro-
viding new ideas for future research. By rationally utilizing bibliometrics, Zhang et al. [28]
systematically analyzed the research status, development process, and potential trends of
sustainable urbanization. Following this, key issues in sustainable urbanization, including
the rational control of urban expansion speed, effective coordination of urban and rural
development, the formulation of evidence-based urban development strategies, and guar-
anteeing urban residents’ living standards, are expected to become more critical compared
with other research directions in the future. In the field of police affairs, researchers have
analyzed several police strategies and related theme papers from 58 countries over the
past 50 years through bibliometric methods, providing directions for future research in this
field [29]. In education, Jia et al. [11] analyzed the AI trends and related applications in
online learning and identified that AI-assisted learning has recently emerged as a popular
topic. By performing a systematic review and bibliometric analysis in the field of infor-
mation science, Kong et al. [30] summarized numerous studies on the urban environment,
society, and sustainability using big data. They concluded that human behavior contributes
to the most typically used big data in urban environments. Analytical methods can be
classified into five primary types: Classification, clustering, regression, correlation rules,
and social-network analysis. Overall, most previous studies have employed bibliomet-
rics to investigate the development trends of research fields and recommend relevant
research improvements.

3. Dataset and Research Methodology
3.1. Dataset

Note that all papers used in this study were collected from the Web of Science (WOS)
(database) [31], which is used in more than 200 disciplines. The major sources used in
the database are the SCI expanded and the social science citation index. A search query
TS = ((“Machine learning”) and (“Neurorobotics” or “robotics”)) was created to achieve
the goal of this study. The retrieval period was set from 2013 to 31 December 2021. The
literature was classified as “articles”, and the category in the WOS database was chosen
as robotics. In total, 158 papers were retrieved from the database based on the approach
described above. It should be noted that, in this study, we conducted bibliometric data
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analysis on data collected since 2013, primarily because most bibliometric methods adopt a
time period as the scope of their search. For example, a period of more than 5 years can be
regarded as the scope of a search. To ensure the rationality of data collection and reduce
deviations and errors in time selection [24], we considered the period from 2013 to 2021 as
the scope of the search in our study. We used the WOS database because it contains the
primary literature from SCI and social sciences citation index journals, and most countries
and researchers view it as a source of literature published in core journals. In addition,
other databases, such as SCOPUS and Science Direct, were not employed in this study
because most of them store papers from seminars or non-English papers, which can lead to
deviations and errors in the data analysis [11,14].

However, after several rounds of screening, certain issues still prevailed. For instance,
some keywords in certain papers only briefly described the context of their study and
were unrelated to the study. Instead of being directly related to the research, the theme
and keywords were merely explanations of certain terms in the paper. Therefore, data
cleaning was necessary for all the selected 158 papers, which required manual analysis
tools. Notably, some of the keywords could not be used without data cleaning. To address
these problems and ensure a strong association between the data and analysis, we adopted
the research technique considered by Wang and Ngai [32], and three researchers scrutinized
the abstracts of all 158 papers. After manual screening, papers that conformed to the
study theme were retained for further processing, whereas those that were irrelevant were
excluded. Consequently, 46 articles were found to be consistent with the theme of this study,
and the remaining 112 were excluded owing to insufficient references to neurorobotics (see
Figure 1).
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3.2. Research Methodology
3.2.1. Keyword Network Construction

Keyword networks are often utilized to analyze research topics and hotspots in various
disciplines [33,34]. They were first proposed by Callon, Courtial, Turner, and Bauin [35]
and are used to analyze the evolution characteristics of knowledge structures in research
fields. The underlying principle involves document collection from cleaned documents:
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P = {P1, P2, . . . , Pn}. Simultaneously, a keyword set of a single document is generated
for the keywords appearing in each document in the document set P: K (P) = {KP1, KP2,
. . . , KPn}; that is, the keyword set of each document holds all the keywords related to the
literature. On this basis, according to the correspondence between the documents in sets
P and K (P), a “document–keyword” membership matrix is constructed. This matrix is a
binary rectangular matrix. Using frequency weighting, the binary “document–keyword”
membership matrix is further converted into a multi-valued “keyword–keyword” adjacency
matrix (square matrix). Because the considered research focuses more on the relationship
between keywords rather than their frequency, the “frequency” in the conversion process
refers to the frequency of the co-occurrence of two keywords and not the frequency of
the occurrence of a single keyword. For instance, if the keywords Ki and Kj appear
in a particular article, the relation weight is recorded as one, and if the two keywords
appear together in n articles, the relation weight is recorded as n. Finally, according to
the constructed “keyword–keyword” multi-value adjacency matrix, a knowledge network
G (K, R, W) is constructed, where K denotes the set of knowledge nodes in the network
(K = {K1, K2, . . . , Kn}), R denotes the set of associations between knowledge nodes
(R = {R1, R2, . . . , Rm}), W denotes the connection, and A denotes the collection of weights
(frequency of associations) (see Figure 2).
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knowledge topics. Newman et al. [36] proposed a modularity algorithm to quantify the 
degree of clustering in network knowledge communities. This method could effectively 
cluster network nodes with different degrees of association and divide the community. 
Further, Blondel et al. [37] improved the method to dynamically examine the inflow and 
outflow of knowledge community nodes and the changes in the association between 
nodes against a background of massive data; this is referred to as the Louvain algorithm 
in academic circles. The Louvain algorithm is a graph data-based algorithm for commu-
nity detection. Its optimization goal is to maximize data modularization. The following 
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3.2.2. Knowledge Community Division

In any subject area, the relationship between various knowledge communities is not
completely random and independent; instead, a certain knowledge community structure is
formed by the closeness of association between such knowledge communities. Notably,
knowledge nodes in a knowledge community are closely related and form specific knowl-
edge topics. Newman et al. [36] proposed a modularity algorithm to quantify the degree
of clustering in network knowledge communities. This method could effectively cluster
network nodes with different degrees of association and divide the community. Further,
Blondel et al. [37] improved the method to dynamically examine the inflow and outflow of
knowledge community nodes and the changes in the association between nodes against
a background of massive data; this is referred to as the Louvain algorithm in academic
circles. The Louvain algorithm is a graph data-based algorithm for community detection.
Its optimization goal is to maximize data modularization. The following matrix for the
calculation of modularization is shown in Figure 3.
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Here, we used the Louvain algorithm to identify knowledge communities in the field of
robotics and deep learning and consequently use them to characterize the topic clustering of
neurorobotics. Accordingly, we discovered that even if the domain knowledge was divided
into different knowledge communities through the community discovery algorithm, during
the evolution and growth of domain knowledge, numerous relationships with only one
frequency could be identified. Such structural relationships inevitably exhibit a certain
degree of contingency or randomness, which is not conducive to domain knowledge, topic
clustering, and topic evolution analysis. To exclude such contingencies or randomness,
we extracted knowledge communities above a certain threshold based on the association
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frequency and eliminated low-frequency association relationships to make the knowledge
community closer and more representative.

4. Results
4.1. Publication Trends

Figure 4 presents the number of articles published annually in the field of neurorobotics
from 2013 to 2021. As illustrated in the figure, at least one paper on this topic has been
published each year, demonstrating the stable development of neurorobotics. Between
2013 and 2017, fewer than five articles were published each year. In 2018, the number of
articles published increased rapidly and reached ten, representing a milestone since the
publication of the first neurorobotics paper. From 2019 to 2021, more than five articles were
published each year, indicating steady development in the field of neurorobotics.
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The number of published articles and citation counts for different journals are listed
in Table 1. The Institute of Electrical and Electronics Engineers (IEEE) Robotics and Au-
tomation Letters published the most papers (10), with 183 citations. Most of the 10 articles
focused on nervous system control based on ML. Frontiers in Neurorobotics published the
second most number of papers (seven). Meanwhile, other journals did not publish more
than five articles. Notably, Soft Robotics published two articles, with 200 accumulated
citations and 100.00 citations per paper on average. Frontiers in Neurorobotics, which
published articles pertaining to neurorobotics-integrated ML in 2013, presented the highest
number of accumulated citations, that is, 381, with 54.43 citations per paper, on average.
Thus, overall, IEEE Robotics and Automation Letters has contributed significantly to the
field of neurorobotics in recent years and has published the highest number of articles.
Furthermore, it has published articles on neurorobotics annually between 2017 and 2021.

4.2. Authors’ Cooperation Network

In terms of collaborations among authors, as depicted in Figure 5, the density of
collaborative networks among authors appears low, and the collaboration among authors
is insufficient. The authors in the cooperation network are scattered. Egidio Falotico
established a close collaboration with Cecilia Laschi. Three of their collaborators, Henrik
Hautop Lund, Silvia Tolu, and Marie Claire Capolei, are affiliated with the Technical
University of Denmark. Their cooperation was within the scope of the institution. Both
Paras Gulati and Farokh Atashzar were affiliated with New York University. Although
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their collaboration was within the scope of their institution, both cooperated with Qin Hu,
who was not affiliated with New York University.

Table 1. Summary of journal publications.

Rank Journals Documents TC D/TC

1 IEEE Robotics and Automation Letters 10 183 18.30
2 Frontiers in Neurorobotics 7 381 54.43
3 IEEE Transactions on Robotics 4 101 25.25
4 International Journal of Robotics Research 3 155 51.67
5 International Journal of Advanced Robotic Systems 3 54 18.00
6 Soft Robotics 2 200 100.00
7 Autonomous Robots 2 46 23.00
8 International Journal of Social Robotics 1 30 30.00
9 Advanced Robotics 2 18 9.00
10 Science Robotics 1 10 10.00
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In terms of the number of published articles, Table 2 indicates that nine authors
published more than two articles. Among these nine authors, Egidio Falotico published the
highest number of papers (five), followed by Cecilia Laschi (three papers and two papers
by the remaining authors). Hence, they all published at least two articles.

Table 2. Authors with more than three publications and their number of citations.

Rank Authors Count Year

1 Egidio Falotico 5 2017
2 Cecilia Laschi 3 2017
3 Henrik Hautop Lund 2 2019
4 Qin Hu 2 2021
5 Sylvain Calinon 2 2017
6 Silvia Tolu 2 2019
7 Sfarokh Atashzar 2 2021
8 Paras Gulati 2 2021
9 Marie Claire Capolei 2 2019

In terms of citation counts, three papers were found to have more than 150 citations
based on the analysis of the WOS database. The most-cited paper, with 212 citations,
was authored by Atzori et al. [38], who investigated the natural control of robotic hands
using surface electromyography. Their study was followed by a paper with 185 citations



Symmetry 2022, 14, 2264 8 of 15

authored by George et al. [39], who analyzed various controllers developed for contin-
uum/soft robots. In their study, the researchers guided future applications of soft robots,
comprehensively evaluated different control strategies, and surveyed the prospects of
future research in the field of soft robots. In addition, the three most-cited papers were
identified (see Table 3).

Table 3. Most-cited publications.

Rank Author Title Citations

1 Zhang et al. [28]

Deep Learning with Convolutional Neural
Networks Applied to Electromyography
Data: A Resource for the Classification of

Movements for Prosthetic Hands

212

2 George et al. [39] Control Strategies for Soft Robotic
Manipulators: A Survey 185

3 Sünderhauf et al. [40] The limits and Potentials of Deep Learning
for Robotics 130

4 Yang et al. [41] Repeatable Folding Task by Humanoid
Robot Worker Using Deep Learning 80

5 Gijsberts et al. [42]
Stable Myoelectric Control of a Hand

Prosthesis Using Non-linear Incremental
Learning

70

4.3. Countries and Institutions

Further, the cooperation among institutions was found to be limited. Only a few
institutions collaborated with others, such as the Scuola Superiore Sant’Anna and the Tech-
nical University of Denmark, the DLR-German Aerospace Center, and the Idiap Research
Institute. Among these, the first two had a stronger partnership.

In terms of the number of articles published by institutions, as presented in Table 4,
eight institutions published more than two articles. Scuola Superiore Sant’Anna published
the highest number of articles (six), whereas the other institutions published two.

Table 4. Institutions that published more than two articles.

Rank Institutions Count Year

1 Scuola Superiore Sant’Anna 6 2017
2 University of Bristol 2 2019
3 Technical University of Denmark 2 2019
4 Idiap Research Institute 2 2017
5 The University of Sydney 2 2013
6 New York University 2 2021
7 Bielefeld University 2 2019
8 DLR-German Aerospace Center 2 2014

Further, cooperation among countries is illustrated in Figure 6. As indicated, Germany
presents the highest number of collaborations with other countries, followed by Italy. Japan
has the fewest partnerships with other countries.

Regarding the number of published articles, 11 countries published more than two
articles, with Germany publishing the most articles (10), followed by nine articles from Italy
and eight articles from the USA. Although the difference between the number of published
articles between all the ranks was only one, Germany published all articles in 2013, whereas
Italy and the USA published their articles in 2017 and 2018, respectively.

As illustrated in Figure 6, among the 11 countries, Germany published the most articles
and presented the most open collaboration relations with other countries, such as Spain,
France, and Italy.
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4.4. Keyword Analysis

Notably, a timeline view can provide an overall picture of the timespans of different
clusters and the linkages among different clusters, as depicted in Figure 7. The current
study involved four clusters, where the nodes in each row represent the keywords of each
cluster. The connection lines represent the relationships between different keywords. The
connection between points and lines directly reflects the time at which the keyword first
emerged in the research field and the relationship among different keywords. Figure 7
indicates that Clusters 0 and 1 contain the greatest number of keywords, which implies
their importance; hence, these two topics have received considerable attention. In addition,
Clusters 2 and 3 have larger nodes, indicating that they have been intensely focused on.
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On the CiteSpace interface, keywords were regarded as nodes, and the time slices
were set to one. By using the G-index as the selection criterion, k = 25 was confirmed.
After performing our analysis, a co-occurrence atlas of keywords, comprising 173 nodes
and a network density of 0.0402, was obtained, as illustrated in Figure 7. Figure 7 lists
the nodes, with different colors representing the different clusters (i.e., research topics),
showing keyword nodes with frequencies above 2 or equal to 2.

The clustering keyword in Cluster 0 was “study”. The other clustering keywords in-
cluded movement, stroke, communication, state, performance, accuracy, brain–computer
interface (BCI), response, assisted therapy, and construction. This clustering focused on
robotic arms and robots. The BCI helped improve the accuracy of robots’ understanding of
people’s thoughts and satisfied the requirements of users. Notably, direct human–computer
two-way information interactions have significantly benefited society. For example, such
interactions can provide assisted therapy (assisted be) to patients prone to strokes to im-
prove the accuracy of navigation systems [31,43,44]. The clustering keyword in Cluster 1
was “control strategies”. The cluster included neural networks, kinematics, driving, and
design keywords. To satisfy the demands of various fields more comprehensively, including
kinematics, medicine, and business, researchers have prioritized the design and optimization
of robotic systems or comparisons between different systems in clustering [32,45,46].

The clustering keyword in Cluster 2 was “hand motion”. Other keywords for clus-
tering included visual teaching, vision, therapy, robot, reconstruction, reality, quadrotor,
network development, large-scale, interface, flight, and controller. This clustering involved
extensive research on robots. The most significant difference between Clusters 0 and 2
was the direction and intensity of information interaction, with the latter focusing more on
robots’ operations and being more consistent with customary human practice. Previously,
large-scale experiments in this cluster have been performed, thus endowing humanity with
better services through either the active or passive use of controllers [40,47].

The clustering keyword in Cluster 3 was “adaptability”. Other keywords for clustering
included system, neural network model, inverted pendulum, internal model, human stance
control, cortex, and cerebellum. This clustering not only focused on human–computer
interactions while providing more services to humans but also focused on designing robots
that closely resembled humans; these include robots that can control themselves similar
to human stance control (human stance control; cerebellum) [48,49] and think like human
beings via a similar network model (network model) [50–52]. Therefore, the robots used in
the clustering process may be more independent.

4.5. Content Analysis of Neurorobotics and Machine Learning

Due to the small amount of literature for analysis, this study aimed to reinforce
the current status and content of the research in which bibliometric analysis failed to
investigate neurorobotics and ML. To this end, we carried out a literature review through
content analysis, and then referred to the studies of Nagariya et al. [53] and Lin et al. [54]
to use both bibliometric analysis and content analysis. The purpose of adopting mixed
analysis methods is to help reduce the bias associated with traditional interview methods
by complementing each other in a holistic, objective, and responsible manner. In terms
of content analysis, this study adopted a literature review and analysis. Three professors
and two postgraduates were divided into two groups to read the literature, and then
the literature was preliminarily sorted and classified by three research members. The
accuracy and correctness of the classification were ensured by a review of three professors.
Common types of neurorobots are used to study motor control, memory, action selection,
and perception. However, due to the small amount of literature involved in this study,
the literature was mainly divided into two types: Literature related to applications and
literature related to algorithm improvement.

In the concluding section, studies related to algorithms are presented as follows.
Sari [55–57] investigated the effect of different learning algorithms on the learning perfor-
mance of neural networks in inverse kinematic model learning for seven-joint redundancy
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robots. After implementing various training algorithms, they found that the Levenberg–
Marquarth (LM) algorithm was significantly more efficient than other training algorithms.
Polic et al. [58] used a new perceptual algorithm in the field of haptic robotics that used a
convolutional neural network encoder structure for dimensionality reduction of optical-
based haptic sensor image outputs. In addition, Thuruthel et al. [59] proposed a model-
based policy learning algorithm for closed-loop predictive control of soft robot manipula-
tors. Jetchev and Toussaint [60] used a new approach to trajectory prediction to demonstrate
optimal motion as an appropriate trajectory for fast prediction of new situations, which
improved the optimality of the robot motion. Reviewing such studies, the main topic is
still algorithm improvement.

Studies related to applications are as follows. Bruno et al. [61] proposed a new strategy
for the body learning position controller of the flexible surgical manipulator for minimally
invasive surgery. Malekzadeh et al. [62] provided a multi-level architecture from low-level
control to high-level motion planning for a bionic handling-assist robot. They deployed all
levels of learning to apply learning from demonstration to real-world manipulation tasks.
Lippi [49], on the other hand, investigated the application of bionic modules to the control
of robotic humanoid poses. Asgher et al. [63] designed a lightweight wearable robotic
manipulator for use with a portable fNIRS system to acquire mental workload (MWL)
signals to help potential stroke patients through an integrated portable brain interface.
These studies reflect neurorobotics at the application level, focusing mainly on applications
related to medical use and factory automation.

5. Discussion and Conclusions
5.1. Discussion

Based on bibliometrics and the CiteSpace software, data on neurorobotics collected
from the WOS between 2013 to 2021 were scrutinized, and the status and direction of
research were discussed. Multiple studies indicated that ML, one of the major research
directions in AI, has profound implications for the development of neurorobotics. Below,
the conclusions and implications are summarized based on the analysis results.

Most articles on neurorobotics were published by IEEE Robotics and Automation
Letters, Frontiers in Neurorobotics, IEEE Transactions on Robotics, the International Journal
of Advanced Robotic Systems, and the International Journal of Robotics Research. Among
them, only Soft Robotics (100.00), Frontiers in Neurorobotics (39.44), and the International
Journal of Robotics Research (33.64) had citation rates of more than 50.00 citations per
study. Thus, owing to its high number of publications and high citation rate, Frontiers
in Neurorobotics is a leading journal in the field. Meanwhile, although Soft Robotics
had a citation rate of 100.00 per study, only two papers were published. Among the
studies mentioned above, George et al. [38] presented a specific evaluation analysis of
the applications and algorithms of neurorobotic controllers through a comprehensive
assessment of future applications and various control strategies in the field of soft robotics,
as well as an insight into the future research areas in this field. As far as the trend of
research journals’ inclusion of ML and neurorobotics is concerned, the relevant calls for
papers are still mainly from journals that focus on robotics topics.

As discussed in the analysis of clustering keywords used by users in this field, the
following primary clusters were studied: Hand motion, adaptability, and control strategies,
which are partly associated with studies on robot exoskeletons [64,65]. For keyword
salience analysis, decentralized research was conducted in a disorganized direction before
2016, which is attributable to the early development of neurorobotics. Since 2016, several
articles with high citation rates [38–40] have been published, along with a significant
number of papers regarding neurorobotics. This publication evolution is attributable to the
systematic standardization and comprehensive investigations of problems encountered in
the field. In addition, after 2019, most publications in this field focused on systematically
and comprehensively investigated topics from 2016 to 2018, such as deep learning for robots
and algorithm development for robotic arms. These keyword clusters indicate that deep
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learning and robot design are the two primary directions in neurorobotics research and
are vital to current investigations, particularly those on computer vision. Future research
and development of robotic arms should be more efficient, accurate, and beneficial. The
research directions in this field are based on similar roadmaps over time, that is, from
surface to spot and from superficial to comprehensive investigations, indicating that the
theoretical basis and experimental research considered by scholars are maturing with the
research directions. Furthermore, developments in other directions should be investigated,
and the scope of this study should be improved to enhance the field framework further.

Second, in terms of the current status of institutional and national publications, the
most published country is mainly Germany, followed by Italy and the USA. In terms
of institutional publications, only a few institutions collaborated with others, such as
Scuola Superiore Sant’ Anna (Italy), the Technical University of Denmark (Denmark),
the DLR-German Aerospace Center (Italy), and Idiap Research Institute (Switzerland).
These partnerships are mainly distributed in the European region. The authors of the
top two most cited studies, i.e., the studies of Atzori et al. [38] and George et al. [38], are
concentrated in this region. This shows that the international and institutional collabora-
tion in neurorobotics is not deep, and only some of the research institutions have strong
partnerships.

Third, neurorobotics research mainly focuses on medical-related topics (e.g., [61,63,66,67],
but there is also research on neurorobotics for algorithm improvement [59] and enterprise
automation [41,62]. Overall, neurorobotics research is still mainly biased toward medical-
related fields, and researchers can subsequently explore or expand the applications of these
fields in more depth.

5.2. Implications for Academic Research

Neurorobotics is the branch of neuroscience and robotics that deals with the study
and application of the science and technology of embodied autonomous neural systems
such as brain-inspired algorithms. Therefore, in contrast to simulated environments, most
neurorobots need to operate in the real world. Through bibliometric coupling, keyword
emergence, and manual reading of research articles, including collating research methods
with the use of neuroscience tools, this study presents the following promising topics to
future researchers for further discussion.

First, it can be found from the previous research that the research of neurorobotics and
ML focuses on the design and optimization of the robotics system and comparison between
different systems. When it comes to either business- or medical-related issues, especially
the lack of medical personnel or the lack of workers in business due to the disease diagnosis
in the post-2020 COVID-19 epidemic, future studies can more thoroughly investigate how
to efficiently combine neurorobotics and ML to effectively reduce the economic downtime
and manpower loss caused by the epidemic.

Second, there are also many topics related to algorithms or practical applications in
the research of neurorobotics and ML. Similarly, when it comes to optimization problems
such as logistics transportation, especially how to reduce the consumption in the process of
human transportation and to effectively improve the efficiency of enterprise operations,
such research provides a perspective for subsequent reflection or research on the application
of neurorobotics and ML.

Finally, at the intersection of many fields of AI, neuromorphic systems, and other forms
of bionics, a long-standing unanswered question concerns how AI systems should mimic
the norms for natural phenomena of learning and adaptation, and what the construction
of such structures is. These also require improvements in more diverse algorithms to
narrow the fallout between runs on neurorobotics, thereby improving the scope of tests
and experiments that can be performed in neural process research.
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5.3. Research Limitation

This study, however, has certain limitations owing to the insufficient amount of data
involved and the qualitatively presented keyword nodes in CiteSpace. From a quantitative
perspective, the value represented by a node is derived from the number of occurrences
of that keyword in the entire bibliometric dataset. This study would have been more
convincing if the software had weighted the number of occurrences of the keyword and
the authors’ publication order in the specific literature. Second, a bibliometric analysis
of the existing literature was conducted. The bibliometric analysis mainly ranked only
paper keywords, authors, journal names, and country network relationships. In this case,
only 46 SCI papers were analyzed in this study. Such a small amount of literature is also
a limitation of this study. Especially, the data analysis was conducted using SCI journals
as the main source of data, but the research on neurorobotics is not only included in SCI
journals, but also in many Engineering Index (EI) databases. This is another limitation of
this study. Third, this study used Citespace to conduct a broad survey of specific research
areas. However, the analysis of the knowledge mapping only discussed the relevance of the
broad literature without considering the trends of individual studies or topics. In addition,
the content analysis only presented the discussion from the perspective of the data without
refining specific topics or articles for in-depth analysis. Therefore, future research could
also consider combining Citespace with other software for a more in-depth analysis of
articles in the field of neurorobotics combined with ML.
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